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In this article, we show that significant deviations
from the classical quasi-steady models of droplet
evaporation can arise solely due to transient effects
in the gas phase. The problem of fully transient
evaporation of a single droplet in an infinite
atmosphere is solved in a generalized, dimensionless
framework with explicitly stated assumptions. The
differences between the classical quasi-steady and
fully transient models are quantified for a wide range
of the 10-dimensional input domain and a robust
predictive tool to rapidly quantify this difference
is reported. In extreme cases, the classical quasi-
steady model can overpredict the droplet lifetime by
80%. This overprediction increases when the energy
required to bring the droplet into equilibrium with
its environment becomes small compared with the
energy required to cool the space around the droplet
and therefore establish the quasi-steady temperature
field. In the general case, it is shown that two
transient regimes emerge when a droplet is suddenly
immersed into an atmosphere. Initially, the droplet
vaporizes faster than classical models predict since the
surrounding gas takes time to cool and to saturate
with vapour. Towards the end of its life, the droplet
vaporizes slower than expected since the region
of cold vapour established in the early stages of
evaporation remains and insulates the droplet.

1. Introduction
Since Maxwell’s seminal work [1], continued commitment
to understand evaporation processes has fostered a
rich scientific literature on topics as diverse as spray
cooling, combustion, climate science, medical treatments,
cosmetics and manufacturing processes [2–6]. The most

2021 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2021.0078&domain=pdf&date_stamp=2021-07-21
mailto:jf721@cam.ac.uk
https://doi.org/10.6084/m9.figshare.c.5492884
https://doi.org/10.6084/m9.figshare.c.5492884
http://orcid.org/0000-0002-7958-0399
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210078

...........................................................

elementary droplet evaporation configuration, of a single, spherical, pure droplet in a quiescent,
infinite, isotropic, gaseous medium is a foundational problem, the understanding of which
is fundamental to addressing more complex systems (e.g. non-spherical [7], moving droplets
[8–11], multi-component droplets [11–14] and droplet clusters [15–17]). This article addresses this
important fundamental problem and the scope of the following discussion is confined to studies
that present key developments in the understanding of this specific problem. The earliest solution,
provided by Maxwell [1] and later by Langmuir [18], considers purely diffusive transports
in the surrounding gas phase and requires assuming steadiness of the liquid droplet and the
surrounding gas. This reduces the problem to a steady heat and mass diffusion problem and the
mass equation solves to give the evaporative mass flux jev as

jev = Γ

a
(ωs − ω∞), (1.1)

where a is the droplet radius, ωs and ω∞ are the vapour mass fraction at the surface and far from
the droplet, respectively. The mass diffusivity Γ is assumed constant and is the product of gas
density ρ and molecular diffusivity D. Fuchs [19] extended this solution to account for the net
convective velocity in the gas (Stefan flow), which results in

jev = Γ

a
ln
(

1 + ωs − ω∞
1 − ωs

)
. (1.2)

Integration of equations (1.1) and (1.2) results in the classical d2-law (i.e. the droplet diameter-
squared reduces linearly in time), but with differing gradients. It should be a feature of all more
advanced solutions that they recover or approach solutions obtained with a reduced number of
assumptions in a limiting case, e.g. equation (1.2) approaches equation (1.1) in the limit ωs → 0.

The description in equations (1.1) and (1.2) is incomplete since the surface concentration ωs is
generally unknown and is determined from the surface temperature Ts, which in turn depends
on solution to the energy equation [20]. The gas temperature can vary substantially between the
droplet surface and the ambient. The steady coupled heat and mass transfer problem has been
solved for a non-isothermal gas phase [21,22]. However, it is important to note that obtaining
equation (1.2) does not require the isothermal gas assumption, but only requires that Γ = ρD is
constant [20] (see also electronic supplementary material, S3).

