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Abstract: Although decreased retinal docosahexaenoic acid (DHA) is a known risk factor for
retinopathy, currently available omega-3 fatty acid supplements, which are absorbed as triacylglycerol
(TAG), do not significantly enrich retinal DHA. We tested the hypothesis that lysophospahtidylcholine
(LPC)-DHA which is absorbed as phospholipid, would efficiently increase retinal DHA because
of the presence of LPC-specific transporter at the blood–retina barrier. In normal rats, LPC-DHA
and di-DHA phosphatidylcholine (PC), which generates LPC-DHA during digestion, increased
retinal DHA by 101% and 45%, respectively, but TAG-DHA had no significant effect at the same
dose (40 mg/kg, 30 days). In normal mice, both sn-1 DHA LPC and sn-2 DHA LPC increased retinal
DHA by 80%, but free DHA had no effect. Lipase-treated krill oil (which contains LPC-DHA and
LPC-EPA (eicosapentaenoic acid), but not normal krill oil (which has little LPC), increased both
retinal DHA (+76%) and EPA (100-fold). Fish oil, however, had no effect, whether lipase-treated or
not. These studies show that retinal DHA can be efficiently increased by dietary LPC-DHA, but not
by TAG-DHA or free DHA. Since DHA is known to be protective against retinopathy and other
eye diseases, this study provides a novel nutraceutical approach for the prevention/treatment of
these diseases.

Keywords: Omega-3 fatty acids; retina; lysophospholipid; fish oil; docosahexaenoic acid (DHA);
krill oil; eicosapentaenoic acid (EPA); Mfsd2a (major facilitator superfamily domain-containing
protein 2a); blood–retina barrier

1. Introduction

Of all the tissues in the body, retina contains the highest concentration of the omega-3 fatty
acid (FA), docosahexaenoic acid (DHA). Up to 60% of the total FA in rod outer segment membrane
phospholipids is DHA [1]. In addition, retina uniquely contains significant amounts of dipolyenoic
phospholipids with very long chain (up to 36 carbons) omega-3 polyunsaturated FA (VLCFA) at sn-1
position, and DHA at sn-2 position [2]. This unusual FA composition of retina is believed to have
physiological significance for the photoreceptor function. Retina is almost completely dependent upon
dietary supply of DHA since it cannot synthesize DHA from the linolenic acid (18:3, n-3) precursor [2].
Several epidemiologic [3,4] and pre-clinical [5,6] studies have shown that dietary omega-3 FA protect
against retinal diseases, whereas DHA deficiency is associated with impaired visual function [3].
Moreover, retinal DHA is significantly reduced in diabetes [6–8], retinitis pigmentosa [9,10], age-related
macular degeneration [4], and peroxisomal disorders [11], and this deficiency appears directly correlated
with functional defects, including impaired visual development and reduced sensitivity to light [12].
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Despite evidence from the epidemiologic and animal studies for the beneficial effects of omega-3 FA for
retinal function, controlled clinical trials with currently available supplements in patients with diabetic
retinopathy [2,13], and age-related macular degeneration [14] have shown no appreciable benefits.
We postulate that the reason for this failure is the inability of the currently available supplements
(including fish oil, ethyl esters, free fatty acids, krill oil, algal oil) to significantly enrich retinal DHA
at clinically feasible doses. This is because they are all absorbed predominantly in the form of
triacylglycerol (TAG) [15,16], whereas enrichment of brain and retina requires a phospholipid form
of DHA [17]. Although previous studies have shown that the uptake of DHA by retina involves
lipoprotein receptors [3], adiponectin receptor [18], and multiple fatty acid transporters [19], more recent
studies suggest that the predominant pathway for DHA uptake by retina may be through the Mfsd2a
(major facilitator superfamily domain-containing protein 2a) pathway [20]. Since the DHA from the
currently used supplements is absorbed mostly as TAG, whereas the Mfsd2a pathway requires a
lysophospholipid form of DHA [17], it is possible that retinal DHA was not appreciably enriched
by these supplements. We have recently demonstrated that if the dietary DHA is provided as LPC,
it efficiently enriches brain DHA in adult mice and rats, and also improves their brain function [15,16,21].
Since the uptake of DHA by retina and brain appear to be similar [20], we tested the hypothesis that
the retinal DHA also can be increased by dietary lysophospahtidylcholine (LPC)-DHA. The results
presented here show that in both adult mice and rats, the retinal DHA is significantly increased by low
dose dietary LPC-DHA, whereas free DHA or TAG-DHA at similar dose do not show significant effect.
These results are potentially significant in the prevention and clinical management of retinal diseases
through diet.

2. Materials and Methods

Animals and dietary treatments: All studies in animals described here were approved by the
Institutional Animal Care and Use Committee of the University of Illinois at Chicago. The retina samples
were obtained from our previous studies on the brain accretion of DHA in mice and rats, which were
published previously [15,16,21]. Male Sprague-Dawley rats (8-week-old) were purchased from Harlan
laboratories (Indianapolis, IN, USA). Male C57 BL/J6 mice (2–4-months-old) were purchased from
Jackson Laboratories (Bar Harbor. Maine).

