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Abstract: A time-domain ranging algorithm is proposed for a frequency-modulated continuous wave
(FMCW) short-range radar sensor with high accuracy and low complexity. The proposed algorithm
estimates the distance by calculating the ratio of the beat frequency signal to its derivative and thereby
eliminates the restriction of frequency bandwidth on ranging accuracy. Meanwhile, we provide error
analysis of the proposed algorithm under different distances, integral lengths, relative velocities,
and signal-to-noise ratios (SNRs). Finally, we fabricate FMCW sensor prototype and construct a
measurement system. Testing results demonstrate that the proposed time-domain algorithm could
achieve range error within 0.8 m. Compared with the conventional fast Fourier transform (FFT)
estimation scheme, the proposed method performs ranging without the requirement of complex
multiplications, which makes it reasonable to be implemented in real-time and low-cost systems.

Keywords: time-domain ranging; frequency-modulated continuous wave; low-complexity;
beat frequency

1. Introduction

Frequency-modulated continuous wave (FMCW) radars have been widely used for short range
measurements benefiting from their high ranging resolution. The FMCW proximity radar sensor
was extensively applied in industrial community, such as liquid level measurements [1], direction
of arrival (DOA) estimation [2], radar altimeters [3,4], mechanical vibrations [5], and biomedical
measurements [6]. The FWCW sensor employs beat frequency signal to measure the distance [7] by
mixing the transmitted signal with the received time-delayed signal. The discrete spectral components
of the beat frequency are directly related to the signal propagation time, or equivalently, the distance
between sensor and target. Therefore, most approaches in the literature exploit the frequency-domain
signals to estimate a spectral component [8–11].

Distinct methods for estimating the spectral peak of beat frequency signal in frequency-domain
have been proposed to improve the range resolution. The rough values of beat frequency were
first estimated in [12] using discrete Fourier transform (DFT) for FMCW systems, where gradient
search methods (GSMs) were employed in subsequent iterations to obtain the precise peak value.
An additional local maximum peak near the global maximum was used by a curve-fitting device
in [13] to obtain the range adjustment and improve the range accuracy for FMCW radars. A difference
method using the eigenvalue-based multiple signal classification (MUSIC) algorithm was proposed
in [14,15] to provide sharp spectral lines and high resolution spectral estimation. The spectral peak
search methods mentioned above rely on the fast Fourier transform (FFT) or the MUSIC algorithm and
usually suffer from high computational cost. The Chirp-Z transform (CZT) can refine the spectrum
based on an interpolation technique with low computational complexity [16]. An optimized CZT
algorithm was proposed in [17] to achieve increasing frequency resolution with an additional phase
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evaluation. Kim et al. [18] also proposed a low-complexity algorithm using two random beat signals
to perform one-dimensional FFT for range detection.

Unlike those conditions presented in the above works, the ranging system and the target
in our application are moving with a relative velocity and the range calculation time allowed is
limited, requiring a real-time high-resolution estimation method. We propose a novel ranging
algorithm exploiting the time-domain signal instead of the conventional estimation method in the
frequency-domain. The main contributions of this paper are as follows:

• We proposed a time-domain ranging algorithm, essentially by calculating the ratio of the beat
frequency signal to its derivative, and analyzed the inherent error of the proposed estimation in
the case of spectral dispersion. Results show that the ranging resolution is unrestricted by the
frequency bandwidth of the modulating signal.

• After fabricating the FMCW sensor prototype, we conducted experiments to validate the proposed
ranging scheme with ranges r = 4–18 m. Measured range errors exhibit high ranging resolution
below 0.8 m and periodical characteristics for the increasing range.

• We also provided complexity analysis which indicated that the time-domain ranging algorithm has
lower computational complexity without the requirement of complex multiplications, compared
with conventional frequency-domain methods.

The rest of this paper is organized as follows: In Section 2, we introduce the ranging model
with beat frequency signal and then propose a time-domain ranging method with detailed theoretical
derivations. In Section 3, we investigate the ranging errors under different SNRs, moving speeds,
integral numbers, and provide the computation complexity analysis. The extensive experiments will
be conducted in Section 4 to validate our novel ranging method. Finally, conclusions are drawn in
Section 5.

