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Abstract: Several apolipoprotein genes are located at the APOE locus on chromosome 19q13.32. This
study explored the genetic determinants of cardiometabolic traits and metabolic syndrome at the
APOE locus in a Taiwanese population. A total of 81,387 Taiwan Biobank (TWB) participants were
enrolled to undergo genotype—phenotype analysis using data from the Axiom Genome-Wide CHB
arrays. Regional association analysis with conditional analysis revealed lead single-nucleotide varia-
tions (SN'Vs) at the APOE locus: APOE rs7412 and rs429358 for total, low-density lipoprotein (LDL),
and high-density lipoprotein (HDL) cholesterol levels; CLPTM1 rs3786505 and rs11672748 for LDL
and HDL cholesterol levels; and APOCI rs438811 and APOE-APOC1 rs439401 for serum triglyceride
levels. Genotype—phenotype association analysis revealed a significant association of rs429358 and
rs438811 with metabolic syndrome and of rs7412, rs438811, and rs439401 with serum albumin levels
(p < 0.0015). Stepwise regression analysis indicated that CLPTM1 variants were independently associ-
ated with LDL and HDL cholesterol levels (p = 3.10 x 10~15 for rs3786505 and p = 1.48 x 1015 for
1511672748, respectively). APOE rs429358 and APOC1 rs438811 were also independently associated
with metabolic syndrome (p = 2.29 x 10~'#) and serum albumin levels (p = 3.80 x 10~°), respec-
tively. In conclusion, in addition to APOE variants, CLPTM1 is a novel candidate locus for LDL and
HDL cholesterol levels at the APOE gene region in Taiwan. Our data also indicated that APOE and
APOCI1 variants were independently associated with metabolic syndrome and serum albumin levels,
respectively. These results revealed the crucial role of genetic variants at the APOE locus in predicting
cardiometabolic traits and metabolic syndrome.

Keywords: APOE locus; CLPTM1; APOCI; lipid profile; metabolic syndrome; serum albumin level

1. Introduction

The APOE gene is located within the APOE-C1-C4-C2 gene cluster on chromosome
19q13.32, which encodes four amphipathic apolipoproteins and two hepatic control regions
that regulate the hepatic expression of these genes [1,2]. Several other genes, such as
TOMM40 and CLPTM1, that are not directly associated with lipid metabolism are also
located close to APOE. This genomic locus is characterized by strong linkage disequilibrium
(LD) between different polymorphic genotypes in this region, which tend to be coinherited
faithfully. Thus, genome-wide association studies (GWASs) have indicated that most of

Genes 2022, 13, 1366. https:/ /doi.org/10.3390/ genes13081366

https://www.mdpi.com/journal /genes


https://doi.org/10.3390/genes13081366
https://doi.org/10.3390/genes13081366
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0003-4140-5699
https://orcid.org/0000-0002-0012-2804
https://orcid.org/0000-0002-8218-6827
https://doi.org/10.3390/genes13081366
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13081366?type=check_update&version=2

Genes 2022, 13, 1366

20f15

the gene loci on the APOE locus region are associated with multiple lipid variables. By
the NHGRI-EBI GWAS Catalog [3], a publicly available resource for GWASs, the major
contribution of the APOE locus variants includes not only the regulation of low-density
lipoprotein (LDL)-related traits but also their significant associations with triglyceride and
high-density lipoprotein (HDL) cholesterol levels.

Human apolipoprotein E (APOE), synthesized and secreted by hepatocytes, acts by
binding to its own receptor and the LDL receptor. It is the main ligand for the clearance of
very-low-density lipoproteins (VLDLs) and chylomicron remnants and affects the circu-
lating concentration of lipoproteins and plasma levels of cholesterol and triglycerides [4].
APOE participates in the reverse cholesterol transport mechanism and mediates the hepatic
uptake of triglyceride-rich lipoprotein (TRL). APOE variants have been reported in differ-
ent types of dyslipidemias, such as autosomal-dominant hypercholesterolemia, familial
combined hyperlipidemia, familial dysbetalipoproteinemia, and lipoprotein glomerulopa-
thy [5]. Dyslipidemia is a modifiable risk factor of atherosclerosis, which is currently the
most important pathological mechanism leading to the development of cardiovascular dis-
ease [6-8]. The most important forms of atherosclerotic cardiovascular disease are coronary
heart disease, cerebrovascular disease, and peripheral arterial disease. Three APOE iso-
forms, created by the €2, €3, and ¢4 alleles with two single-base changes (APOE rs7412 and
APOE rs429358) in the coding region of APOE, are the most well-defined common variants
that determine plasma lipid levels, coronary risk, and Alzheimer disease [9-12].

Three other apolipoprotein genes are located within the APOE-C1-C4-C2 gene cluster.