In the first study, male Sprague-Dawley rats (n = 5 per group, 8-week-old) were gavaged
daily with 10 mg of DHA (40 mg DHA/kg body weight) in the form of TAG-DHA (DHASCO algal
oil, DSM Nutritional Products, Columbia, MD, USA), synthetic di-DHA PC (phosphatidylcholine),
or synthetic LPC-DHA (sn-1 acyl) for 30 days [15]. The DHA was distributed equally among the
three positions of TAG-DHA [15]. In this study we have also included another group of rats which
were gavaged with a half dose of LPC-DHA (20 mg DHA/kg) to be comparable with the expected
amount of LPC-DHA generated from di-DHA PC during digestion. In the second study, 4-month-old
male C57 BL/J6 mice (n = 8 per group) were gavaged daily with 40 mg DHA/kg body weight in the
form of free (unesterified) DHA, sn-1 acyl LPC-DHA, or sn-2 acyl LPC-DHA for 30 days as described
previously [16]. In the third study, male C57 BL/J6 mice (2-months-old, n = 5 per group) were fed diets
enriched with natural or lipase-treated fish oil or krill oil for 30 days. The total amount of omega-3
FA (eicosapentaenoic acid (EPA)+DHA) was 2.64 g/kg diet in all the diets. The untreated krill oil
contained 18% of total omega-3 FA as LPC, whereas the lipase-treated krill oil contained >80% of the
total omega-3 FA as LPC. The fish oil diets contained no LPC-EPA or LPC-DHA. The animals were
trans-cardially perfused with ice cold phosphate buffered saline under anesthesia and the retinas were
collected and kept frozen at −80 ◦C until the analysis.

Analytical procedures: The total lipids of retina were extracted by Bligh and Dyer procedure [22]
and the fatty acids were methylated using methanolic HCl. The fatty acid analysis was carried
out by GC/MS (gas chromatography/mass spectroscopy) using Shimadzu QP2010SE equipped with
Supelco Omegawax column, as described previously [16]. Total ion current in the range of 50–400 m/z
was used for quantification of the methyl esters. For LC/MS/MS (liquid chromatography/tandem
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mass spectroscopy) analysis, the lipids were extracted by the procedure of Ivanova et al. [23].
The analysis of molecular species of phospholipids was performed on an ABSciex QTRAP mass
spectrometer (Redwood City, CA, USA) coupled with Agilent 2600 UPLC system (Santa Clara, CA,
USA), by multiple reaction monitoring [24]. The internal standards 17:0 LPC, di 17:0 PC, and di
17:0 PE (phosphatidylethanolamine) were used for the quantification of the corresponding molecular
species, without applying any correction factors for the differences in the ion intensity of different
molecular species.

Statistics and correlations: The significance of differences between treatment groups was
determined by a one-way ANOVA, with Tukey post-hoc multiple comparison corrections or unpaired
t-test between control and treated samples adjusted with Holm–Sidak method (Graphpad Prism 8.0,
San Diego, CA, USA).

3. Results

3.1. Comparative Effects of Dietary DHA in the Form of PC, TAG, and LPC in Rats

We have previously demonstrated that rat brain DHA is efficiently enriched by dietary LPC-DHA
and di-DHA PC, but not by TAG-DHA [15]. Since the mechanism of DHA uptake appears to be similar
for brain and retina [20], we determined the enrichment of retinal DHA in the same groups of animals.
Normal rats were gavaged with 10 mg DHA/day (40 mg DHA/kg) in the form of TAG-DHA, di-DHA
PC, or LPC-DHA (sn-1 acyl) for 30 days, and the retinal FA composition was determined by GC/MS.
In addition, a half dose of LPC-DHA (20 mg/kg) was used, in order to be equivalent to the expected
generation of LPC-DHA by the digestion of di-DHA PC in the intestine by pancreatic phospholipase A2

(PLA2). The concentrations of omega-3 FA and arachidonic acid are shown in Figure 1, while the total
FA composition is shown in Table 1. The percentage of DHA in retina was significantly increased by
di-DHA PC (+45%) and by LPC-DHA (+101%), but not by TAG-DHA (+13%, not significant). The half
dose of LPC-DHA (5 mg/rat) was more efficient (+75%) than the full dose of di-DHA PC (+45%),
indicating that the hydrolysis of di-DHA PC by the pancreatic PLA2 (phospholipase A2) may not be
efficient. Remarkably, although the DHA content of normal rat retina is very high (16.88% of total FA),
it was doubled by feeding the full dose of LPC-DHA (to 33.98% of total FA), indicating the wide range
of retinal membrane DHA content that can be achieved through diet. The increase in DHA occurred
largely at the expense of arachidonic acid as we found in the brain [15], but the DHA also replaced
saturated FA (16:0 and 18:0) in the retina (Table 1). There were no changes in either EPA (20:5 (n-3)) or
DPA (22:5 (n-3)) of retina by any of the treatments.