2. Time-Domain Ranging Algorithm with Beat Frequency

In this section, we commence to introduce the time-domain expression of the beat frequency
signal. Then, the time-domain ranging algorithm will be derived with some direct approximations.

2.1. Principle of Beat Frequency Signal

The periodic modulation of the beat frequency signal is shown in Figure 1, where fc is the carrier
frequency, ∆F is the frequency bandwidth of the modulating signal, Tm is the modulation period,
T1 and T3 are the regular intervals, T2 is the odd interval, and τ is the propagation delay of the received
signal. The transmission frequency deviates from fc − ∆F/2 to fc + ∆F/2.
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Figure 1. Instantaneous frequency of the transmitted and received signals for relatively stationary
sensor and target.
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The transmitted signal ft(t) is modulated by a triangular waveform. When the sensor and the
target are relatively stationary, the instantaneous frequency of the beat frequency signal could be
described as fb(t) in Figure 1. If there is relative motion, the beat signal will be slightly different, taking
account of the Doppler shift effect fd, as given in Figure 2, where the target and the sensor are moving
towards each other and the frequency of the received signal will become fr(t) + fd. The relative
motion between target and sensor would lead to a slight change of the range during the regular
interval, which finally brings a reduction on the regular interval frequencies of the beat frequency
signal. Compared with the absolute value of the beat frequency, this ranging variation is negligible.
Therefore, each regular interval frequency can be approximated as its initial frequency. The beat signal
can be approximated by fa(t), as indicated in Figure 2.
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Figure 2. Instantaneous frequency of the transmitted and received signals with relative motion between
sensor and target.

The beat spectrum is discrete and the spectral grid is Fm (Fm = 1
Tm

), as shown in Figure 3,
where Fm = 100 kHz. The theoretical range resolution is given by ∆R = c

4∆F [7] for FFT estimation
with some type of window, where c is the speed of light. This range resolution is directly proportional
to ∆F, and it could be improved only by increasing the frequency bandwidth of the modulating signal,
which is restricted by hardware resources and computation cost of implementation.
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Figure 3. Discrete-spectrum of beat frequency signal with Fm = 100 kHz.
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2.2. Time-Domain Expressions of Beat Frequency

The instantaneous frequencies f n
1 (t) and f n

2 (t) of the rising and falling intervals of the transmitted
signal can be expressed as f n

1 (t) = fc + β(t− nTm), (n− 1/4)Tm ≤ t < (n + 1/4)Tm)

f n
2 (t) = fc +4F− β(t− nTm), (n + 1/4)Tm ≤ t < (n + 3/4)Tm),

(1)

where β = 2∆F
Tm

. The instantaneous phases of the transmitted signal at two intervals following

ϕ = 2π
∫ t

0 f (t)dt are derived as
ϕn

1 (t) =
βt2

2 + ( fc − nβTm)t +
βn2T2

m
2 , (n− 1/4)Tm ≤ t < (n + 1/4)Tm)

ϕn
2 (t) = −

βt2

2 + ( fc +4F + nβTm)t− β(n+1/2)2T2
m

2 , (n + 1/4)Tm ≤ t < (n + 3/4)Tm).
(2)

Therefore, the transmitted signal st(t) can be written as

st(t)=


ut cos{2π[ βt2

2 + ( fc − nβTm)t +
βn2T2

m
2 ]}, (n− 1/4)Tm ≤ t < (n+1/4)Tm

ut cos{2π[− βt2

2 + ( fc +4F + nβTm)t− β(n+1/2)2T2
m

2 ]}, (n+1/4)Tm ≤ t < (n+3/4)Tm,
(3)

where ut is the strength of the transmitted signal.
The difference between the transmitted and the received signals includes the propagation delay

τ(t), the Doppler shift fd, and the extra phase shift ϕr induced by the reflective characteristics of the
target. Since vr � c, the time delay τ(t) = 2R0

c −
2vrt

c ≈
2R0

c = τ, where R0 is the initial range within a
regular interval and vr is the relative speed as the target approaching the sensor. Therefore, we can get
the reflected signal sr(t) as

sr(t)=


ur cos{2π[ β(t−τ)2

2 + ( fc + fd − nβTm)(t− τ) + βn2T2
m

2 ]}, (n− 1/4)Tm ≤ t < (n+1/4)Tm

ur cos{2π[− β(t−τ)2

2 + ( fc + fd +4F + nβTm)(t− τ)− β(n+1/2)2T2
m

2 ]}, (n+1/4)Tm ≤ t < (n+3/4)Tm.
(4)