Apolipoprotein C1 is a constituent of TRL and HDL and acts on the exchanges be-
tween lipoprotein classes, leading to decreased LDL cholesterol levels [13-15]. ApoCl1 also
modulates the activities of several enzymes, such as the activation of lecithin cholesterol
acyl transferase and inhibition of cholesterol ester transfer protein and lipoprotein lipase
(LPL), resulting in the control of serum triglyceride and HDL cholesterol levels [13,16,17].
Apolipoprotein C-IV (APOC4), a highly conserved lipid-binding protein associated mainly
with VLDL particles, plays a vital role in triglyceride metabolism [18]. Transgenic mice
with APOC4 overexpression exhibit elevated triglyceride levels [19,20]. Apolipoprotein
C-II (apoC-II) is a small, exchangeable apolipoprotein found on TRL and plays a critical role
in TRL metabolism by acting as an essential cofactor of LPL [21]. Both a deficiency and an
excess of apoC-II are associated with reduced LPL activity and hypertriglyceridemia [22,23].

Two other genes that are not directly associated with lipid metabolism and located
close to APOE are also candidate genes for lipid profile. TOMM40 encodes M40 (translocase
of the outer mitochondrial membrane, 40 kD), which forms the channel subunit of a multi-
subunit complex of the outer mitochondrial membrane pore subunit. A study involving
postmortem brain analysis concluded that by recognizing and allowing the importation
of nuclear-encoded proteins, M40 can induce dynamic mitochondrial dysfunction in neu-
rons to increase the risk of Alzheimer disease along with the upregulation of TOMM40
messenger RNA in the frontal lobe of a postmortem Alzheimer disease brain compared
with controls [24]. GWASs have demonstrated a significant association between TOMM40
variants and body mass indices, LDL-C levels, and Alzheimer disease [25-27]. CLPTM1
was originally identified as the causative gene mutation in a patient family with cleft
lip and palate [28]. Clptm1 is a y-aminobutyric acid A receptor (GABA sR)-associated
protein [29], and GWASs in Europeans have demonstrated that CLPTM1 variants are asso-
ciated with multiple lipid traits [30,31]. However, their role in Asian populations remains
unknown. We previously reported that APOE variants interact with C-reactive protein
to regulate triglyceride levels; thus, triglyceride concentration is influenced by both the
genetic background of the APOE locus and the inflammatory status of a patient [32].

The Taiwan Biobank (TWB) is a large-scale, population-based cohort study recruiting
volunteers aged between 30 and 70 years with no history of cancer [33]. Because of multiple
genes being situated at chromosome 19q13.32, we investigated the genetic determinants of
cardiometabolic traits and metabolic syndrome by using regional association analysis in
TWB participants.
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2. Participants and Methods
2.1. TWB Participants

The TWB is a population-based research consortium. The study population is com-
prised of 107,494 TWB Han Chinese participants who had no history of cancer and were re-
cruited between 2008 and 2020 from centers across Taiwan. We excluded 26,107 participants
because of (1) fasting for <6 h (2862 participants), (2) no imputation data (12,289 partici-
pants), and (3) quality control (QC) for the GWAS with identity by descent PI_HAT > 0.187
(10,956 participants). Figure 1 depicts the flowchart of participant enrollment. We also
excluded participants with a history of gout, hypertension, hyperlipidemia, and diabetes
mellitus as indicated by their serum uric acid level, blood pressure status, and lipid and
glucose metabolism parameters, respectively. Definitions of hypertension, diabetes mellitus,
obesity, hyperlipidemia, and current smoking are provided in Supplementary Method 1.
This study was approved by the Research Ethics Committee of Taipei Tzu Chi Hospital,
Buddhist Tzu Chi Medical Foundation (approval number: 05-X04-007), and the Ethics
and Governance Council of the Taiwan Biobank (approval numbers: TWBR10507-02 and
TWBR10611-03). Each participant signed an informed consent form before participating in

the study.

Taiwan biobank cohort

Inclusion criteria

1. No history of cancer
2. With genotyping from Axiom Genome-Wide CHB 1 or 2 Array

v

Exclusion criteria Number
No imputation data 12,289
QC for GWAS 10,956
Fasting 6 hrs 2862

Further exclusion DM history HTN history HLhistory  Gout history

vV vy

Final population I 77,241 I[ 71,273 ][ 75,441 ][ 78,180 II 81,387 ]

FPG DBP HDL-C
Phenotypes analyzed HbA Lc SEP LDL-C UA Other phenotypes
MBP TG
T-CHO

Figure 1. Flowchart of the Taiwan Biobank participants.

2.2. Genomic DNA Extraction and Genotyping

By using a PerkinElmer Chemagic 360 instrument (PerkinElmer, Waltham, MA, USA),
genomic DNA was extracted after blood sampling. Single-nucleotide variation (SNV;
formerly referred to as “single-nucleotide polymorphism”) genotyping was performed
using custom TWB chips on the Axiom Genome-Wide Array Plate System (Affymetrix,
Santa Clara, CA, USA).
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2.3. Clinical Phenotypes and Laboratory Examinations

Clinical phenotypes used for the study were body mass index (BMI), waist-hip ratio,
waist circumference, and systolic, diastolic, and mean blood pressures. We also collected
the following biochemical data: fasting plasma glucose and glycated hemoglobin (HbAlc)
levels for glucose metabolism; total, LDL, and HDL cholesterol and triglyceride levels
for lipid profile; and aspartate aminotransferase (AST), alanine aminotransferase (ALT),
v-glutamyl transferase (y-GT), albumin, total bilirubin, serum creatinine, and uric acid
levels for liver and renal functional tests. BMI and estimated glomerular filtration rate
(eGFR) were calculated as reported previously [34]. White and red blood cell counts,
platelet counts, hematocrit, and hemoglobin levels were used for the hematological analysis.
Because urine creatinine levels were unavailable, only the spot urine albumin level was
used to evaluate albuminuria.

