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ABSTRACT: During process monitoring applications, referenced optical spec-
troscopy, such as absorbance spectroscopy, can suffer from environmental and
instrumental fluctuations that alter the intensity of irradiance reaching the
spectrometer’s detector at each detected frequency. Temperature, vibration, light
source aging, instrument damage, detector aging, detector registry shifts, sampling
cell degradation, and similar perturbations create situations in which a previously
collected reference spectrum may no longer be valid for the current state of the
system. This can lead to the calculation of poor-quality absorbance spectra that are
unsuitable for qualitative or quantitative analysis based on prior calibration models. The use of single-beam spectra in the creation of
multivariate calibration models circumvents the need for collecting and maintaining a stable reference spectrum throughout an
ongoing chemical process. However, unlike absorbance spectra, which typically have a zero baseline, single-beam spectra contain a
high background signal relative to an analyte signal, and they may also contain intense peaks from the light source. Here, multivariate
principal component analysis (PCA) and partial least squares (PLS) regression models are built using single-beam and absorbance
spectra to compare the efficacy of both types of spectra for qualitative and quantitative analyses of lanthanide solutions. A multileg
fiber optic UV−visible spectrometer is utilized to collect samples under three distinct wavelength registries in three unique sampling
cells and under lighting conditions spanning 0.2 to 2.0 relative transmittance. Under these conditions, single-beam spectral PCA
models produced enhanced discrimination between sampling conditions, allowing spectra to be grouped by the instrumental
conditions under which they were collected. Absorbance and single-beam PLS models produced equivalent quantitations of the
lanthanide concentrations.

■ INTRODUCTION
Process monitoring, whether in-line or online, can provide vital
information for maintaining the control, efficiency, and safety
of chemical processes.1,2 Process analytical technology (PAT)
utilizing optical spectroscopy as a means of measurement has
been applied in numerous fields, frequently being applied in
food production and safety,1,3 nuclear safeguards and
reprocessing,2,4 environmental monitoring,5 and pharmaceut-
ical6,7 processes.
Optical spectroscopic techniques allow for the identification

and quantification of a wide range of chemical species. Optical
spectroscopy can utilize robust probes in a variety of
commercially available designs, allowing in-line or online
data collection even under radioactive,4,8 thermally intensive,9

and acidic or alkaline conditions.10 Although optical spectros-
copy does not always achieve the same sensitivity as other
techniques, it is inexpensive, well-developed, easily imple-
mented,11 and adept at rapid analysis. These features allow it
to be substituted in place of more expensive and time-
consuming methods in applications where the required
sensitivity falls within the range of the optical method.4

Optical methods are also often nondestructive,12 allowing
them to be utilized before or currently with other techniques,

such as in spectroelectrochemistry applications.13 Many sensor
configurations have been adapted to fit the analysis of an
ongoing process on a variety of process scales, and the type of
spectroscopy applied to each scenario can be chosen to fit the
required analytical need.

Multivariate chemometric analysis is often applied to derive
qualitative and quantitative data from complex optical spectra.
Chemometrics may be used as an effective mathematical tool
for online monitoring to detect when internal chemical
changes occur in process streams. Several issues related to
the successful analysis of a processing stream, such as the
quantification of a species of interest in the presence of
chemical interferents or shifts in environmental conditions,
have been mitigated using chemometric modeling.14 Multi-
variate signal processing methods have also been developed to
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combat multiplicative effects and baseline shifts in optical
spectra,15 which interfere with basic univariate analysis.
UV−visible (UV−vis) absorbance spectroscopy is useful for

detecting molecular and atomic species.16 However, absorb-
ance spectroscopy requires the ability to acquire a stable
reference spectrum,17 which is utilized to calculate the
absorbance spectrum of a sample. In an ongoing chemical
process such as that encountered in PAT applications, system
instabilities may occur for a variety of reasons and may
originate at many points within the system. For instance, light
sources may age or fluctuate in output, fiber optics can suffer
damage, and process cells may become damaged or
contaminated.1 Another challenge to reference stability is the
shift of frequency registries in spectrometers as detectors,
gratings, and other instrument components degrade over time
or are damaged.18 Such changes cause a collected reference to
no longer be valid for the continued calculation of absorbance
spectra.17 Furthermore, such changes to sampling conditions
introduce uncalibrated variance in the data set of a chemo-
metric model.
Sampling condition variation can invalidate calibration