The propagation delay τ is usually negligible with hundreds of nanoseconds, compared to the
modulation period in the order of tens of microseconds. In these cases, the beat frequency can be
expressed as

sb(t)=

 ub cos{2π[ fc+ fd +( 2∆F
Tm
− fd

τ )(t−nTm)− ∆F
Tm

τ − fd
τ nTm]τ}, (n− 1/4)Tm ≤ t < (n+1/4)Tm

ub cos{2π[ fc+∆F + fd−( 2∆F
Tm

+ fd
τ )(t−nTm)+

∆F
Tm

τ − fd
τ nTm]τ}, (n+1/4)Tm ≤ t < (n+3/4)Tm,

(5)

which could be simplified as Equation (6), considering the time delay τ = 2r
c .

sb(t)=

 ub cos{2π( 4∆F
Tm

r
c − fd)(t−nTm)+ ϕ̂n

1}, (n− 1/4)Tm ≤ t < (n+1/4)Tm

ub cos{2π( 4∆F
Tm

r
c + fd)(t−nTm)+ ϕ̂n

2}, (n+1/4)Tm ≤ t < (n+3/4)Tm,
(6)

where ϕ̂n
1 , ϕ̂n

2 are the initial phases for the regular intervals T1 and T3, respectively, as expressed in
Equation (7), where the Doppler frequency is fd = 2Vr fc

c :

ϕ̂n
1 = 4π( fc + fd)

r
c −

8π∆F
Tm

r2

c2 − 2π fdnTm

ϕ̂n
2 = −4π( fc + ∆F + fd)

r
c +

8π∆F
Tm

r2

c2 + 2π fdnTm.
(7)
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2.3. Proposed Time-Domain Ranging Algorithm

The differentiation of the time-domain beat frequency signal sb(t) can be presented as

s′b(t)=

 −ub2π( 4∆F
Tm

r
c − fd) sin{2π( 4∆F

Tm
r
c − fd)(t− nTm) + ϕ̂n

1}, (n− 1/4)Tm ≤ t < (n + 1/4)Tm

−ub2π( 4∆F
Tm

r
c + fd) sin{2π( 4∆F

Tm
r
c + fd)(t− nTm) + ϕ̂n

2}, (n + 1/4)Tm ≤ t < (n + 3/4)Tm.
(8)

Considering an interval of the beat frequency from the regular interval, we define its duration
as Ts ≤ T1(T3). The initial time of this interval is denoted as Tx, in which case the time frame can be
expressed as Tx ≤ t ≤ Tx + Ts. In T1 and T3, the ratios of the integrals of the absolute values of s′b(t)
and sb(t) can be expressed as follows

∫ Tx+Ts
Tx

∣∣s′b(t)∣∣ dt∫ Tx+Ts
Tx

|sb(t)| dt
= 2π(

4∆F
Tm

r
c
− fd)

∫ Tx+Ts
Tx

∣∣∣sin(2π( 4∆F
Tm

r
c − fd)t + ϕ̂1)

∣∣∣ dt∫ Tx+Ts
Tx

∣∣∣cos(2π( 4∆F
Tm

r
c − fd)t + ϕ̂1)

∣∣∣ dt
, (9)

∫ Tx+Ts+Tm/2
Tx+Tm/2

∣∣s′b(t)∣∣ dt∫ Tx+Ts+Tm/2
Tx+Tm/2 |sb(t)| dt

= 2π(
4∆F
Tm

r
c
+ fd)

∫ Tx+Ts+Tm/2
Tx+Tm/2

∣∣∣sin(2π( 4∆F
Tm

r
c + fd)t + ϕ̂2)

∣∣∣ dt∫ Tx+Ts+Tm/2
Tx+Tm/2

∣∣∣cos(2π( 4∆F
Tm

r
c + fd)t + ϕ̂2)

∣∣∣ dt
. (10)

Equations (9) and (10) represent the ratios of those two functions in only one regular interval.
If we extend the integration into N regular intervals, Equations (9) and (10) can be rewritten as