2.4. Regional Association Analysis with Conditional Analysis

To determine which variant was the lead SNV around the APOE gene region for
lipid profile, we conducted a regional association analysis by including TWB participants
enrolled after the exclusion criteria were applied, as reported previously [34,35]. In brief,
QC was performed for GWAS using the Axiom Genome-Wide CHB 1 and CHB 2 Array
Plates (Affymetrix), each comprising 611,656 and 640,160 SNVs, respectively. Genome-wide
genotype imputation was performed using SHAPEIT and IMPUTE2, and the East Asian
population from the 1000 Genome Project Phase 3 study was used as the reference panel.
With imputation, QC was then performed by filtering SNVs with an IMPUTE2 imputation
quality score of >0.3. All samples enrolled for the analysis had a call rate of >97%. The
indels were removed using VCFtools. For SNV QC, an SNV call rate of <97%, a minor
allele frequency of <0.01, and the violation of the Hardy-Weinberg equilibrium (p < 107°)
were the criteria for exclusion from subsequent analyses. After QC, in the APOE region,
325 SNVs at positions between 45.2 and 45.6 Mb on chromosome 19q13.32 were enrolled
for illustration and analysis.

2.5. Statistical Analysis

By using the Kolmogorov-Smirnov test, continuous variables were tested for nor-
mal distribution. All variables were not compatible with normal distribution and were
expressed as medians and interquartile ranges. Categorical data were presented as per-
centages. Lipid profile and urine albumin levels were logarithmically transformed to
achieve adherence to a normality assumption before being examined using analysis of
variance and regression. A general linear regression was used to analyze the associa-
tion between the studied phenotypes and investigated genotypes after adjustment for
age, sex, BMI, and current smoking status. To evaluate the independent effect of the
investigated genotypes on the risk of lifestyle and atherosclerotic risk factors, we used
multiple logistic regression analysis. Stepwise multivariable linear regression was then
performed to determine the independent correlates of lipid profile and serum albumin
levels. Regional association analysis was performed using the PLINK software package.
Genome-wide significance was defined as p <5 x 10~%. In genotype-phenotype associa-
tion analysis, the Bonferroni method was used to correct for multiple comparisons where
applicable on the basis of the 33 traits analyzed (0.05/33 = 0.0015). LDmatrix software
(https:/ /analysistools.nci.nih.gov/LDlink/?tab=ldmatrix, accessed on 12 January 2021)
was used to analyze LD. All statistical analyses were performed using SPSS (version 22;
SPSS, Chicago, IL, USA).

3. Results
3.1. Baseline Characteristics

The TWB participants’ clinical, demographic, and laboratory data stratified by sex
are presented in Table 1. Compared with female participants, male participants had
significantly higher BMI, waist circumference, and waist-to-hip ratio; systolic, diastolic, and
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mean blood pressures; circulating levels of LDL cholesterol, triglyceride, fasting plasma
glucose; uric acid and creatinine; liver injury and function parameters of AST, ALT, v-GT,
albumin, and total bilirubin levels; and hematocrit, red blood cell count, and hemoglobin
(all p < 0.0001). By contrast, total cholesterol and HDL cholesterol levels, eGFR, albuminuria,
and platelet counts (all p < 0.0001) were higher in women than in men.

Table 1. Baseline characteristics of study patients by sex.

Clinical and Laboratory Total Male Female
Parameters
Number 81,387 29,487 51,900
Anthropology

Age (years) 51.0 (41.0-59.0) 51.0 (41.0-60.0) 51.0 (41.0-59.0) ***
Waist circumference (cm) 83.0 (76.0-89.5) 87.5 (82.0-93.5) 80.0 (74.0-86.5) ***
Waist-hip ratio 0.87 (0.82-0.91) 0.90 (0.86-0.94) 0.84 (0.80-0.89) ***
Body mass index (kg/m?) 23.78 (21.58-26.30) 25.0 (23.0-27.3) 23.0 (21.0-25.5) ***

Blood Pressure
Systolic BP T (mmHg)
Diastolic BP * (mmHg)
Mean BP * (mmHg)
Lipid profile
Total cholesterol # (mg/dL)
HDL cholesterol # (mg/dL)
LDL cholesterol # (mg/dL)
Triglyceride # (mg/dL)
Glucose metabolism
Fasting plasma glucose
(mg/dL)
HbAlc (%)
Uric acid
Uric acid ™ (mg/dL)
Renal function
Creatinine (mg/dL)
eGFR (mL/min/1.73 m?)
Albuminuria (mg/L)
Liver function
AST (U/L)
ALT (U/L)
gGT (U/L)
Serum albumin (g/dL)
Total bilirubin (mg/dL)
Hematological parameters
Leukocyte count (10%/uL)
Hematocrit (%)
Platelet count (10%/pL)
Red blood cell count (10°/uL)
Hemoglobin (g/dL)
Atherosclerotic risk factors
Diabetes mellitus (%)
Hypertension (%)
Current smoking (%)
Gout (%)
Microalbuminuria (%)
Metabolic syndrome (%)