A notable feature of equation (1.2) is that this solution breaks down for small droplets, since
jev → ∞ for a → 0. This problem was also addressed by Fuchs [19], and later by Bradley et al. [23],
by introducing a correction based on the mean free path length in the gas phase lcoll. For droplets
at the scale of lcoll, the fluid can no longer be treated as a continuum and molecular dynamics
becomes significant. The Knudsen number Kn = lcoll/a quantifies the significance of kinetic effects.
For large Knudsen numbers (Kn ∼ 1), experiments and molecular dynamics simulations have
shown there is a temperature jump at the liquid–vapour interface that is inversely proportional
to the vapour density [24]. This temperature jump refers to a rapid drop in temperature from
the vapour to the liquid on the scale of individual molecules, over the so-called Knudsen layer.
Rana et al. [25] implemented a temperature jump boundary condition in modelling small droplets
(a ∼ 10−8 m) and showed this leads to a departure from the d2-law toward a d-law. At the opposite
scale, for large droplets (approx. 10−4 m), deviations from the d2-law have been demonstrated due
to radiative heat transfer at high ambient temperatures [26].

An often-encountered practical scenario is where a droplet is delivered into a higher
temperature gas. The liquid is generally colder than its steady wet-bulb temperature so the droplet
heats up while evaporating. Classical models accounting for heating, or cooling in some cases,
can assume an infinite liquid conductivity so the liquid temperature is homogeneous, or can
consider a finite conductivity when accounting for temperature gradients within the droplet
[27]. Effective conductivity models can be used to account for internal circulation within the
droplet [28]. These models show that, while the droplet is heating, there is a deviation from
the d2-law, but once the wet-bulb temperature is reached, d2-law behaviour emerges. Talbot
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et al. [29] provided dimensionless criteria for determining the significance of the liquid phase
transients (droplet heating) corresponding to the response of the droplet surface and bulk
internal temperature.

The preceding models that result in d2-law behaviour once the steady droplet temperature is
reached are based on the classical theory assumption that the gas is quasi-steady (QS). Models that
remove this assumption are referred to as fully transient. The implications of removing the QS
assumption are the major topic of this article. When a liquid droplet is suddenly exposed to an
undisturbed atmosphere, there is initially a large vapour concentration gradient at the droplet
surface leading to rapid mass diffusion and so evaporation. As time advances, a layer of vapour
builds up around the droplet that reduces with distance and this attenuates the evaporation
rate. Simultaneously, there is an analogous effect with temperature since the gas surrounding the
droplet must be cooled. The simultaneous heat and mass transfer processes in the gas phase are
important, complementary processes in droplet evaporation problems. The classical QS models,
therefore, neglect these transient processes in the gas phase and assume that the steady vapour
concentration and temperature fields are established instantaneously.

The classical justification for the QS assumption originates from comparing time scales of
evaporation with the mass and thermal diffusion time of the gas phase [2]. The ratio of mass
diffusion time to evaporation time and thermal diffusion time to evaporation time suggests that
the QS assumption should be valid for ρ∞/ρl � 1 and ρ∞/(Leρl) � 1, respectively, where ρ∞ is
the ambient density, ρl is the liquid density and Le is the Lewis number [22]. This justification
predicts its own demise as the density ratio increases, for example, at high pressure. Also, there
are logical inconsistencies with the QS assumption such as the infinite vapour and temperature
boundary layer that requires infinite mass and energy to establish (further details provided in
electronic supplementary material, S4).

In terms of fully transient models, Hubbard et al. [30] modelled evaporation of octane droplets
in air at pressures up to 10 atm and concluded that gas phase transient effects were negligible
and independent of droplet size. Zhu et al. [31] considered n-heptane evaporation in nitrogen
for a wide range of gas temperatures and pressures. They showed that the difference between
the QS and fully transient models increased with pressure and ambient temperature. Azimi
et al. [32] modelled fully transient evaporation of various hydrocarbons at atmospheric pressure
and determined that the QS model overpredicts the evaporation time and the overprediction
increases for increased ambient temperature, for heavier fuels and for increased droplet sizes.
However, the number of cases was limited to three fuels at two temperatures. Tonini & Cossali
[33] modelled evaporation of various fluids under ambient conditions of 1 bar/500◦C. They found
that the effect of a moving droplet surface can cause a 20% difference in the time to reach 95% of
initial droplet size between the QS and fully transient models.