models unless a new reference can be collected under the
new lighting conditions or unless the models can be rebuilt
using data collected under new conditions.18 Calibration
transfer methods may be used to overcome changes in
sampling conditions, but calibration transfer often requires
remeasuring standards under new conditions.19,20 Resampling
can cost considerable time and money depending on the
process, and it may be impossible depending on the
accessibility of the system and the required samples. Robust
calibration techniques must remain viable despite system
perturbations and thus not require expensive and time-
consuming model updating.20

This work seeks to create robust calibration models that
maintain adequate performance despite significant changes in
instrumental conditions between spectral measurements. The
motivation for this study derives from the desire to maintain a
reliable online process for monitoring data streams during
unexpected system changes. Additionally, the ability to
diagnose the instrumental cause of the spectral changes is
desirable. Thus, this study focuses on overcoming practical
limitations in the application of UV−vis absorbance spectros-
copy and other referenced techniques to online monitoring
situations. Specifically, due to the challenges of maintaining a
stable reference spectrum in complex, online monitoring
applications, this study re-examines the common practice of
utilizing referenced absorbance spectra21 compared to
unreferenced, single-beam spectra.17,22

Here, multivariate spectral data are utilized to build
chemometric models for the prediction of lanthanide ion
concentrations in aqueous solutions. This work focuses on the
measurement of two rare earth elements, namely, neodymium
and praseodymium. Although more sensitive detection
methods exist for rare earth elements, such as total reflection
fluorescence,23,24 laser-induced breakdown spectroscopy,25 and
inductively coupled plasma mass spectrometry,23 visible
spectroscopy was chosen here due to its aforementioned
merits as a nondestructive online monitoring method.7 The
detection of neodymium and praseodymium is used to
demonstrate a chemometric treatment of visible spectra, but
the technique is applicable to many visibly absorbing species.
Traditional absorbance spectra are utilized in chemometric
models, along with single-beam, unreferenced spectra. These

spectra are collected after various alterations are made to
sampling cells, fiber optics, and incident light beam intensity.
These changes result in a transmittance range of 0.20 to 2.0
relative to control conditions. Chemometric models are built
from absorbance and single-beam spectra, and the qualitative
and quantitative results are examined. Models built from
absorbance and single-beam spectra are compared quantita-
tively using the errors in the predicted concentration of two
analytes, neodymium (Nd) and praseodymium (Pr) nitrate.

■ EXPERIMENTAL SECTION
Materials. Nitric acid (concentrated, 70%) was acquired

from Sigma-Aldrich (St. Louis, MO), as were iron(III) nitrate
nonahydrate (>99.999%, trace metal basis) and copper(II)
nitrate trihydrate (99−104%). Neodymium nitrate hexahy-
drate (99.9%), praseodymium nitrate hexahydrate (99.9%),
and holmium nitrate pentahydrate (99.9%) were purchased
from Strem Chemicals (Newburyport, MA). Ruthenium
chloride (45−55% Ru content) was acquired from Sigma-
Aldrich (St. Louis, MO). Molar absorptivity spectra for each
chemical are shown in Figure S2. Deionized (DI) water of 18
MΩ·cm resistivity was used in sample preparation.

A sealed standard solution of didymium perchlorate (RM-
DL) was purchased from Starna Scientific. Didymium is a
mixture of neodymium and praseodymium.

Spectrometer. The UV−vis spectrometer is a thermo-
electrically cooled (TE) charge-coupled device (CCD)-based
detector capable of transmitting and receiving light through
fiber optic cables purchased from Spectra Solutions Inc.
(Norwood, MA). Figure 1 (top) shows each major component
of the system.