+

115.0 (105.0-126.7)
71.0 (65.0-79.0)
86.0 (78.7-94.3)

193.0 (171.0-216.0)
53.0 (45.0-63.0)
119.0 (99.0-140.0)
90.0 (63.0-132.0)

92.0 (87.0-97.0)
5.6 (5.4-5.9)

5.2 (4.4-6.2)

0.68 (0.57-0.83)
100.7 (87.5-116.4)
8.7 (5.4-15.2)

23.0 (20.0-27.0)

19.0 (14.0-27.0)

17.0 (12.0-26.0)
45 (4.4-4.7)
0.6 (0.5-0.8)

5.7 (4.7-6.8)
41.6 (39-44.5)
237.0 (202.0-276.0)
4.7 (4.4-5.0)
13.7 (12.8-14.8)

9.5%
22.4%
9.1%
3.9%
11.3%
22.2%

121.0 (111.7-131.5)
76.5 (70.0-83.0)
91.2 (84.3-98.7)

190.0 (168.0-213.0)
47.0 (40.0-54.0)
121.0 (101.0-142.0)
107.0 (74.0-156.0)

94.0 (89.0-99.0)
5.6 (5.4-5.9)

6.3 (5.5-7.1)

0.88 (0.79-0.98)
92.6 (81.3-105.0)
8.4 (5.3-15.0)

24.0 (21.0-29.0)

23.0 (17.0-33.0)

22.0 (16.0-34.0)
46 (44-47)
0.7 (0.6-0.9)

5.9 (4.9-7.0)
44.9 (42.9-47.1)
221.0 (190.0-256.0)
5.1 (4.8-5.3)
15.1 (14.4-15.8)

12.4%
30.9%
20.3%
9.8%

12.3%
26.9%

111.0 (102.0-123.0) ***
69.0 (62.7-76.0) ***
83.2 (76.3-91.3) ***

194.0 (172.0-218.0) ***
57.0 (49.0-66.0) ***
118.0 (98.0-140.0)

83.0 (59.0-119.0) ***

90.0 (86.0-95.0) ***
5.6 (5.4-5.8)

4.8 (4.1-5.5) **

0.60 (0.54-0.67) ***
106.2 (92.4-122.2) ***
9.0 (5.5-15.4) ***

22.0 (19.0-26.0) ***

17.0 (13.0-23.0) ***

14.0 (11.0-21.0) ***
45 (4.3-4.6) ***
0.6 (0.5-0.7) ***

5.6 (4.6-6.6)

40.0 (37.9-42.1) ***
246.0 (211.0-286.0) ***
45 (4.3-4.8) **
13.1 (12.4-13.8) ***

7.9% ***
17.5% ***
2.8%
0.6% ***
10.8% *
19.6% ***

Participants were analyzed after the exclusion of those with a history of u hypertension, t* diabetes mellitus,

t

gout, and # hyperlipidemia. Data are presented as medians (interquartile ranges). Abbreviations: BP, blood

pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein; HbAlc, hemoglobin A1C; eGFR, estimated
glomerular filtration rate; AST, aspartate aminotransferase; ALT, alanine aminotransferase; y-GT, y-glutamyl
transferase. * p < 0.01, *** p < 0.0001 comparing female participants to male participants.
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3.2. Regional Association Plots

Regional association plots were made to determine the association of genetic variants
around the APOE gene region at positions 45.2-45.6 Mb on chromosome 19q13.32 for
the lipid profile (Figure 2). The lead SNVs with genome-wide significant associations
included APOE rs7412 for total, LDL, and HDL cholesterol levels and APOC1 rs438811
for serum triglyceride levels (p < 103", p <1073%7, p =2.37 x 10~* and p = 1.61 x 10,
respectively). We performed sequential conditional analysis for each lipid trait, and the lead
SNVs with genome-wide significant associations were APOE rs429358 for total cholesterol
levels (p = 2.38 x 10~71), APOE rs429358 and CLPTM!1 1rs3786505 for LDL cholesterol
levels (p = 5.81 x 10720 and p = 1.67 x 10714, respectively), APOE rs429358 and CLPTM1
1511672748 for HDL cholesterol levels (p = 1.21 x 107*3 and p = 6.89 x 10716, respectively),
and APOE-APOCT1 rs439401 for serum triglyceride levels (p = 2.59 x 10~; Table 2). Nearly
complete LD was noted between rs11672748 and rs3786505 (2 > 0.99), and both variants
had weak LD with other lead SNVs (all r? < 0.015). Weak LD was also noted between
rs429358, rs7412, and rs439401 (all r* < 0.2), and these three SNVs were in moderate LD
with rs438811 (2 between 0.310 and 0.432). The results are presented in Figure 3.