3.2. Comparative Effects of Free DHA and Isomers of LPC-DHA in Mice

Previous studies suggested that for the uptake of DHA by the brain, the DHA has to be in the sn-2
position of LPC, since that is the natural position in phospholipids in vivo [25,26]. However, our recent
studies showed that sn-1 DHA LPC and sn-2 DHA LPC were equally effective in enriching mouse
brain DHA and in improving brain function [16]. We analyzed the retinal FA composition in mice
fed free (unesterified) DHA, sn-1 DHA LPC, and sn-2 DHA LPC, to determine whether there is a
preference for the sn-2 acyl isomer of LPC for transport through blood–retina barrier. As shown
in Figure 2 and Table 2, free DHA had no effect on retinal DHA, similar to the effect of TAG-DHA
in rats. However, both isomers of LPC-DHA increased the retinal DHA by 80%, showing that the
uptake of DHA by retina is similar to that of brain, and involves the Mfsd2a transporter as shown
by others [20]. Furthermore, the transporter at the blood–retina barrier did not distinguish between
the two isomers of LPC-DHA, as we found for the brain [16]. There was no effect on either EPA
(20:5, n-3) or DPA (22:5, n-3) content by any of the DHA treatments. There was a significant decrease in
arachidonate by the two isomers of LPC-DHA, but not by free DHA. In addition, there were significant
decreases in saturated fatty acids (16:0 and 18:0) as well as in 18:1 by LPC-DHA, but not by free DHA.
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These results suggest that, similar to the results in rats, the increase in mouse retinal DHA occurred by
the replacement of not only arachidonate but also the saturated FA and 18:1.
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Normal male Sprague-Dawley rats (8-week-old; n = 5 per group) were gavaged daily with 10 mg 
DHA in 250 µL corn oil in the form of TAG-DHA, di-DHA PC, or LPC-DHA for 30 days. In addition, 
a half-dose of LPC-DHA (5 mg DHA) was used to be comparable to the amount of LPC-DHA 
expected to be generated by di-DHA PC during digestion. All animals were on regular rodent chow 
that contained no DHA, but contained 17.4 mg α-linolenic acid (18:3, n-3) per g of chow. Retinal FA 
were analyzed by GC/MS as described in the text. The percent composition of 20:4 (n-6), 20:5 (n-3), 
22:5 (n-3), and 22:6 (n-3) are shown here. The total FA composition is shown in Table 1. The 
significance of differences between the treatment groups was determined by a one-way ANOVA, 
with Tukey multiple post-hoc test (Graphpad Prism 8.0). Bars without common superscripts are 
significantly different from each other (p < 0.05). TG: triacylglycerol; PC: phosphatidylcholine; LPC: 
lysophosphatidylcholine; FA: fatty acid; GC/MS: gas chromatography/mass spectroscopy. 
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Figure 1. Incorporation of dietary DHA fed in the form of PC, TAG, or LPC into rat retinal lipids.
Normal male Sprague-Dawley rats (8-week-old; n = 5 per group) were gavaged daily with 10 mg
DHA in 250 µL corn oil in the form of TAG-DHA, di-DHA PC, or LPC-DHA for 30 days. In addition,
a half-dose of LPC-DHA (5 mg DHA) was used to be comparable to the amount of LPC-DHA expected
to be generated by di-DHA PC during digestion. All animals were on regular rodent chow that
contained no DHA, but contained 17.4 mg α-linolenic acid (18:3, n-3) per g of chow. Retinal FA were
analyzed by GC/MS as described in the text. The percent composition of 20:4 (n-6), 20:5 (n-3), 22:5 (n-3),
and 22:6 (n-3) are shown here. The total FA composition is shown in Table 1. The significance of
differences between the treatment groups was determined by a one-way ANOVA, with Tukey multiple
post-hoc test (Graphpad Prism 8.0). Bars without common superscripts are significantly different from
each other (p < 0.05). TG: triacylglycerol; PC: phosphatidylcholine; LPC: lysophosphatidylcholine;
FA: fatty acid; GC/MS: gas chromatography/mass spectroscopy.
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Table 1. Effect of dietary TG-DHA, di-DHA PC, and LPC-DHA on rat retinal fatty acid composition.