Light is directed via a fiber optic from an external light
source into a port on the spectrometer’s face, indicated in

Figure 1. Diagram of the multitrack UV−visible spectrometer utilized
in this study and the points at which alterations were made. (A)
Spectrometer housing containing CCD arrays and internal fibers for
each track. (B) External light source. (C) Excitation and collection
ports for each internal track. (D) Port through which external light is
fed into the internal beam splitter. (E) Stainless steel holder for
sampling cells with fiber optic attachments. (F) Lamp fiber. (G)
Three instrument tracks utilized in this study. (H) Excitation fiber. (I)
Cell holder with sampling cell in place.
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Figure 1D. Excitation light was provided by a SLS205 Xenon
arc lamp purchased from ThorLabs Inc. (Newton, NJ).
Incoming light is split into six fibers, which can then be

directed out of six excitation ports through fiber optic cables.
There are six corresponding collection ports that direct light
onto six different regions of the CCD detector. These ports are
shown in Figure 1C. Each pair of excitation and collection
locations is referred to as a “track,” resulting in six tracks in the
instrument. The CCD detector collects a signal for a length of
time, called the integration time, specified in the SpectraSof-
tAbsorb software from Spectra Solutions Inc. Each track is
collected for the same amount of time.
The detected range for the spectrometer is 395−874 nm,

but the included range for analysis is limited to 417−820 nm
due to low signal below 417 nm and sharp, intense source lines
above 820 nm.
For each sample, 100 UV−vis spectra were taken. To reduce

the noise and data processing time, the spectra were averaged
into a single spectrum per sample.

Data Processing Software. Spectral extraction, averaging,
and plotting were conducted using Matlab2022b (Mathworks,
Natick, MA). Spectral preprocessing and chemometric analyses
were performed using PLS Toolbox 9.1 (Eigenvector Research
Incorporated, Manson, WA).

Chemometric Methods and Measures of Error.
Principal component analysis (PCA), principal component
regression (PCR), and partial least squares (PLS) are well-
defined elsewhere.26−28 Briefly, PCA is a decomposition
method, and PCR and PLS are regression methods. These
algorithms produce model components called principal
components in PCA and PCR and latent variables in PLS.
Model components capture variance within the matrices used
to calibrate the models. These model components are
mathematically significant but do not necessarily capture the
spectroscopic signatures of pure chemical constituents.
Here, PCA is used to classify spectra based upon the system

alterations made during spectral collection and to examine
trends in the variance present in absorbance versus single-beam
spectra. PCR is used to add quantitative detail in the PCA
analysis. PLS analysis is used to regress the concentrations of
neodymium and praseodymium.
The predictive ability of the regression models for

neodymium and praseodymium concentrations was measured
by root mean square errors of calibration (RMSEC), cross-
validation (RMSECV), and prediction (RMSEP).7,28 The

RMSEC is calculated by using the difference between the
known solution composition and the composition predicted
from the calibration set spectra by the PLS model. The
RMSEP is calculated using the difference between the known
and predicted compositions of the independent validation set
spectra.

The coefficient of determination (R2) is utilized as a measure
of the fit between the gravimetrically known concentrations of
samples and their concentrations, as measured by PLS models.
An ideal fit would have an R2 of 1, in which the PLS
predictions do not vary from the gravimetric measurements.7

Plots of the known versus chemometrically measured values
are termed parity plots.

The Hotelling T-squared (T2) measures the distance of a
data point from the center of the data cloud within a space
defined by the model’s latent variables.29 A sample with high
T2 scored very high or low on one or more model components,
indicating that it is near or beyond the edge of the calibrated
signal variation. The Q-residuals are a measure of unexplained
variance, that is, variance uncaptured by the model.30

Instrumental Conditions. Spectra were collected under a
variety of instrumental conditions, in which a portion of the
spectrometer setup (Figure 1) was modified from the control
conditions. The conditions are summarized in Table 1. The
conditions are shown in diagrams in Figure S1 and described
in greater detail in the Supporting Information.