N
∑

n=1

∫ Tx+Ts
Tx

∣∣s′b(n, t)
∣∣ dt

N
∑

n=1

∫ Tx+Ts
Tx

|sb(n, t)| dt
= 2π(

4∆F
Tm

r
c
− fd)Λ1, (11)

and
N
∑

n=1

∫ Tx+Ts+Tm/2
Tx+Tm/2

∣∣s′b(n, t)
∣∣ dt

N
∑

n=1

∫ Tx+Ts+Tm/2
Tx+Tm/2 |sb(n, t)| dt

= 2π(
4∆F
Tm

r
c
+ fd)Λ2, (12)

where sb(n, t) is the nth regular area of the beat frequency signal with

Λ1 =

N
∑

n=1

∫ Tx+Ts
Tx

∣∣∣sin(2π( 4∆F
Tm

r
c − fd)t + ϕ̂n

1 )
∣∣∣ dt

N
∑

n=1

∫ Tx+Ts
Tx

∣∣∣cos(2π( 4∆F
Tm

r
c − fd)t + ϕ̂n

1 )
∣∣∣ dt

, (13)

and

Λ2 =

N
∑

n=1

∫ Tx+Ts+Tm/2
Tx+Tm/2

∣∣∣sin(2π( 4∆F
Tm

r
c + fd)t + ϕ̂n

2 )
∣∣∣ dt

N
∑

n=1

∫ Tx+Ts+Tm/2
Tx+Tm/2

∣∣∣cos(2π( 4∆F
Tm

r
c + fd)t + ϕ̂n

2 )
∣∣∣ dt

, (14)

where ϕ̂n denotes the initial phase of the nth regular area. Combining the N regular interval ratios
Equations (11) and (12), we have

N
∑

n=1

∫ Tx+Ts
Tx

∣∣s′b(n, t)
∣∣ dt

N
∑

n=1

∫ Tx+Ts
Tx

|sb(n, t)| dt
+

N
∑

n=1

∫ Tx+Ts+Tm/2
Tx+Tm/2

∣∣s′b(n, t)
∣∣ dt

N
∑

n=1

∫ Tx+Ts+Tm/2
Tx+Tm/2 |sb(n, t)| dt

= 8π
∆F
Tmc

r(Λ2 + Λ1) + 2π fd(Λ2 −Λ1)

= 2π
4∆F
Tmc

r(Λ2 + Λ1) + 2π fd(Λ2 −Λ1).

(15)
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When the value of Ts and N are large enough, the value of Λ can get close to 1 [19]. Based on
Equation (13) and Λ ≈ 1, we propose the range estimation r̂ as

r̂ =
1

4πC

( N
∑

n=1

∫ Tx+Ts
Tx

∣∣s′b(n, t)
∣∣ dt

N
∑

n=1

∫ Tx+Ts
Tx

|sb(n, t)| dt
+

N
∑

n=1

∫ Tx+Ts+Tm/2
Tx+Tm/2

∣∣s′b(n, t)
∣∣ dt

N
∑

n=1

∫ Tx+Ts+Tm/2
Tx+Tm/2 |sb(n, t)| dt

)
, C = 4∆F

Tmc
, (16)

where C is the product of a constant and signal frequency slope ∆F/Tm, which indicates the linearity
of beat frequency signal. The ranging resolution of this proposed time-domain method will be also
impacted by the frequency bandwidth ∆F. We will analyze the ranging error in the following section.

3. Performance of Proposed Ranging Algorithm

3.1. Analysis of Ranging Error

The inherent error of the proposed estimation algorithm Equation (16) can be calculated as

e = r−r̂ = r− 1
4πC [2πCr(Λ1 + Λ2) + 2π fd(Λ2 −Λ1)]

= r(1− Λ1 + Λ2
2

) +
fd
2C (Λ2 −Λ1).