Control TG-DHA PC-DHA LPC-DHA 5 mg LPC-DHA 10 mg
F.A. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

12:0 4.39 ± 1.19 4.71 ± 2.09 4.57 ± 1.49 3.10 ± 0.08 3.10 ± 0.60
14:0 0.08 ± 0.04 0.17 ± 0.18 0.97 ± 1.97 0.52 ± 0.90 0.11 ± 0.13
16:0 22.14 ± 0.65 21.52 ± 1.37 19.06 ± 0.76 ** 18.05 ± 0.84 ** 17.27 ± 0.94 **

16:1 (n-7) 0.73 ± 0.06 0.74 ± 0.09 0.65 ± 0.04 0.66 ± 0.08 0.68 ± 0.05
17:1 (n-7) 0.02 ± 0.02 0.12 ± 0.03 * 0.03 ± 0.02 0.01 ± 0.00 0.02 ± 0.02

18:0 20.26 ± 0.92 19.09 ± 1.30 17.79 ± 0.97 16.84 ± 0.43 ** 15.62 ± 0.85 **
18:1 (n-9) 18.98 ± 0.90 18.21 ± 1.57 17.70 ± 1.26 17.07 ± 0.94 15.81 ± 1.46
18:1(n-7) 4.40 ± 0.28 4.09 ± 0.16 3.91 ± 0.25 3.79 ± 0.16 3.43 ± 0.28 *
18:2 (n-6) 0.97 ± 0.05 1.05 ± 0.36 0.95 ± 0.22 0.93 ± 0.26 0.97 ± 0.26
18:3 (n-6) 0.39 ± 0.02 0.38 ± 0.11 0.49 ± 0.13 0.50 ± 0.11 0.37 ± 0.08
18:3 (n-3) 0.03 ± 0.02 0.09 ± 0.10 0.07 ± 0.07 0.08 ± 0.05 0.04 ± 0.04

20:0 0.05 ± 0.04 0.08 ± 0.05 0.05 ± 0.03 0.04 ± 0.03 0.04 ± 0.03
20:1 (n-9) 0.05 ± 0.05 0.06 ± 0.05 0.07 ± 0.03 0.05 ± 0.03 0.03 ± 0.02
20:2 (n-6) 0.08 ± 0.04 0.04 ± 0.01 0.06 ± 0.05 0.05 ± 0.04 0.06 ± 0.04
20:3 (n-6) 0.08 ± 0.10 0.16 ± 0.18 0.06 ± 0.04 0.09 ± 0.13 0.13 ± 0.15
20:4 (n-6) 9.77 ± 0.44 9.49 ± 0.52 8.45 ± 0.67 7.94 ± 0.48 * 7.44 ± 0.37 **

22:0 0.04 ± 0.02 0.05 ± 0.04 0.07 ± 0.07 0.03 ± 0.02 0.04 ± 0.02
20:5 (n-3) 0.07 ± 0.09 0.08 ± 0.04 0.06 ± 0.05 0.04 ± 0.03 0.05 ± 0.04
22:2 (n-6) 0.11 ± 0.08 0.13 ± 0.06 0.12 ± 0.05 0.12 ± 0.04 0.13 ± 0.03
22:4 (n-6) 0.05 ± 0.03 0.13 ± 0.17 0.07 ± 0.05 0.24 ± 0.45 0.32 ± 0.62
22:5 (n-6) 0.02 ± 0.01 0.03 ± 0.04 0.02 ± 0.01 0.02 ± 0.03 0.03 ± 0.02
22:5 (n-3) 0.13 ± 0.11 0.09 ± 0.09 0.06 ± 0.04 0.06 ± 0.06 0.14 ± 0.12
22:6 (n-3) 16.88 ± 1.15 19.20 ± 1.67 24.53 ± 2.73 * 29.56 ± 1.23 ** 33.98 ± 1.91 **
24:1 (n-9) 0.06 ± 0.04 0.07 ± 0.04 0.05 ± 0.02 0.03 ± 0.02 0.03 ± 0.02
16:0 DMA 0.03 ± 0.03 0.09 ± 0.08 0.05 ± 0.08 0.12 ± 0.12 0.08 ± 0.10
18:0 DMA 0.16 ± 0.30 0.05 ± 0.03 0.03 ± 0.02 0.03 ± 0.02 0.02 ± 0.01
18:1 DMA 0.06 ± 0.05 0.08 ± 0.08 0.06 ± 0.04 0.05 ± 0.02 0.06 ± 0.06

* p < 0.05 compared to control, ** p < 0.005 compared to control, unpaired t-test adjusted with Holm–Sidak method. TG: triacylglycerol; PC: phosphatidylcholine; LPC: lysophosphatidylcholine;
DMA: dimethylacetal; DHA: docosahexaenoic acid; F.A.: fatty acid; S.D.: standard deviation.
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Figure 2. Effect of dietary free (unesterified) DHA, sn-1 DHA-LPC, and sn-2 DHA LPC on mouse
retinal FA. Normal male mice (C57 BL/J6, 16-week-old) were gavaged daily with 1 mg DHA in the
form of free DHA, sn-1 DHA LPC, or sn-2 DHA LPC in 80 µL corn oil for 30 days. Retinal FA
composition was analyzed by GC/MS. Only the values for arachidonic acid and the omega-3 FA are
shown here (mean ± SD, 8 animals/group). The total FA composition is shown in Table 2. Bars without
common superscripts are significantly different from each other (p < 0.05) by a one-way ANOVA with
Tukey post-hoc correction. SD: standard deviation; sn-1 and sn-2: stereospecific numbering 1 and 2
respectively; LPC: lysophosphatidylcholine; DHA: docosahexaenoic acid.
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Table 2. Effect of free DHA, sn-1 DHA LPC, and sn-2 DHA LPC on fatty acid composition of mouse retina.