The locus of change for each condition is noted in Table 1,
referencing the lower portion of Figure 1. Each instrumental
condition is designed to mimic a potential disturbance that can
occur in a spectrometric system during an online monitoring
process. Briefly, conditions that mimic damage or alteration to
a fiber optic leading to the sampling cell are the γ-Irradiated,
Alternate track 1, Alternate track 2, Coupled fiber, and Cell
filter conditions. The Lamp filter and Lamp aperture
conditions mimic light source degradation. Alternate track 1
and Alternate track 2 mimic wavelength registry shift and
detector sensitivity changes over time. The Plastic cuvette and
Scintillation vial represent a change in the sample cell itself.

The Scintillation vial condition is the most drastic
instrumental change, as it involves the use of a round sampling
cell with a shorter path length than the 1 cm cuvettes used in
all other studies. This condition is regarded as a condition of
critical fault in the system.

Table 1. Descriptions of the Alterations Made to Sampling Conditions, as well as the Transmittance of a Water Spectrum
Collected under Each Condition Relative to a Water Spectrum Collected under the Control Condition

title description
relative

transmittance
change point in

Figure 1

control Single fiber to and from sample cell holder. 1.0 n/a
γ-irradiated γ-irradiated fiber to sample cell holder, and unirradiated fiber from sample cell holder to spectrometer. 1.6 H
alternate track 1 Single fiber to and from sample cell holder, on a secondary track. 1.2 G
alternate track 2 Single fiber to and from sample cell holder, on a tertiary track. 0.7 G
coupled fiber Three coupled fibers to sample cell holder, and single fiber from sample cell holder. 1.1 H
cell filter Fiber to cell holder containing filter, fiber from filter holder to sample cell holder, single fiber from sample

cell holder to spectrometer.
0.25 to 1.6 H

lamp aperture Single fiber to and from sample cell holder, an aperture attenuator in the light path between the lamp and
beam splitter.

0.32 to 2.0 F

lamp filter Cell holder containing filter in the light path between the lamp and beam splitter, single fiber to and from
sample cell holder.

0.27 to 1.8 F

plastic cuvette Single fiber to and from sample cell holder, with samples in plastic 1 cm cuvettes. 1.9 I
scintillation vial Single fiber to and from sample cell holder, with samples in half dram glass vials. 0.20 I
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■ RESULTS AND DISCUSSION
PCA, PCR, and PLS are linear methods. Absorbance is known
to exhibit a linear relationship with chromophore concen-
tration under certain conditions according to the Beer−
Lambert law. The particulars of the Beer−Lambert law are
available from multiple sources,31,32 and the derivation32,33

demonstrates that a near linear relationship of path length,
concentration, and absorbance of a solution containing a
chromophore is established alongside a logarithmic relation-
ship. The emergence of a linear relationship in both
absorbance and single-beam spectra is discussed in the
Supporting Information.
The following section discusses the collected spectra and

compares linear models of the absorbance and single-beam
spectra.

Spectral Types. Single-beam and absorbance spectra are
modeled in this study. Single-beam spectra are defined here as
the digitized signal produced after photons pass through a
sample and contact the CCD detector. The absorbance spectra
used for modeling are calculated using references that are
recollected approximately every five samples, and absorbance is
calculated as in eq 1 in the Supporting Information.
Figure 2 shows absorbance (A) and single-beam (B) spectra

of a sample containing 60 mM neodymium nitrate, collected

under each instrumental condition and attenuation level.
Figure 2B of the single-beam spectra reveals that the intensity
of the background signal, that is, unabsorbed photons, varies in
each condition, as does the depth of the absorbance bands.
Supporting Information Figure S7 and Figure S8 show

single-beam and absorbance spectra of a series of neodymium
nitrate with samples collected under each instrument condition
displayed in a separate plot.