Table 2. Association between APOE, APOC1, and CLPTM1 gene region variants and serum

lipid levels.

Genetic Variants MM Mm Mm p Value * p Value **
APOE rs429358 TT (62,865) CT (11,841) CC (519)
Total cholesterol # (mg/dL)  192.0 (170.0-215.0)  198.0 (176.0-222.0)  200.0 (181.0-224.0)  3.50 x 10~%®  2.38 x 107!
HDL cholesterol # (mg/dL) 53.0 (45.0-63.0) 52.0 (44.0-62.0) 51.0 (43.0-61.0) 783 %1077 121 x107%
LDL cholesterol # (mg/dL) 118.0 (98.0-139.0)  125.0 (105.0-146.0)  127.0 (108.0-149.0) 1.61 x 10~110 581 x 10120
Triglyceride # (mg/dL) 89.0 (63.0-131.0) 94.0 (66.0-141.0) 100.0 (68.0-150.0)  8.00 x 10736 4.27 x 10~2
APOE 157412 CC (64,455) TC (10,469) TT (393)
Total cholesterol # (mg/dL)  195.0 (173.0-218.0)  181.0 (161.0-204.0)  164.0 (137.0-199.0) <10307 <1073%7
HDL cholesterol # (mg/dL) 53.0 (45.0-62.0) 55.0 (46.0-65.0) 54.0 (46.0-65.0) 234x107% 237 x10~#
LDL cholesterol # (mg/dL) ~ 122.0 (103.0-143.0)  101.0 (85.0-120.0) 59.0 (46.0-74.0) <10—307 <10—307
Triglyceride # (mg/dL) 89.0 (63.0-131.0) 94.0 (66.0-139.0) 114.0 (78.0-177.5) 242 x 107 145 x 10~%
APOE- APOC1 rs439401 TT (26,681) CT (36,300) CC (12,458)
Total cholesterol # (mg/dL)  194.0 (172.0-217.0) ~ 192.0 (170.0-216.0) ~ 192.0 (170.0-216.0)  1.11 x 108  1.16 x 10~8
HDL cholesterol # (mg/dL) 53.0 (45.0-63.0) 53.0 (45.0-63.0) 53.0 (45.0-63.0) 0.9970 0.3971
LDL cholesterol # (mg/dL) ~ 121.0 (102.0-142.0) ~ 118.0 (99.0-140.0)  116.0(95.0-139.0) 128 x 10" 220 x 10~%7
Triglyceride # (mg/dL) 87.0 (62.0-127.0) 91.0 (64.0-133.0) 96.0 (67.0-142.0) 580 x 107  2.59 x 10
APOC1T rs438811 CC (51,077) TC (21,804) TT (2258)
Total cholesterol # (mg/dL)  194.0 (172.0-217.0) ~ 190.0 (168.0-215.0)  188.0 (163.0-213.0)  1.68 x 1073}  1.63 x 1056
HDL cholesterol # (mg/dL) 53.0 (45.0-63.0) 53.0 (45.0-63.0) 53.0 (45.0-63.0) 0.7682 0.6896
LDL cholesterol # (mg/dL) ~ 121.0 (102.0-142.0)  115.0 (94.0-137.0)  106.0 (81.0-130.0) <10—307 <1073%7
Triglyceride # (mg/dL) 88.0 (63.0-129.0) 94.0 (65.0-139.0) 99.0 (68.0-149.0) 121 x 107  1.61 x 1078
CLPTM1 rs11672748 AA (20,021) GA (37,145) GG (17,842)
Total cholesterol # (mg/dL)  193.0 (171.0-217.0) ~ 193.0 (171.0-217.0) ~ 192.0 (170.0-216.0) 0.0501 0.0223
HDL cholesterol # (mg/dL) 53.0 (45.0-62.0) 53.0 (45.0-63.0) 54.0 (45.0-63.0) 264 x 10713 6.89 x 10716
LDL cholesterol # (mg/dL) ~ 120.0 (100.0-141.0) ~ 119.0 (99.0-141.0)  118.0 (98.0-138.0)  2.06 x 10~13 283 x 10~ 14
Triglyceride # (mg/dL) 90.0 (64.0-132.0) 90.0 (63.0-132.0) 90.0 (64.0-132.0) 0.9639 0.9714
CLPTM1 rs3786505 AA (20,031) GA (37,183) GG (17,840)
Total cholesterol # (mg/dL)  193.0 (171.0-217.0)  193.0 (171.0-217.0) ~ 192.0 (170.0-216.0) 0.0476 0.0187
HDL cholesterol # (mg/dL) 53.0 (45.0-62.0) 53.0 (45.0-63.0) 54.0 (45.0-63.0) 226 x 10713 599 x 10~16
LDL cholesterol # (mg/dL) ~ 120.0 (100.0-141.0) ~ 119.0 (99.0-141.0)  118.0(98.0-138.0) 133 x 10713 167 x 10~ 14
Triglyceride # (mg/dL) 90.0 (64.0-132.0) 90.0 (63.0-132.0) 90.0 (64.0-132.0) 0.9535 0.9832