Control Free DHA sn-1 DHA LPC sn-2 DHA LPC
F.A. Mean ± S.D. Mean ± S.D. Mean ± S.D. Mean ± S.D.

12:0 0.26 ± 0.14 0.60 ± 0.35 0.73 ± 0.47 0.73 ± 0.47
14:0 0.50 ± 0.25 0.20 ± 0.17 0.30 ± 0.17 0.30 ± 0.17
16:0 17.92 ± 1.41 16.11 ± 1.56 14.62 ± 1.22 ** 14.62 ± 1.22 **

16:1 (n-7) 0.38 ± 0.17 0.55 ± 0.28 0.47 ± 0.34 0.47 ± 0.34
17:1 (n-7) 0.29 ± 0.13 0.43 ± 0.16 0.48 ± 0.38 0.48 ± 0.38

18:0 18.90 ± 1.05 17.32 ± 0.66 15.44 ± 1.50 ** 15.44 ± 1.50 **
18:1 (n-9) 18.23 ± 0.82 17.14 ± 0.78 15.56 ± 1.16 ** 15.56 ± 1.16 **
18:1(n-7) 4.64 ± 0.48 4.18 ± 0.34 3.82 ± 0.62 3.82 ± 0.62
18:2 (n-6) 0.69 ± 0.45 0.99 ± 0.65 1.38 ± 0.49 1.38 ± 0.49
18:3 (n-6) 0.36 ± 0.19 0.49 ± 0.36 0.60 ± 0.47 0.60 ± 0.47
18:3 (n-3) 0.54 ± 0.43 0.49 ± 0.15 0.51 ± 0.42 0.51 ± 0.42

20:0 1.86 ± 0.69 1.90 ± 0.64 1.18 ± 0.72 1.18 ± 0.72
20:1 (n-9) 3.71 ± 0.42 3.42 ± 0.59 2.87 ± 0.60 2.87 ± 0.60
20:2 (n-6) 1.28 ± 0.84 0.71 ± 0.50 0.88 ± 0.95 0.88 ± 0.95
20:3 (n-6) 0.69 ± 0.54 1.30 ± 0.66 1.44 ± 0.35 1.44 ± 0.35
20:4 (n-6) 7.86 ± 0.81 7.42 ± 0.72 5.75 ± 0.71 ** 5.75 ± 0.71 **

22:0 1.20 ± 0.41 1.08 ± 0.59 1.24 ± 0.95 1.24 ± 0.95
20:5 (n-3) 0.86 ± 0.53 2.03 ± 1.21 1.91 ± 1.40 1.91 ± 1.40
22:2 (n-6) 0.80 ± 0.34 0.77 ± 0.51 1.00 ± 0.76 1.00 ± 0.76
22:4 (n-6) 2.03 ± 0.91 2.51 ± 0.85 2.23 ± 0.87 2.23 ± 0.87
22:5 (n-3) 0.48 ± 0.44 0.42 ± 0.15 0.79 ± 0.76 0.79 ± 0.76
22:6 (n-3) 12.61 ± 0.91 15.74 ± 1.57 22.57 ± 3.12 ** 22.57 ± 3.12 **
24:1 (n-9) 0.78 ± 0.48 0.51 ± 0.25 0.49 ± 0.17 0.49 ± 0.17
16:0 DMA 1.16 ± 0.96 0.75 ± 0.56 1.02 ± 0.32 1.02 ± 0.32
18:0 DMA 1.25 ± 1.04 2.10 ± 0.88 1.96 ± 0.30 1.96 ± 0.30
18:1 DMA 0.73 ± 0.75 0.85 ± 0.56 0.78 ± 0.64 0.78 ± 0.64

** p < 0.005 compared to control, unpaired t-test adjusted with Holm–Sidak method. DMA: dimethylacetal; sn-1 and sn-2: stereospecific numbering 1 and 2 respectively;
LPC: lysophosphatidylcholine; DHA: docosahexaenoic acid; F.A.: fatty acid; S.D.: standard deviation.
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The molecular species of PC and PE, which contain DHA, were analyzed by LC/MS/MS, in order
to determine whether the metabolic fate of the two LPC-isomers in retina differ from each other.
As shown in Figure 3, both isomers of LPC-DHA increased most of the major DHA-containing PCs
and PEs, except 20:4–22:6 PC and 20:4–22:6 PE, possibly because of the decrease in retinal 20:4 by
the LPC treatment. There were no significant differences between the effects of the two isomers of
LPC on molecular species composition of PC or PE. Although the total DHA content of retina was
not significantly increased by free DHA (Figure 2), a few individual species of PC and PE containing
DHA were increased, but at much lower levels compared to LPC-DHA. Retinal LPC-DHA, but not
LPE-DHA was increased after the treatment with dietary LPC-DHA. Unlike the brain, in which
DHA was more prevalent in the PE species [16], retina contained more DHA in the PC species.
PE: phosphatidylethanolamine.
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Figure 3. Molecular species of mouse retinal phospholipids containing DHA. The animals were gavaged
with free (unesterified) DHA or two isomers of LPC-DHA as described under Figure 2. The molecular species
of PC (A) and PE (B) which contain DHA were analyzed using multiple reaction monitoring by LC/MS/MS,
as described in the text, using 17:0 LPC, 17:0–17:0 PC, and 17:0–17:0 PE as internal standards. Bars without
common superscripts are significantly different from each other by a one-way ANOVA, and Tukey
post-hoc analysis (mean ± SD), 6 animals/group). PE: phosphatidylethanolamine; PC: phosphatidylcholine;
sn-1 and sn-2: stereospecific numbering 1 and 2 respectively; DHA: docosahexaenoic acid; LC/MS/MS:
liquid chromatography/tandem mass spectroscopy; SD: standard deviation; LPC: lysophosphatidylcholine;
DHA: docosahexaenoic acid.
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3.3. Effect of Fish Oil and Krill Oil on Mouse Retinal Omega-3 FA