In the previously reported literature on the present problem, a variety of different
combinations of assumptions are used, some of which are not always clearly stated, which makes
generalized conclusions challenging to draw and crucially limits the fundamental understanding
that can be gained. Moreover, the previous investigations tend to use specific fluids, generally
heavy hydrocarbons in air, which makes the findings application specific. The present article
fundamentally addresses this problem by considering a generalized fluid system governed by
dimensionless numbers and with all assumptions clearly stated within the text as well as being
listed in appendix A. To the present authors’ knowledge, the bounds under which the QS
assumption is valid have not previously been robustly defined. The closest finding in this regard
is that the error caused by the QS assumption is of the order of the square root of the gas/liquid
density ratio (ρ∞/ρl)1/2 [34]. As new technologies emerge, with different operating conditions
and working fluids, the QS assumption cannot necessarily be taken for granted. Therefore, it
would be valuable to have a clear, fundamental methodology for determining its validity. The
study presented in this article fulfils this need by considering many generalized cases (approx.
1000), compared with the few in previous studies. Additionally, this study contributes towards
understanding the effects of a moving droplet surface and evaporation at elevated, near-critical
pressures, which were identified by Shazin [6] as unsolved problems in evaporation. Other
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Figure 1. Illustration of the general droplet evaporation problem. The droplet is pure (mass fractionω = 1) and begins with
radius ai . The droplet radius a varies in time and the property fields vary in space and time.

features that separate the present work from previous studies include advancing the solution until
the droplet has reached 1% of its original diameter that reveals new dynamic effects towards the
end of droplet life. Gas phase transient effects are studied in isolation of liquid phase transients
(droplet heating and cooling) by careful selection of initial conditions. This reveals that significant
deviation from the classical theory can occur solely due to gas phase transients. Additionally, the
effects of initial conditions are analysed showing that the gas phase transient effects that manifest
are independent of initial conditions.

This article is structured as follows. Firstly, the governing equations and boundary conditions
of the problem are defined and made dimensionless. Past solutions are recovered and it is ensured
that the present model approaches the QS solution in the limiting case. In terms of results, the
characteristics of fully transient evaporation are described and physically explained, followed
by presenting a predictive tool for quantifying errors caused by the QS assumption. Finally, the
findings are applied to a range of fluids evaporating in air. The dimensionless approach and large
number of cases considered allows general conclusions to be made that increase the fundamental
understanding of droplet evaporation physics.

2. Problem definition
The problem being addressed here is the evaporation of a single, spherical, pure (species A)
droplet in a stagnant, infinite, isotropic gaseous medium (mixture of species A and B) as
illustrated in figure 1. For a given initial state, the task is to predict the droplet size history and
the temperature, mass fraction, velocity and pressure field history. This section introduces the
governing equations and boundary conditions in their full, unsimplified form, invoking as few
assumptions as is practical. The system is then made dimensionless, which provides criterion for
justifying the assumptions used.

(a) Governing equations and boundary conditions
The governing mass, species, momentum, energy and state equations are now presented. The
total mass equation is

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

where ρ is density, u is the velocity vector and t is time. The continuity equation for species A is

ρ
Dω

Dt
= ∇ · (Γ ∇ω), (2.2)

where D/Dt is the material derivative, ω is the mass fraction of the evaporating species (species A)
and the mass diffusivity Γ is the product of molecular diffusivity and density Γ = ρD. Note that
the mass fraction of species B is 1 − ω. The mass diffusivity is used throughout this analysis rather
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than the molecular diffusivity due to its lower sensitivity to temperature (from kinetic theory of
gases, Γ ∼ T1/2, whereas D ∼ T3/2 [35]). The momentum equation is

ρ
Du
Dt

= −∇P + ∇ · σ + ρg, (2.3)

where P is the pressure, σ is the viscous stress tensor and g is the gravitational acceleration vector.
The energy equation in temperature form is given by

ρcp
DT
Dt

− DP
Dt

= ∇ · (λ ∇T) + �cpΓ ∇ω · ∇T + σ : ∇u, (2.4)

where cp is the local constant pressure specific heat, λ is the thermal conductivity, �cp is the
difference in specific heat between the evaporating (superscript A) and ambient (superscript B)
species (�cp = cA

p − cB
p ). The term �cpΓ ∇ω · ∇T is energy transport due to mass diffusion and

σ : ∇u is viscous dissipation. It is the authors’ opinion that derivation of the energy equation
in this form is not trivial and is not provided in detail elsewhere, so its derivation has been
included in the electronic supplementary material, S1. At this stage, the gas phase system of
equations (2.1)–(2.4) are applicable to any ideal binary fluid mixture. These equations are therefore
applicable to the liquid phase by simply replacing the fluid properties with those of the liquid,
before significant simplification later. The system of equations (2.1)–(2.4) is closed with the ideal
gas equation of state, written as P = ρRT, where R is the specific gas constant.