Data Set Definitions. A total of 1121 averaged spectra
were collected and assigned to data sets for PCA or PLS. Each
data set contains a calibration set and a validation set, with
each set having a spectral matrix and a corresponding

concentration matrix. Calibration samples are used to build
the chemometric models’ regression vectors, and the validation
samples are utilized to test the error of the models when
measuring new spectra.27,34

Though only neodymium and praseodymium are regressed
using PLS, additional chromophores of copper(II), ruthenium-
(III), iron(III), and holmium are included in the sample sets as
interfering absorbers. Data sets are further described in the
Supporting Information.

Spectral Processing. Spectral processing is often required
in online monitoring applications due to unstable or
unexpected conditions that arise and perturb spectra.14

Absorbance and single-beam spectra require preprocessing
due to differences in the incident light, baseline fluctuations,
lack of linearity, or wavelength misalignment. The preprocess-
ing steps used in this study’s chemometric models are listed in
Table 2.

Before any other signal processing occurred, wavelength
registries for the three tracks of the instrument were aligned via
a first- or second-order polynomial transformation. This is
discussed further in the Supporting Information Axial Align-
ment section.

For PCA and PCR analysis, the following preprocessing
schemes were used to distinguish the spectral variation unique
to each instrumental alteration rather than the spectral
variation caused by the presence of chromophores. Single-
beam spectra were preprocessed by applying a base-10
logarithm followed by a Savitsky−Golay first derivative.35

Next, normalization of the area under the curve was applied.
Finally, a generalized least squares weighting (GLSW) clutter
filter was applied. The GLSW filter creates a downweighting
matrix using singular value decomposition of the preprocessed
spectral matrix, which is applied to spectra to reduce spectral
variance that does not correlate with the assigned system
alteration, in this case, the instrumental conditions.36 Addi-
tional α (downweighting) values were tested in the PLS
Toolbox for the GLSW filter with only moderate improvement
to model error at smaller α values. To avoid overfitting, 0.02
was chosen.

Figure 2. (A) Absorbance spectra of 60.0 mM neodymium nitrate
under varying instrumental conditions. (B) Single-beam spectra
corresponding to the spectra shown in (A).

Table 2. Preprocessing Steps Applied to Spectral Data
before the Calibration of Multivariate Chemometric Models

model spectra preprocessing

PCA, PCR,
Instrumental
condition

Single-beam log10, Savitsky−Golay 1st derivative,a
2-norm, GLSWb

PCA, PCR,
Instrumental
condition

Absorbance Savitsky−Golay 1st derivative,a
GLSWb

PLS, Nd regression Single-beam log10, 1-norm, Savitsky−Golay 1st
derivative,a GLSW,b mean center

PLS, Nd regression Absorbance Savitsky−Golay 1st derivative,a
GLSW,b mean center

PLS, Pr regression Single-beam log10, EMSC,c Savitsky−Golay 1st
derivative,a mean center

PLS, Pr regression Absorbance Savitsky−Golay 1st derivative,a mean
center

aSavitsky−Golay derivatives used a 2nd-order polynomial, 29 point
window width. bGeneralized least squares weighting (GLSW) filter
used a downweighting parameter of 0.02. cExtended multiplicative
scatter correction (EMSC) utilized a classical least squares algorithm
and 2nd-order polynomial.
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Absorbance spectra were preprocessed using a Savitsky−
Golay first derivative and a GLSW clutter filter. When a 2-
norm was applied, as in the single-beam spectra, all correlative
information was lost, with sample scores becoming normally
distributed across all PC axes.
The preprocessed calibration and validation sets utilized in

PLS regression of praseodymium concentration are shown in
Figure 3(A,B) for absorbance and (C,D) for single-beam
spectra. The single-beam spectra have been inverted for ease of
comparison to the absorbance spectra. Single-beam spectra for

praseodymium regression were preprocessed as shown in
Figure S12 in the Supporting Information, with the
preprocessed spectra shown in Figure 3C for the calibration
set. The raw single-beam spectra are subjected to a base-10
logarithm, a 2nd-order extended multiplicative scatter
correction (EMSC) algorithm,37 a Savitsky−Golay first
derivative, and mean centering. Mean centering here serves
to reduce constant baseline effects and center the quantifica-
tion models at an origin of zero.28 The EMSC algorithm is
capable of isolating chemical and physical sources of variance