Data are presented as medians (interquartile ranges). Abbreviations: HDL, high-density lipoprotein; LDL, low-
density lipoprotein. Number of the participants is presented in brackets after the genotypes. MM: homozygosity
of major allele; Mm: heterozygosity; mm: homozygosity of minor allele. # Participants were analyzed after the
exclusion of those with a history of hyperlipidemia. * p value: unadjusted; ** p value: adjusted for age, sex, BMI,
and current smoking status.
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Figure 2. Regional association analysis for genetic variants around the APOE gene region and serum
lipid levels. (A,B) For total cholesterol levels, (C-E) for LDL cholesterol levels, (F-H) for HDL
cholesterol levels, and (L) for triglyceride levels.
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Figure 3. Linkage disequilibrium of APOE gene region lead single-nucleotide variants.

3.3. Genotype—Phenotype Association Analysis for the APOE Locus Lead SNV's

We tested the association of APOE locus lead SNVs with clinical, metabolic, and
biochemical phenotypes; hematological parameters; lifestyle habits; and risk factors for
atherosclerosis (Supplementary Tables 5S1-56). For the lipid profile, after adjustment for age,
sex, current smoking status, and BMI, genome-wide significant associations were noted
between rs7412, rs429358, and rs439401 and all four lipid traits, between rs438811 and total
and LDL cholesterol and triglyceride levels, and between rs11672748 and rs3786505 and
HDL and LDL cholesterol levels. Genome-wide significant associations were also noted
between rs429358 and rs438811 and the risk of metabolic syndrome. With Bonferroni correc-
tion, we also observed a significant association (p < 0.0015) between rs7412, rs438811, and
rs439401 and serum albumin levels, between rs429358 and eGFR and ALT levels, between
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rs438811 and waist-hip ratio and ALT levels, and between rs11672748 and rs3786505 and
erythrocyte counts.

3.4. Stepwise Linear Regression Analysis between the APOE Locus-Lead SNV's and Lipid Profile

Stepwise linear regression analyses using age, sex, BMI, current smoking status, and
APOE locus lead SNVs revealed that these variants together contributed to 2.39%, 8.79%,
0.41%, and 0.47% of the total variation in serum total, LDL, and HDL cholesterol and
triglyceride levels, respectively (Table 3). Moreover, the APOCI rs438811 variant was
independently associated with serum albumin levels (Supplementary Table S7). Stepwise
logistic regression analysis demonstrated that APOE rs429358 is independently associated
with metabolic syndrome (odds ratio: 1.20 for each C-allele, 95% confidence interval:
1.15-1.26, p = 2.29 x 10~ 4; Table 4).

Table 3. Stepwise linear regression analysis including APOE region polymorphisms.

Lipid Profile Total Cholesterol # (mg/dL) LDL Cholesterol # (mg/dL) HDL Cholesterol # (mg/dL) Triglyceride # (mg/dL)
B 2 p Value B 2 p Value B 2 p Value B 2 p Value
Sex (male vs. female) 00155 0.0050 1.25 x 10~ 140 - - - 0.0001 0.0001 0.0001 —0.0562 0.0191 1.10 x 10-230
Age (years) 0.0014 0.0361 <10—307 0.0015 0.0187 <10-307 0.0623 0.0873 <10—307 0.0031 0.0177 <10—307
Body mass index (kg/m?) 0.0018 0.0067 3.32 x 10119 0.0051 00275 <107307  —0.0094 0.1584 <107307 0.0222 0.1475 <107307
Cutrent smoking (%) 0.0055 0.0004 318 x 10—8 - - - —0.0242 0.0041 453 x 10~88 0.0818 0.0089 143 x 107182
APOE rs7412 (CC vs. CT vs. TT) —0.0298 0.0213 <10—307 —0.0897 0.0838 <10—307 0.0115 0.0019 2,07 x 1037 - - -
APOE 15429358 (TT vs.TC vs. CC) 00101 0.0026 115 x 1047 0.0172 0.0034 i’(')sf’éé —0.0107 0.0016 1.30 x 10736 - - -
CLPTMI rs3786505 (AA vs. AG vs. GG) - - - 00044 0.0007 fg&é - - - - - -
CLPTM1 1511672748 (AA vs. AG vs. GG) - - - - - - 0.0037 0.0006 148 x 10~ 15 - — _
APOCT rs438811 (CC vs. CT vs. TT) - - - - - - - - - 0.0210 0.0041 754 x 10~34
APOE- APOC1 15439401 (TT vs.TC vs. CC) - - - - - - - - - 0.0101 0.0006 478 x 10714

# Participants were analyzed after the exclusion of those with a history of hyperlipidemia.

Table 4. Logistic regression analysis for metabolic syndrome, including APOE and APOCI genotypes.