Although previous studies with fish oil showed no significant enrichment of retinal DHA or
EPA in the adult animals [27], we recently demonstrated that pre-treatment of krill oil with a lipase,
which generates LPC-EPA and LPC-DHA, enables significant enrichment of both DHA and EPA in
the brains of adult mice [21]. On the other hand, similar treatment of fish oil, which generates free
EPA and DHA or monoacylglycerol EPA and DHA, did not have any effect on brain omega-3 FA.
In order to determine whether lipase-treated krill oil can also be used for enriching retinal DHA and
EPA, we analyzed the FA composition of retina in mice treated with fish oil and krill oil, which have
been treated with lipase or not.

As shown in Figure 4 and Table 3, retinal DHA was increased above the control value by 33%
after feeding untreated krill oil, possibly because of the presence of small amounts of LPC-DHA in
the krill oil preparation [21]. However, feeding lipase-treated krill oil increased the retinal DHA by
76%, showing a 2.3-fold stimulation of DHA enrichment by lipase treatment. Furthermore, there was a
100-fold increase in retinal EPA by the lipase-treated krill oil, but no increase with untreated krill oil or
the fish oil. This supports our previous observation that feeding LPC-EPA does increase EPA levels in
the brain and retina, contrary to the previous reports of the lack of EPA enrichment in these tissues by
omega-3 FA-enriched diets [28–30]. In contrast to the results with pure LPC-DHA, we did not find a
significant displacement of retinal arachidonate by DHA after treatment with lipase-treated krill oil.
Instead, DHA and EPA appeared to replace saturated FA and oleic acid (18:1, n-9). There was also
some decrease in saturated FA and 18:1 in the animals fed untreated krill oil, but these decreases did
not reach statistical significance (Table 3).



Nutrients 2020, 12, 3114 10 of 16

Table 3. Effect of feeding unmodified, and lipase-treated krill oil and fish oil on mouse retina fatty acid composition.

Control KO Untreated KO Treated FO Untreated FO Treated
F.A. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D

12:0 0.02 ± 0.03 0.06 ± 0.06 0.07 ± 0.05 0.02 ± 0.01 0.06 ± 0.05
14:0 0.17 ± 0.27 0.38 ± 0.44 0.09 ± 0.04 0.20 ± 0.33 0.03 ± 0.04
16:0 22.07 ± 1.84 20.34 ± 1.94 12.51 ± 7.01 22.20 ± 1.90 22.67 ± 2.12

16:1 (n-7) 0.20 ± 0.31 0.19 ± 0.17 0.10 ± 0.13 0.06 ± 0.07 0.04 ± 0.04
18:0 18.69 ± 0.42 17.20 ± 1.25 14.20 ± 1.62 * 17.84 ± 0.88 18.03 ± 0.13

18:1 (n-9) 20.04 ± 0.64 14.99 ± 5.59 14.75 ± 1.50 ** 19.51 ± 0.76 19.32 ± 0.99
18:1(n-7) 4.79 ± 0.21 4.36 ± 0.42 2.35 ± 2.08 4.46 ± 0.14 3.72 ± 2.09
18:2 (n-6) 0.88 ± 0.46 0.99 ± 0.51 1.10 ± 0.34 1.22 ± 0.19 0.87 ± 0.69
18:3 (n-6) 0.06 ± 0.04 0.06 ± 0.06 0.18 ± 0.16 0.06 ± 0.05 0.05 ± 0.01
18:3 (n-3) 0.81 ± 0.53 0.82 ± 0.74 0.29 ± 0.24 0.79 ± 0.68 0.41 ± 0.31