Figure 3. (A) Calibration absorbance spectra after preprocessing and (B) validation absorbance spectra after preprocessing via a Savitsky−Golay
1st derivative and mean centering. (C) Inverted calibration single-beam spectra after preprocessing and (D) inverted validation single-beam spectra
after preprocessing via application of log10, extended multiplicative scatter correction, Savitsky−Golay 1st derivative, and mean centering.

Figure 4. (A) Scores for sample spectra on the first through third components of a PCA model of absorbance. (B) Gravimetrically measured versus
PCR-measured praseodymium concentration from a PCR model of absorbance spectra shown in part (A). (C) Scores for sample spectra on the
first through third components of a PCA model of single-beam spectra. The overlaid, colored numbers are RMSEP for the data of each
instrumental condition: 0.00167 for Control, 0.00173 for γ-Irradiated, 0.00216 for Alternate track 1, 0.00209 for Alternate Track 2, 0.00167 for
Coupled fibers, 0.00201 for Cell filter, 0.00218 for Lamp filter, 0.00217 for Lamp aperture, 0.00233 for Plastic cuvette, and 0.00353 for Scintillation
vial conditions. Partially transparent markers indicate calibration samples, and opaque markers indicate validation samples. (D) Gravimetrically
measured versus PCR-measured praseodymium concentration from a PCR model of single-beam spectra shown in part (C).
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within a data set, including multiplicative effects, to bring
variant spectra closer to a common baseline.37

Absorbance spectra for praseodymium regression were
preprocessed as shown in Figure S13 in the Supporting
Information, through the application of a Savitsky−Golay first
derivative and mean centering.
Figure 3 shows that while the preprocessed absorbance and

single-beam spectra vary in intensity, the peak profiles are very
similar. The single-beam spectra contain additional non-
chemical artifacts compared to the absorbance spectra due to
sharp and intense peaks in the xenon arc lamp’s irradiance
spectrum, which can be seen particularly in the region above
650 nm in parts (C,D).
For PLS analysis, differing preprocessing schemes were

utilized for the regression of praseodymium and neodymium.
This is discussed in the Supporting Information, along with a
description of the neodymium model preprocessing.
In all of the above cases, the broad bands of ruthenium and

copper ions are largely removed by the first derivative.
Therefore, these preprocessing schemes are suitable only for
quantification from narrow bands, and new preprocessing
schemes would need to be developed to quantify analytes with
broad spectral bands.
Overall, these preprocessing schemes reduce nonlinearities

in the spectral matrices, establishing linear ranges within both
single-beam and absorbance spectra such that linear models,
such as PCA, PCR, and PLS, can be applied to the spectra.

Principal Component Analysis and Regression. PCA
models can reveal underlying structures in spectral data sets
and identify the profiles of the key sources of variance within
the data set. Here, PCA is utilized to identify the instrumental
conditions under which spectra were collected. It is also
utilized to elucidate the relative importance of variance sources
within the data set, as discussed in the Supporting Information.
PCR, an extension of PCA, is utilized to compare the
prediction errors introduced by each instrumental condition.
In this study, spectra were collected under ten instrumental

conditions. In each condition, part of the system was altered,
creating a unique profile of irradiance that was transmitted
through the sample and collected as a single-beam spectrum.
Not every system can be easily altered in such a way. However,
if a system can be subjected to known alterations and
calibration spectra collected when those alterations are in
effect, then it may be possible to classify, via chemometric
modeling, the unique change in spectral profile caused by that
alteration. In doing so, new spectra can be fed into the
classification model, and the type of alteration can be
identified. This holds value for processing systems with
known failure points, such that failure points can be identified
via collected optical spectra, and the failure point can be
repaired or adjusted to restore the system to its proper
configuration.
The results of the PCA models of absorbance and single-

beam spectra are shown in Figure 4, with part (A) displaying

the scores of each sample on the first through third principal
components for the absorbance spectral model and part (C)
displaying the same scores for the single-beam spectral model.