Metabolic Syndrome B SE p Value OR 95% CI
Sex (male vs. female) 0.0891 0.0210 2.12 x 107° 1.09 1.04-1.14
Age (years) 0.0601 0.0010 <107307 1.06 1.06-1.06
Body mass index (kg/m?) 0.3315 0.0031 <1037 1.39 1.38-1.40
Current smoking (%) 0.5271 0.0329 7.58 x 10758 1.69 1.59-1.81

APOE rs429358 (TT vs.TC vs. CC) 0.1830 0.0240 229 x 10714 1.20 1.15-1.26

APOCI rs438811 (CC vs. CT

vs. TT) -

OR, odds ratio; 95% CI, 95% confidence interval; SE, standard error; p value: adjusted for age, sex, body mass
index, and current smoking status.

4. Discussion

We investigated the associations between genetic variants around the APOE locus,
cardiometabolic traits, and metabolic syndrome in a Taiwanese population. We demon-
strated that APOE €2, €3, and €4 variants, defined by the APOE rs7412 and APOE rs429358
genotypes, were the strongest genetic determinants in the APOE locus of total, LDL, and
HDL cholesterol levels in Taiwan. Both APOE and CLPTM]1 variants were independently
associated with LDL and HDL cholesterol levels, and the genetic variants between the
APOE and APOC1 gene region, including rs429358 and rs438811, were lead SNVs for
se-rum triglyceride levels. Our data also provide evidence for the association of APOE
locus variants with metabolic syndrome and serum albumin levels. To the best of our
knowledge, this is the first report revealing CLPTM1 as a novel candidate locus for LDL
and HDL cholesterol levels independent of the APOE variants in an Asian population. Both
CLPTM1 variants had weak LD with the lead SNVs in the APOE and APOC1 genes. APOE
is a fascinating multifunctional apolipoprotein that affects cardiovascular and neurological
health through common variants [4,36]. Our results suggest that a more complete genotyp-
ing in this chromosomal region may help to elucidate more of the crucial roles of the APOE
locus variants on cardiometabolic and neurological disorders.



Genes 2022, 13, 1366

10 of 15

4.1. APOE Variants and Lipid Profile

APOE is a key regulator of plasma lipid levels, and the Apoe-/- mouse model is
the most widely used animal model of atherosclerosis, with markedly elevated plasma
cholesterol levels [4,37]. The ApoE3 isoform possesses both the lipid-binding ability and
affinity for the LDL receptor to mediate appropriate lipolytic processing and endocytosis of
TRL remnant particles and exists as the parent form of three common APOE isoforms with
normal plasma lipid levels [11]. ApoE2 and apoE4 differ from apoE3 by the single amino
acid substitution with Arg158Cys (rs429358) for apoE2 which is located near the LDL recep-
tor recognition site and Cys112Arg (rs7412) for apoE4, which affected the organization and
stability of both the N-terminal and C-terminal domains of APOE. ApoE2 exhibits impaired
binding to the LDL receptor and an inability to promote clearance of TRL remnant particles.
ApoE4 results in enhancing the binding ability of VLDL particles and impairs lipolytic
processing in the circulation, which is associated with a higher VLDL cholesterol/HDL
cholesterol ratio as a more proatherogenic lipoprotein cholesterol distribution [11]. In a
meta-analysis of more than 800,000 individuals from BioBank Japan, UK Biobank, and
FinnGen, a strong association between rs7412 and LDL-C levels was noted, with a very
low p value of 3 x 103040 [38]. Our data also reveal that the APOE €2, €3, and €4 variants
defined by the APOE rs7412 and APOE rs429358 genotypes were the strongest genetic
determinants of LDL cholesterol levels in our Taiwanese cohort, which together contributed
to 8.72% of LDL cholesterol levels.

4.2. CLPTM1 Polymorphism and Serum Lipid Levels

Clptm1 is a multi-pass transmembrane protein whose biological function has not been
fully elucidated. CLPTM1 variants have been suggested to be one of the genetic risk factors
of non-syndromic oral clefts [39]. Genetic variants around the CLPTM1 have been asso-
ciated with episodic memory performance [40]. The associations between CLPTM1 gene
variants and expression and Alzheimer disease have been observed in genome-wide and
transcriptome-wide association studies [27,40,41]. Several GWASs have revealed CLPTM1
variants associated with various lipid traits and apolipoprotein B levels in European popula-
tions [30,31,42,43]. Our data also indicate that CLPTM1 variants were associated with LDL
and HDL cholesterol levels independent of APOE variants in a Taiwanese cohort. These
results support the crucial role of CLPTM1 in lipid metabolism. Clptm1 has been demon-
strated to be a pan-GABAA receptor-associated protein that interacts with multiple subunits
and traps GABAA receptors in the endoplasmic reticulum and Golgi apparatus to scale
phasic and tonic inhibitory transmission and modulate activity-induced inhibitory home-
ostasis [29,44,45]. The y-aminobutyric acid (GABA) is the principal inhibitory neurotrans-
mitter that acts on GABA receptors and modulates cholesterol metabolism in macrophages
to increase cholesterol efflux and inhibit the formation of human macrophage-derived foam
cells [46]. Through integrative analysis of multiomics data from the Avon Longitudinal
Study of Parents and Children and replicated in the TwinsUK study, CLPTM]1 is identified
to be associated with LDL cholesterol levels by the proposed powerful adaptive gene-based
test integrating information from gene expression, methylation, and enhancer-promoter
interactions with the signal driven by both low-frequency and common variants [47]. Thus,
further study is needed to unravel the molecular mechanism(s) for the associations between
CLPTM]1 variants and lipid profiles.