20:0 0.05 ± 0.03 0.03 ± 0.03 0.04 ± 0.04 0.05 ± 0.03 0.02 ± 0.01
20:1 (n-9) 2.17 ± 1.17 2.00 ± 1.41 0.78 ± 0.44 2.13 ± 0.55 1.12 ± 0.92
20:2 (n-6) 0.22 ± 0.19 0.38 ± 0.25 0.19 ± 0.15 0.56 ± 0.39 0.21 ± 0.10
20:3 (n-6) 0.03 ± 0.02 0.11 ± 0.13 0.44 ± 0.41 0.05 ± 0.02 0.23 ± 0.41
20:4 (n-6) 6.92 ± 0.88 7.37 ± 0.92 7.41 ± 1.43 7.34 ± 2.44 6.87 ± 0.86

22:0 0.10 ± 0.10 0.37 ± 0.32 0.09 ± 0.10 0.14 ± 0.25 0.06 ± 0.06
20:5 (n-3) 0.09 ± 0.10 0.15 ± 0.26 9.12 ± 2.09 ** 0.18 ± 0.36 0.36 ± 0.45
22:2 (n-6) 0.09 ± 0.09 0.20 ± 0.18 0.15 ± 0.16 0.12 ± 0.13 0.14 ± 0.15
22:4 (n-6) 1.11 ± 1.40 2.56 ± 1.44 1.79 ± 1.55 0.55 ± 1.10 2.76 ± 0.53
22:5 (n-6) 0.06 ± 0.04 0.15 ± 0.09 0.24 ± 0.20 0.17 ± 0.19 0.06 ± 0.03
22:5 (n-3) 0.51 ± 0.23 0.56 ± 0.32 0.56 ± 0.22 0.45 ± 0.32 0.44 ± 0.15
22:6 (n-3) 17.76 ± 1.00 23.62 ± 0.26 31.18 ± 1.89 ** 19.52 ± 0.18 19.89 ± 0.91
24:1 (n-9) 0.04 ± 0.03 0.11 ± 0.13 0.09 ± 0.06 0.04 ± 0.01 0.03 ± 0.03
16:0 DMA 0.05 ± 0.02 0.05 ± 0.03 0.06 ± 0.04 0.13 ± 0.17 0.03 ± 0.02
18:0 DMA 2.96 ± 0.467 2.642 ± 0.95 2.126 ± 0.56 1.97 ± 0.67 2.48 ± 0.47
18:1 DMA 0.02 ± 0.02 0.05 ± 0.05 0.04 ± 0.04 0.02 ± 0.02 0.03 ± 0.03

* p < 0.05 compared to control, ** p < 0.005 compared to control, unpaired t-test adjusted with Holm–Sidak method. KO: krill oil; FO: fish oil; FA: fatty acid; S.D.: standard deviation.
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Figure 4. Effect of feeding untreated or lipase-treated fish oil and krill oil on mouse retinal FA.
Normal male mice (8-week-old) were fed diets (AIN93G) containing 7% total fat and supplemented
with 0.264% EPA+DHA in the form of fish oil or krill oil, which have been treated (or not) with
Mucor lipase. The mice were fed the diets ad lib for 30 days and the retinal FA were analyzed by
GC/MS. The percentages of 20:4 (n-6), 20:5 (n-3), 22:5 (n-3) and 22:6 (n-3) are shown here (mean ± SD,
5 mice/group. The total FA composition is shown in Table 3. Bars without common superscripts are
significantly different from each other by a one-way ANOVA and Tukey post-hoc analysis. KO: krill oil;
FO: fish oil; FA: fatty acid; EPA: eicosapentaenoic acid; GC/MS: gas chromatography/mass spectroscopy;
DHA: docosahexaenoic acid.