(17)

Under the assumption that g(ϕ) =
∫ ϕ

0 |cos ϕ| dϕ, we can derive the numerator and denominator
from Equation (13) as

∫ Tx+Ts

Tx

|sin[2π(Cr− fd)t] + ϕ̂n
1 | dt =

1
2π(Cr− fd)

[g(ϕn
Tx+Ts

− π

2
)− g(ϕn

Tx
− π

2
)], (18)

and ∫ Tx+Ts

Tx

|cos[2π(Cr− fd)t] + ϕ̂n
1 | dt =

1
2π(Cr− fd)

[g(ϕn
Tx+Ts

)− g(ϕn
Tx
)]. (19)

Therefore, we arrive at

Λ1 =

N
∑

n=1
[g(ϕn

Tx+Ts
− π

2 )− g(ϕn
Tx
− π

2 )]

N
∑

n=1
[g(ϕn

Tx+Ts
)− g(ϕn

Tx
)]

, (20)

where
ϕn

Tx+Ts
= 2π(Cr− fd)(Tx + Ts) + ϕ̂n

1 , (21)

ϕn
Tx

= 2π(Cr− fd)(Tx) + ϕ̂n
1 . (22)

The approximate solution of g(ϕ) [19] can be expressed as

g(ϕ) =
2
π

ϕ + 0.2105 sin(2ϕ), (23)

from which we can expand it as,

g(ϕn
Tx+Ts

)− g(ϕn
Tx
) = 4(Cr− fd)Ts + 0.421 sin[2π(Cr− fd)Ts] cos[2π(Cr− fd)(Ts + 2Tx) + 2ϕ̂n

1 ], (24)

and

g(ϕn
Tx+Ts

− π

2
)− g(ϕn

Tx
− π

2
) = 4(Cr− fd)Ts − 0.421 sin[2π(Cr− fd)Ts] cos[2π(Cr− fd)(Ts + 2Tx) + 2ϕ̂n

1 ]. (25)
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Therefore, we can update Λ1 from Equation (20) as

Λ1 =

4(Cr− fd)Ts N − 0.421 sin[2π(Cr− fd)Ts]
N
∑

n=1
cos[2π(Cr− fd)(Ts + 2Tx) + 2ϕ̂n

1 ]

4(Cr− fd)Ts N + 0.421 sin[2π(Cr− fd)Ts]
N
∑

n=1
cos[2π(Cr− fd)(Ts + 2Tx) + 2ϕ̂n

1 ]

. (26)

Similarly, we can obtain Λ2 as

Λ2 =

4(Cr + fd)Ts N − 0.421 sin[2π(Cr + fd)Ts]
N
∑

n=1
cos[2π(Cr + fd)(Ts + 2Tx + Tm) + 2ϕ̂n

1 ]

4(Cr + fd)Ts N + 0.421 sin[2π(Cr + fd)Ts]
N
∑

n=1
cos[2π(Cr + fd)(Ts + 2Tx + Tm) + 2ϕ̂n

1 ]

. (27)

Finally, we have the error e of the proposed ranging algorithm as

e =
0.421

4CTs N
sin[2π(Cr− fd)Ts]

N

∑
n=1

cos[2π(Cr− fd)(Ts + 2Tx) + ϕ̂n
1 ]

+ sin[2π(Cr + fd)Ts]
N

∑
n=1

cos[2π(Cr + fd)(Ts + 2Tx + Tm) + ϕ̂n
1 ].

(28)

3.2. Ranging Error Performance

According to Equation (28), the range error of proposed time-domain ranging algorithm is related
to the number of intervals N in the intercepted beat frequency signal, the real range r, and the relative
speed vr. The range error variations for increasing range r are investigated in Figure 4 with N =10,
50, 100, and vr = 10 m/s. Simulation results indicate that as N increases, the range error decreases,
e.g., the range error gets close to zero for N = 100. We notice that, range error e is a periodic function
of r with a period of 1/CTs. In our simulations, the range error changes periodically with a period
r = 1.5 m.

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
 r / m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
an

ge
 e

rr
or

/m

 N = 10

 N = 50

 N = 100

Figure 4. Range error versus r when N = 10, 50, 100; and vr = 10 m/s.

The range error performance for increasing N is examined in Figure 5 with three different relative
velocities vr = 10 m/s, 50 m/s, 100 m/s; and range of r = 10 m. Simulation results indicate that the
range error of the proposed algorithm could be significantly decreased with increasing N and it will
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converge around zero for all velocities. Furthermore, for vr = 10 m/s, 50 m/s, 100 m/s, the range
errors decrease and cross zeros with integral N = 67, 13, 6, respectively. The larger the value of vr,
the faster the phase of the sum can get through, which correspondingly makes the value of the sum
reduce at a higher rate and finally accelerates the reduction of the range error.