Fixed conditions are assumed at a far distance from the droplet, therefore T → T∞, ω → ω∞
and P → P∞ for r → ∞. Through the state equation, this also defines the far-field density, ρ∞.

Assuming that the ambient species are insoluble in the liquid droplet, the mass flux of the
ambient species at the surface relative to the moving droplet surface jB

rel,s is zero, i.e. jB
rel,s · n̂ = 0,

where jB
rel = ρ(1 − ω)urel + Γ ∇ω, n̂ is a unit vector normal the the droplet surface, subscript

s indicates at the droplet surface and urel is the velocity relative to the droplet surface. The
evaporative mass flux jev is defined as the mass crossing the droplet surface boundary, hence jev ≡
jA
rel,s. Therefore, jev · n̂ = ρsurel,s · n̂ and by combining these expressions we obtain the evaporative

mass flux in terms of the scalar mass fraction field as

jev · n̂ = − Γ

1 − ωs
[∇ω]s · n̂. (2.5)

The velocity of the droplet surface (da/dt), where a is the vector position of the droplet surface
(a = a n̂ for a spherical droplet), can be determined from the evaporative flux through a mass
balance by

da
dt

= − jev
ρl

, (2.6)

where ρl is the droplet liquid density. Assuming that the transition zone between the phases is
infinitely thin (negligible Knudsen layer), there is a discontinuity in fluid properties at the surface.
Neglecting radiative heat transfer, temperature and energy flux continuity at the droplet surface,
respectively, results in

T−
s = T+

s and − λl[∇T]−s = −λ[∇T]+s + jevL, (2.7)

where L is the latent heat of vaporization and superscripts − and + indicate properties on the
liquid side and the gas phase side of the phase boundary, respectively.

Assuming that the droplet surface is locally in phase equilibrium and neglecting surface
tension effects, then PA

s = Psat(Ts), where PA
s is the surface partial pressure of A and subscript

‘sat’ indicates saturation conditions. This relationship is obtained from the Clausius–Clapeyron
equation, given by

ln

(
PA

s
P∞

)
= L

RA

(
1

TBP
− 1

Ts

)
, where PA

s = Ps

[
1 + MA

MB

(
1
ωs

− 1
)]−1

, (2.8)

and TBP is the boiling temperature evaluated at ambient pressure P∞. This equation gives high
accuracy locally about TBP. For most cases in this study, the surface temperature is always very
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close to TBP such that the equation is valid (see initial conditions, §2c). The second expression is
useful to relate the partial pressure to the mass fraction, where Ps is the pressure at the surface
and MA and MB are the molecular masses of the evaporating and ambient species, respectively.
This expression is true for an ideal gas mixture since the mole fraction is equivalent to the partial
pressure fraction (Dalton’s Law).

(b) Dimensionless governing equations and boundary conditions
To reduce the number of parameters, the governing equations and boundary conditions are now
made dimensionless by introducing typical scales of the system. The typical length L� is taken to
be the initial droplet radius, the typical velocity u� is an order of magnitude for the Stefan flow gas
velocity at the initial droplet surface, the typical time t� is constructed from the previous length
and velocity scales and the typical density ρ� is taken as the far-field gas density. Therefore, we
select L� = ai, u� = Γ∞/(ρ∞ai), t� = ρ∞a2

i /Γ∞ and ρ� = ρ∞.
It is desired to introduce the temperature, mass fraction and pressure fields differences relative

to their far-field values, which defines a new system of variables as θ = T − T∞, ϕ = ω − ω∞ and
P = P − P∞. The typical pressure scale is taken as P� ∼ ρ�(u�)2 = Γ 2∞/(ρ∞a2

i ). The temperature
and mass fraction scales are, respectively, θ� = T∞ − TQS,s and ϕ� = ωQS,s − ω∞, where TQS,s and
ωQS,s are the QS temperature and vapour concentration at the droplet surface, respectively. The
subscript ‘QS’ indicates values obtained from the QS solution. The constants TQS,s and ωQS,s have
a definition that derives from solving the QS system of equations. For this reason, these values
are not new inputs, but are derived from the readily available system parameters, as will be
demonstrated in §3.