4. Discussion

Retinal DHA is known to decline with age [3] as well as in diabetes [6–8]. Furthermore, the reduced
DHA levels have been associated with several retinal diseases, the most prominent being diabetic
retinopathy (DR) [3,5,31]. DR affects almost 100 million people world-wide and is the most common
cause of blindness in the adult population [32]. It is believed that the oxidative stress and chronic
inflammation induced by hyperglycemia are the major underlying causes of DR [33]. DHA, which is
uniquely concentrated in retina, has been shown to have both antioxidant and anti-inflammatory
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properties [3,34,35]. In addition to DR, DHA deficiency has also been implicated in other diseases of
the eye, including retinitis pigmentosa [36], glaucoma [37,38], age-related macular degeneration [4],
dry eye disease [39], and Alzheimer’s related blindness [18]. A common element of all of these
diseases is chronic inflammation. Therefore, it is important to investigate whether the retinal DHA
levels can be increased through diet in adult mammals and thereby prevent or treat these diseases.
The results presented here show, that despite the very high initial levels of DHA in the normal retina,
it can be further increased by up to 100% through dietary LPC-DHA, but not by dietary free DHA or
TAG-DHA. To our knowledge, this is the highest enrichment achieved in retinal DHA with dietary
supplementation in normal adult animals. Previous studies found no or marginal increases in retinal
omega-3 levels even after treatment with very high concentrations of dietary omega-3 FA. For example,
Prokopiou et al. [40] fed aged (2-year-old) mice 200 mg omega-3 FA/day in the form of fish oil for
60 days, and found actually a decrease in retinal DHA (−21%), although retinal EPA, which is a
minor constituent, increased by 42%. Similarly, gavaging ABCA4−/−mice (Stargardt disease) with
206 mg/day of omega-3 FA (172 mg EPA + 34 mg DHA) for three months resulted in no change in
retinal DHA, although a 67% increase in retinal EPA (from 0.93% to 1.56% of total) was observed [41].
A study by Schnebelen et al. [42] showed that feeding 3-week-old rats with 5% fat diet containing
20% omega-3 FA for three months resulted only in an 8% increase in retinal DHA. In contrast to these
studies, using transgenic mice carrying fat-1 gene, which converts endogenous omega-6 FA to omega-3
FA, Suh et al. [43] and Tanito et al. [44] reported a near doubling of retinal DHA compared to the wild
type controls. However, the increase in retinal DHA by genetic manipulation rather than through diet
appears to cause abnormal electroretinograms and susceptibility to oxidative stress, as reported by
these workers. On the other hand, Connor et al. [45] reported that increasing the DHA content of
retina in neonatal mice through diet prevents retinopathy of prematurity by inhibiting the pathological
neovascularization. Furthermore, Sapieha et al. [5] showed that supplementation of diet with high
concentration of omega-3 FA (2% of diet) preserved retinal function in a mouse model of type 2 diabetes
and enhanced glucose tolerance, although changes in retinal DHA levels were not reported. Similar
benefits on diabetic retinopathy were shown in rats by Tikhonenko et al. [31] who fed 5% calories
as menhaden oil. However, the dose of omega-3 FA required to achieve these beneficial effects is
impractical in clinical setting, since the equivalent dose in humans, using allometric calculations [46],
would be about 14 g of omega-3 FA/day in a 70 kg human, based on the Sapieha et al. study, or about
16 mL fish oil/day according to the Tikhonenko et al. study. In contrast, the dose of LPC-DHA required
to nearly double the retinal DHA is about 50 times lower than the above studies and is therefore easily
applicable to clinical conditions.

Unlike the brain which acquires DHA predominantly through the Mfsd2a pathway, retina appears
to acquire DHA through multiple pathways, since a deficiency of Mfs2a results in only a 45% reduction
in retinal DHA, and a 57% reduction in VLCFA [47]. Thus, the studies by Bazan [18] showed the
importance of Adiponectin receptor for maintaining the DHA levels of retina, whereas the role of
FA-binding proteins and lipoprotein receptors have been proposed by others [3,19]. These pathways
may account for the small increase in retinal DHA by dietary free DHA and TAG. Retina also has
an efficient recycling mechanism to retain DHA by the phagocytosis of retinal pigment epithelial
cells [1,18], possibly accounting for the milder effects of congenital Mfsd2a deficiency on retinal
function [20,47], compared to the brain function [17]. Another difference between the brain and retina
was that whereas DHA replaced mostly arachidonic acid in the brain [15,16,21], it replaced more
saturated fatty acids and oleic acid than arachidonic acid in retina. While the decrease in arachidonic
acid is believed to be beneficial because of its role in the generation of pro-inflammatory eicosanoids,
the physiological effects of decreasing the saturated fatty acids and oleic acid in retina are not clear.

In contrast to DHA, the EPA content of retina is very low, and is not increased substantially even
after feeding EPA-rich supplements, although DHA levels are increased by these treatments [42,45].
Therefore, it has been assumed that either EPA does not enter the brain and retina, convert rapidly
to DHA, or oxidized without net accumulation [48,49]. In the current study, although EPA levels
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of retina were not increased after feeding pure LPC-DHA, marked increases occurred after feeding
lipase-treated krill oil which contained both LPC-EPA and LPC-DHA. Therefore, we suggest that the
failure of previous studies to show an increase in brain or retinal EPA was due to the inability of the
supplements to generate LPC-EPA in vivo. We have previously shown that similar enrichment of brain
EPA and retinal EPA occurred after feeding pure LPC-EPA [50]. Increasing retinal EPA in addition
to DHA may be more beneficial than increasing only its DHA content, because EPA is the preferred
substrate for the synthesis of VLCFA [51,52], which have unique functional significance in retina [53].
EPA is also known to compete more effectively than DHA against arachidonate and thereby inhibit
synthesis of pro-inflammatory prostaglandins.

Most studies on omega-3 FA focus on increasing only the EPA and DHA levels of the tissues, but
an ancillary benefit of dietary LPC-EPA/DHA, in comparison to fish oil or ethyl esters, is that for each
molecule of DHA or EPA taken up by the retina and brain through the Mfsd2a pathway, a molecule
of choline is simultaneously taken up. Choline is an essential component of acetyl choline as well as
membrane phospholipids, and plays a critical role in vision [54]. In fact, citicholine, (CDP-choline),
a precursor of choline phospholipids, is used clinically for treatment of retinopathies and glaucoma [54].
Therefore, LPC-EPA/DHA could provide the combined benefits of omega-3 FA and citicholine in a
single effective preparation.
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