4.3. APOE-APOC1 Polymorphisms and Serum Triglyceride Levels

Both rs438811 and rs439401 variants, located between APOE and APOC1, have been
associated with serum lipid levels in several GWASs [42,48-50]. Apolipoprotein C1 (apoC1)
is the smallest of all apolipoproteins and is associated with TRLs and HDL and exchanges
between lipoprotein classes. It acts on lipoprotein receptors by inhibiting binding mediated
by APOE and modulating the activities of several enzymes [51]. The rs438811 variant is in
moderate LD with APOE rs7412 and rs429358 variants and is associated with total, LDL
cholesterol, and triglyceride levels, whereas the rs439401 variant is in weak LD with the
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APOE rs7412 and rs429358 variants and is associated with all four lipid profile variables.
For serum triglyceride levels, these two variants were the most crucial genetic determinants
in the APOE locus in TWB participants.

4.4. Association between APOE Gene Region Variants and Metabolic Syndrome

Metabolic syndrome involves a complex of interrelated cardiometabolic derangements
linked to insulin resistance and chronic inflammation and is characterized by clustering
of cardiovascular risk factors, including hypertension, dyslipidemia, central obesity, and
glucose intolerance [52]. Metabolic syndrome is also associated with higher risks of type 2
diabetes mellitus, nonalcoholic fatty liver disease, atherosclerotic cardiovascular disease,
ischemic stroke, and mortality [48,53-56]. A high prevalence of metabolic syndrome has
been observed in the Asia-Pacific region, including Taiwan [57]. Strong genetic components
interacting with environmental factors have been associated with the risk of metabolic syn-
drome. Elucidating genetic risk factors for metabolic syndrome remains a challenging task
in the prevention and management of the syndrome complex. Studies for the association
between genetic variants on the APOE locus and metabolic syndrome are not consistent
with some GWASs; some genetic association studies have demonstrated APOE or APOC1
variants associated with the risk of metabolic syndrome [58-61], whereas others have
reported no evidence of this association [62-64]. Our results reveal an independent associa-
tion between APOE rs429358 genotypes and metabolic syndrome. One study suggested an
association between APOE rs429358 genotypes and metabolic syndrome, which became
nonsignificant after Bonferroni correction [64]. Thus, additional studies are required to
elucidate the role of APOE variants, especially rs429358, in the risk of metabolic syndrome.

4.5. Association between APOE Gene Region Variants and Serum Albumin Levels

Albumin is a multifaceted protein synthesized in hepatocytes involving anti-inflammatory,
antioxidant, anticoagulant, and antiplatelet aggregation activities, and serum albumin is the
most abundant human plasma protein [65]. In our previous study on TWB participants, we
found pleiotropic effects of common and rare GCKR exonic mutations on cardiometabolic
traits, including serum albumin levels [34]. In a cross-population atlas of genetic as-
sociations for 220 human phenotypes, using 179,000 BioBank Japan participants and a
meta-analysis of studies involving a total of 628,000 UK Biobank and FinnGen participants,
Sakaue et al. [38] also revealed the APOE/APOCI region as a novel locus for serum albu-
min levels with APOCT rs438811 as the candidate lead SNV. This is consistent with our
finding that the rs438811 genotype was significantly associated with serum albumin levels
independent of GCKR variants.

5. Limitations

This study has several limitations. First, we used genome-wide genotyping arrays with
imputation data; however, whole-exome sequencing or even whole-genome sequencing is
more powerful in detecting whether other functional variants are more important genetic
determinants for cardiometabolic traits and metabolic syndrome in the APOE locus. Second,
ethnic genetic heterogeneity in the genetic association studies suggests that our data may
not be applicable to other ethnic populations. Third, not all genetic associations reached
genome-wide significance in our analysis, and studies with larger sample sizes and meta-
analyses including transethnic population studies may help validate our results.

6. Conclusions

Our data reveal that APOE €2, €3, and €4 variants were the strongest genetic deter-
minants of total, LDL, and HDL cholesterol levels in the APOE locus and CLPTM1 is a
candidate locus for LDL-C and HDL-C levels, independent of other gene variants around
the APOE gene region. The association between APOE and APOCI1 variants and metabolic
syndrome and serum albumin levels further supported the crucial role of APOE region
variants in cardiometabolic disorders in a Taiwanese population.
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nucleotide variants for serum lipid levels profile around the APOE gene region in regional associ-
ation studies with conditional analysis; Table S2: Association of the APOE rs7412 genotypes with
metabolic and hematological phenotypes; Table S3: Association of the APOE rs429358 genotypes
with metabolic and hematological phenotypes; Table S4: Association of the APOC1 rs438811 geno-
types with metabolic and hematological phenotypes; Table S5: Association of the APOE rs439401
genotypes with metabolic and hematological phenotypes; Table S6: Association of the CLPTM1
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