In the most general case, transport properties and specific heats are also field variables. The
typical values for transport properties are taken as the far-field values, i.e. Γ � = Γ∞, λ� = λ∞
and μ� = μ∞. Specific heats are generally evaluated using polynomial fits with temperature.
Expanding about the far-field temperature for gas species β (where β can be A or B), one obtains

cβ
p = cβ

p,∞ + Cβ
p , where Cβ

p =
N∑

n=1

Aβ
n (T − T∞)n , (2.9)

and the constant cβ
p,∞ is the specific heat of the species β at infinity and Cβ

p is the temperature

correction component, the coefficients Aβ
n are the polynomial coefficients and N is the order of

expansion. The typical specific heat value is taken as the far-field value, so c�
p = cp,∞. The typical

viscous shear is taken as σ� = μ∞u�/L�. Finally, the gravitational acceleration magnitude is the
constant g.

In the following, dimensionless variables are denoted with a tilde (X̃). Substituting all
variables, the full, unsimplified gas phase governing equations (2.1)–(2.4), respectively, become

∂ρ̃

∂ t̃
+ ∇̃ · (ρ̃ũ) = 0, (2.10)

ρ̃
Dϕ̃

Dt̃
= ∇̃ · (Γ̃ ∇̃ϕ̃), (2.11)

ρ̃
Dũ

Dt̃
= −∇̃P̃ + Sc∇̃ · σ̃ + 1

Fr
ρ̃g̃ (2.12)

and (1 + χϕ̃ + ξAC̃A
p + ξBC̃A

p )ρ̃
Dθ̃

Dt̃
− Ec

DP̃
Dt̃

= Le∇̃ · (λ̃∇̃θ̃ ) + [χ + Ψ (C̃A
p − C̃B

p )]Γ̃ ∇̃ϕ̃ · ∇̃θ̃ + Sc Ec σ̃ : ∇̃ũ, (2.13)

and the state equation becomes

1 + Ma2P̃ = ρ̃(1 + ζ ϕ̃)(1 + κθ̃), (2.14)
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Table 1. Definitions of dimensionless numbers. The numbers ζ andχ describe the significance of how dissimilar A and B are in
terms of molecular mass and specific heat respectively. The numbersκ andΨ give the significance of temperature and vapour
concentration changes, respectively. (Note: the Jakob number Ja is usually defined using the liquid phase specific heat, but the
present definition is more appropriate in this context.)

independent dimensionless numbers dependent dimensionless numbers

fluid
properties

(gas)

fluid
properties
(liquid)

scale
dependent
numbers

boundary
conditions

heat diffusivity 
ratio

specific heat
similarity

concentration
scale

temperature
scale

molecular size
similarity

Spalding
numbers

where Sc, Fr, Ec, Le and Ma are the Schmidt, Froude, Eckert, Lewis and Mach number, respectively,
and all dimensionless numbers are defined in table 1. Some dimensionless numbers are redundant
for defining the system, i.e. they can be derived from other dimensionless numbers but are still
useful for conciseness; these are denoted as ‘dependent’ in table 1. Notably, the Spalding heat and
mass transfer numbers, BT and BM, respectively, are defined as

BT =
cA

p,∞
L

(T∞ − TQS,s) and BM = ωQS,s − ω∞
1 − ωQS,s

. (2.15)

The dimensionless numbers BT and BM are especially important in the context of droplet
evaporation but are not governing numbers and can be derived readily from other dimensionless
numbers, as will be shown in §3. Additionally, the variables ξA and ξB, relevant to the energy
equation, are defined for conciseness as ξA = Ψ ϕ̃ − Φ + 1 and ξB = Ψ ϕ̃ − Φ.