In the single-beam model, most samples are grouped based
on the instrumental condition under which they were
measured. In Figure S11(B), the PCs that are closest to the
PC space are replotted, and a greater degree of separation is
revealed in the fourth PC space between these conditions.

In Figure 4C, the RMSEP values for neodymium predictions
from a PCR single-beam model of each condition are listed
next to the corresponding group of scores. The RMSEP was
calculated by calibrating a PCR model using the Control
spectra and the concentration of neodymium nitrate and then
predicting the concentration of neodymium nitrate from the
spectra taken under each system condition. The largest
RMSEPs are seen in the conditions which are farthest from
the Control condition in the primary PCs, PC 1 and 2. These
high RMSEP conditions are the Lamp aperture, Alternate track
2, Cell filter, and Scintillation vial sets. The scintillation vial
spectra have a great degree of separation in PC 2, separating
them from the other conditions. This is to be expected due to
the difference in path length, cell shape, and cell material
utilized in the collection of these samples. The position of
additional conditions is discussed in the Supporting
Information.

The PCA scores from the model of absorbance spectra are
shown in Figure 4A, where no discrimination between
sampling conditions is seen. Discrimination of instrumental
conditions also does not occur in the fourth PC space, as
shown in Figure S11 (A). Instead, the primary variance in the
absorbance spectra is caused by the concentration of the
neodymium and praseodymium cation chromophores. This
lack of grouping is due to the referencing that occurs in the
calculation of absorbance. Here, the unique background signals
of each condition are present in the single-beam reference and
single-beam sample spectra. The conditional signals are
eliminated in nonabsorbing regions during the calculation of
transmittance, as discussed in the Supporting Information.
Thus, referencing by this method removed the ability of
chemometric models to distinguish and classify the conditions
based upon spectral signatures, as the absorbance model PCs
captured chemical variation instead of the more characteristic
background variation capturable in the single-beam spectra.

Partial Least Squares Regression. PLS models were
constructed for absorbance and single-beam spectra for the
prediction of neodymium and praseodymium molar concen-
tration. Three latent variables were selected due to the
presence of multiple absorbing species within the calibration
set.

The RMSE results for neodymium and praseodymium are
shown in Table 3. RMSEs represent the uncertainty of the
calibration (RMSEC) and the measurement of new samples
(RMSEP).34,38 Praseodymium, with its primary bands
occurring in a region of low detector sensitivity, is more

Table 3. Partial Least Squares Root Mean Square Errors of Calibration (RMSEC), Cross-Validation (RMSECV), and
Prediction (RMSEP) of Neodymium Nitrate and Praseodymium Nitrate Concentrations in Molarity from PLS Models of UV−
Vis Spectra

absorbance single-beam

analyte RMSEC RMSECV RMSEP RMSEC RMSECV RMSEP

Nd 1.02 × 10−3 1.10 × 10−3 2.25 × 10−3 9.50 × 10−4 9.68 × 10−4 2.12 × 10−3

Pr 2.52 × 10−3 2.65 × 10−3 3.66 × 10−3 2.07 × 10−3 2.11 × 10−3 2.97 × 10−3
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prone to the multiplicative effects of detector nonlinearities.
Due to this, neodymium regression models tended to have
lower RMSE values than praseodymium models.
Due to the preprocessing methods utilized to remove

baseline variation in absorbance spectra and to remove
background signal in single-beam spectra, the absorbance
and single-beam models produce nearly equivalent errors in all
models for RMSEC, RMSECV, and RMSEP. The results of the
predictions can be seen in the parity plots in Figure 5B for the
absorbance model and in (E) for the single-beam model for
praseodymium. An ideal fit in these plots would show the data
points falling on a 1:1 line where the known and predicted
values are identical. The R-squared value of the calibration fit
was 0.98 or above in both models, and the R-squared value of
the validation fit was 0.96 or above. Parity plots for both
praseodymium and neodymium models can be found in Figure
S14.
The plots for PLS models show the stacking of data points.