0 50 100 150 200 250 300
  N

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

R
an

ge
 e

rr
or

/m  v
r
= 10 m/s

 v
r
= 50 m/s

 v
r
= 100 m/s

Figure 5. Range error versus N when vr = 10, 50, 100 m/s; and r = 10 m.

To analyze the influence of the signal-to-noise ratio (SNR) on the range error, we conducted
simulations for the time-domain ranging method based on derivative ratio with ∆F = 50 MHz,
Tm = 10 µs, fc = 8.2 GHz, vr = 10 m/s, and N = 20. As Figure 6 shows, increasing SNR from 5 dB to
20 dB can effectively improve the range accuracy of the time-domain ranging algorithm. At r = 15 m,
for SNR = 5 dB, 10 dB, 15 dB, 20 dB; and the range errors are −1.48 m, −0.40 m, −0.11 m, −0.04 m,
respectively. There is a periodic function of r, which is consistent with the result showed in Figure 4.
For low SNR, the noise would obscure this periodicity. From r = 10 m to r = 15 m, three complete
periodicities can be discriminated in our simulations.

10 11 12 13 14 15

 r / m

-2.5

-2

-1.5

-1

-0.5

0

0.5

R
an

ge
 e

rr
or

/m

SNR=20dB

SNR=15dB

SNR= 5dB

SNR=10dB

Figure 6. Range error versus r when signal-to-noise ratios (SNR) = 5 dB, 10 dB, 15 dB, 20 dB.
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3.3. Computational Load Analysis

From Equations (11) and (14), we can find that the proposed time-domain ranging algorithm
requires one derivative and two integrations, which are equivalent to NNTs subtractions, for N regular
interval with NTs samples in each regular interval. Therefore, the total complexity imposed by the
proposed algorithm is 3NNTs subtractions. Under the assumption with M = NNTs samples, the FFT
algorithm needs 6M log2 M additions and 6M log2 M multiplications in total. The computational load
is mainly determined by the number of multiplication operations in ranging algorithms. The critical
difference between the proposed time-domain algorithm and the conventional FFT algorithm lies in
that the time-domain algorithm eliminates the requirements of complex multiplication operations.
The computational loads of both FFT estimation and the proposed algorithm are compared in Table 1.

Table 1. Computation complexity for fast Fourier transform (FFT) and proposed time-domain
algorithms with M samples.

Ranging Schemes Additions/Subtractions Multiplications Divisions

FFT estimation 6M log2 M 2M log2 M 0
Proposed algorithm 3M 0 1

4. Implementation and Experiment Results

4.1. FMCW Sensor Prototype

We construct an FMCW ranging system following the architecture presented in Figure 7.
The ranging system is designed as follows.

Antenna

Low noise

amplifier
RF switch

Power

amplifier

Operational

amplifier

Power

splitter
Mixer

Bias

circuit

VCO
Baseband

filter

AGC

ADCFPGADAC

Modulated 

signal

Beat frequency 

signal

Distance 

information

Figure 7. Block diagram of the frequency-modulated continuous wave (FMCW) ranging system.

• We generate the digital modulation signal in the field-programmable gate array (FPGA) and
convert it to analog signal by the digital analog converter (DAC). Then, we adjust its bias voltage
and signal amplitude by the bias circuit and the operational amplifier, respectively.

• The voltage controlled oscillator (VCO) is used to generate the modulated high-frequency radar
signal, which is subsequently divided into two identical signals by a power splitter. One branch
of radar signal is amplified by a power amplifier and sent to the antenna for transmission through
radio frequency (RF) switch, which provides high isolation between the transmission and detection
of the radio signal to avoid mutual signal leakage. In the mixer, the signal received from the
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microstrip antenna is amplified through low noise amplifier (LNA) and then mixed by the other
branch of radar signal to obtain the beat frequency signal.

• The beat frequency signal will finally be sent to FPGA for signal processing after baseband
filtering, amplification, and adjustment. The range will be calculated by the proposed ranging
algorithm (16).