This occurs where identical samples were measured at multiple
attenuation levels. Due to the multiplicative effects present in
both the absorbance and single-beam spectra, the predicted
value from spectra at higher attenuations is lower than the true
value due to the recorded peak magnitude being lower in those
cases.
The latent variable profiles in Figure 5A,D appear similar in

intensity and shape, though the single-beam model’s latent
variables are inverted. Despite light source artifacts in the
single-beam data set, seen primarily above 700 nm, its
predictive ability remains competitive with models of tradi-
tional absorbance spectra. A more detailed discussion of the
latent variables is in the Supporting Information.
In the absorbance data set, the Q-residuals, shown in Figure

5C, display high Q values for a large number of Control and γ-
Irradiated condition samples, which are not expected to have
high variance, as both conditions are middling in light intensity
compared to the rest of the data set. In the case of the single-

beam models, the Q-residuals, shown in Figure 5F, are high for
the scintillation vial samples, which were intentionally excluded
from the calibration set and which were collected in cells with
a path length and geometry different than the rest of the data
set. Thus, these samples were intentionally deviant from the
data set, and the single-beam model’s ability to identify these
samples as aberrant provides a useful tool for flagging
abnormal and undesirable conditions in process monitoring
applications.

To improve models and lower prediction error, two
approaches are readily available. First, additional multiplicative
filters could be tested for the data sets. While EMSC is shown
here and elsewhere39 to be effective for correcting nonlinear
effects, other approaches have been designed for specific
spectral challenges and for reducing computational require-
ments for large data sets, which are common in PAT
applications.15 Second, nonlinear models can be utilized. For
instance, neural networks have been applied to absorbance
data sets where referencing poses a challenge.40 However,
locally weighted regression, a simpler type of nonlinear model
that creates local PCR or PLS models, may be more desirable
for applications wherein each computational step must be
clearly identified.

■ CONCLUSIONS
In this study, it was demonstrated that chemometric models of
single-beam spectra, after signal processing, provide an
equivalent quantitative value as do models of absorbance
spectra. Single-beam spectral models contain additional
information that allows for qualitative analysis of the
instrumental conditions during spectral measurement.

Referenced spectroscopic methods are challenged by
systems where references cannot be reliably collected, either
due to the nonexistence of a suitable reference material or due
to prohibitive cost or inconvenience of reference spectra
collection. Single-beam spectra, the signal produced by a

Figure 5. Results of the PLS model of the absorbance data set: (A) latent variables, (B) parity plot of praseodymium concentration as known and
as measured by the model, and (C) Q-residuals versus Hotelling T-squared. Results of the PLS model of the single-beam data set: (D) latent
variables, (E) parity plot of praseodymium concentration as known and as measured by the model, and (F) Q-residuals versus Hotelling T-squared.
The rightmost legend applies to plots (B), (C), (E), and (F).
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detector as photons impact it, have been shown in this work to
be usable in place of absorbance when signal referencing
becomes impractical. Here, signal processing produces similar
spectral signatures from single-beam spectra compared with
traditional absorbance spectra. Through multivariate, linear
chemometric modeling, comparable errors in the prediction of
the chromophore concentration are achieved from models of
single-beam and absorbance spectra. The prediction errors
remain comparable even when uncalibrated absorbers and
sampling conditions are included in the data sets. The
prediction of the concentration of broad absorbers poses
additional challenges in the signal processing step, and future
studies will examine methods by which broad-range signals can
be extracted from single-beam data without the need for the
reference collection. PCA’s ability to distinguish instrumental
conditions from single-beam spectra indicates that classifica-
tion models may be used in a hierarchical modeling structure
to first assign a condition class to a spectrum and regress
analyte concentrations from the spectrum based on a
calibration model built for the specific class, providing reduced
prediction errors; future work may explore such avenues.
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