The components of FMCW sensor prototype are given in Figure 8, where Figure 8a shows the
sensor structure and microstrip antenna, which is vertically polarized with omnidirectional pattern
and a gain of 6 dB in half beamwidth. The RF front-end and signal processing modules mounted inside
the sensor structure are fabricated as Figure 8b. The specifications of FMCW sensor are summarized
in Table 2.

(a) (b)
Figure 8. FMCW sensor prototype. (a) Sensor structure and microstrip antenna. (b) Radio frequency
(RF) front-end and signal processing module.

Table 2. Specifications of FMCW sensor.

Item Value Item Value

Carrier frequency 8.2 GHz Frequency bandwidth 50 MHz
Modulation waveform trapezoidal Tx-Rx Switching Frequency 4 MHz
Modulation frequency 100 kHz Sample rate 10 MHz
Antenna beamwidth 100◦ Antenna gain 6 dBi

4.2. Experiment and Results

In order to study the performance of the designed time-domain ranging system, we conducted an
experiment at the campus of the Beijing Institute of Technology, as shown in Figure 9. The experimental
setup consists of one horizontal cable, three vertical cables, and the tested equipment.

One of the vertical cables is placed with a Hall sensor every 0.2 m. The horizontal cable is fixed
between the two tall buildings at campus. The pulley is fixed in the middle of the horizontal cable
with a height of 18 m. The experimented equipment falls down with approximate speed of 10 m/s
from altitudes of 18 m to 4 m. The tested equipment plays two roles: (1) Outputting the enable signal
through the Hall sensors on the cable, which make the tested equipment record its own range to the
ground once per 0.2 m; (2) receiving the signal and calculating the range to the ground using the
proposed time-domain ranging algorithm. Finally, we compared these two range results and analyzed
the range error therein.
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Figure 9. Experimental setup of the ranging system.

In the experiment, we employed a trapezoidal waveform as the modulation signal instead of a
triangular waveform to eliminate the phase aberration in the beat signal while retaining the regular
interval of the beat signal. We set modulation frequency Fm = 100 kHz, rise and fall times of the
trapezoidal waveform Tr = Tf = 5 µs, frequency bandwidth ∆F = 50 MHz, central frequency
fc = 8.2 GHz, and sample rate Fs = 10 MHz. We used the signal with 10 modulation periods (N = 20
regular intervals) to calculate the range and carried out the experiments 20 times. The range is from
18 m to 8 m, with a 0.2 m gap between adjacent placements. As shown in Figure 10a, the modulated
signal and beat signal were measured by the oscilloscope. From the waveform of the beat signals in
Figure 10b for range r = 8 m and 16 m, we can find that the beat frequency increases evidently for
increasing range.

(a)
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(b)
Figure 10. Beat frequency signal captured by the oscilloscope. (a) Beat frequency signal. (b) Beat frequency
signal, r = 8 m, 16 m.

The measured range errors from our experiments are provided in Figure 11, which illustrate the
relationship between the measured range errors and the real ranges. The range errors are the difference
between the measured range values and the range at a speed of 10 m/s. For increasing speed, the
range error drifts are observed due to the speed deviation during the experimented equipment falling
down. We can find that for r = 4 m to 18 m, all the range errors fall within 0.8 m, whereas the range
error exhibits periodically feature with the increasing range r, which is consistent with the simulation



Sensors 2019, 19, 3176 12 of 13

results in Figure 4. Besides, the theoretical range resolution of the conventional frequency-domain
methods ∆R = c

4∆F is 1.5 m under the same experimental conditions.
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Figure 11. Measured range error under different ranges.

5. Conclusions

In this paper, we proposed a time-domain ranging algorithm based on the ratio of the deviation
of the beat frequency signal for single target short range sensors to improve ranging performance and
reduce computation complexity. We investigated the ranging errors under different SNRs, moving
speeds, integral numbers, and compare the computation complexity. A measurement system was
then constructed with an FMCW sensor prototype to validate our analysis results. The time-domain
ranging algorithm avoids multiplications in implementation, which allows great advantages over the
conventional zero-padding FFT scheme. Meanwhile, it can achieve a range resolution of 0.8 m in our
experiment. The proposed ranging method could find wide application in various scenarios of single
target short range systems, whereas the multiple targets scenario is beyond the scope of this method.
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