By evaluating all of the dimensionless numbers, the validity of certain assumptions can be
assessed. The equations are now reduced by invoking additional assumptions and giving criteria
for their validity. Equation (2.9) in dimensionless form is

C̃β
p =

N∑
n=1

Aβ
n

cp,∞
(
T∞ − TQS,s

)n
θ̃n. (2.16)

Therefore, evaluating the coefficients Aβ
n (T∞ − TQS,s)n/cp,∞ relative to unity determines the

necessary order of expansion. Each gas species will introduce N additional coefficients required
to describe the system that will be unique for the gases under consideration. To keep the analysis
general, constant specific heats are assumed in the present study, i.e. C̃β

p = 0.
For a low-density monatomic gas, transport properties vary with the square root of

temperature, i.e. Γ̃ , λ̃, μ̃ = (T/T∞)1/2 or equivalently Γ̃ , λ̃, μ̃ = (κθ̃ + 1)1/2. This can be used as
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a first approximation for more complex molecules. The magnitude of the coefficient κ determines
the validity of constant transport properties, which tends to unity for large T . However, as with
specific heats, in general, true relationships for transport properties can introduce an arbitrarily
large number of additional numbers to fit to experimental data and therefore results obtained with
accurate transport property data will be specific to the fluids under consideration. For simplicity
and to achieve direct comparison with the classical QS solution, constant transport properties
are assumed in the present study (i.e. Γ̃ , λ̃, μ̃ = 1). It has been shown that variable properties can
have a significant impact on the droplet lifetime [22,30,36] and so for constant properties to be
used they must be evaluated at some representative average condition. However, the effects of
variable transport properties on the present conclusions are expected to be small because Le is
the only relevant number containing transport properties and this has a low sensitivity to the
conditions where average properties are evaluated since the temperature dependence of λ and Γ

in Le approximately cancel.
Microgravity was assumed and is justified for Fr � 1. This results in spherical symmetry of

the problem and therefore ∇̃ ≡ ∂/∂ r̃. Incompressibility was assumed and is justified for Ma2 � 1.
This eliminates density dependence on pressure and decouples the momentum equation from
the system of equations (2.10)–(2.14) allowing it to be solved independently for the pressure field
if desired. Work terms were neglected, which is justified for Ec � 1. This eliminates the pressure
and viscous work terms in the energy equation. The Schmidt number Sc also becomes redundant
since the momentum equation is decoupled.

With these assumptions, the system equations (2.10)–(2.14) reduce to

∂ρ̃

∂ t̃
+ 1

r̃2
∂

∂ r̃
(r̃2ρ̃ũ) = 0, (2.17)

ρ̃

(
∂ϕ̃

∂ t̃
+ ũ

∂ϕ̃

∂ r̃

)
= 1

r̃2
∂

∂ r̃

(
r̃2 ∂ϕ̃

∂ r̃

)
, (2.18)

(1 + χϕ̃)ρ̃

(
∂θ̃

∂ t̃
+ ũ

∂θ̃

∂ r̃

)
= Le

1
r̃2

∂

∂ r̃

(
r̃2 ∂θ̃

∂ r̃

)
+ χ

∂ϕ̃

∂ r̃
∂θ̃

∂ r̃
(2.19)

and 1 = ρ̃(1 + ζ ϕ̃)(1 + κθ̃ ), (2.20)

where the momentum equation (2.12) has been omitted since it is decoupled.
By assuming that the liquid phase is pure, incompressible and has constant properties with

respect to temperature and that there is no internal convection and that radiative heat transfer is
negligible, the liquid phase requires only the energy equation, which becomes

∂θ̃

∂ t̃
= Le

ᾱ

1
r̃2

∂

∂ r̃

(
r̃2 ∂θ̃

∂ r̃

)
. (2.21)

It is important to note that all scale-dependent dimensionless numbers (numbers that depend on
ai) have been eliminated. Therefore, when Fr−1, Ec, Ma2 � 1 the system becomes independent
of scale. The reduced system is fully described by the 10 governing dimensionless numbers
listed in table 1 (except for scale-dependent numbers and Sc). Verifying that the scale-dependent
numbers are small is case specific, but figure 2 shows an illustrative example for n-octane droplets
in air.

Additionally, although they do not appear in the present governing equations, it must be
verified that the numbers Kn, Rd and S are small to justify the continuum assumption, neglecting
radiative heat transfer and neglecting surface tension effects, respectively. For small Kn = lcoll/ai,
the fluid may be treated as a continuum and molecular effects are negligible. The mean free path
length is evaluated at the surface by lcoll = (√

2πd2
mn̄
)−1, where dm is the characteristic molecule

diameter and n̄ is the molecule number density. Radiative heat transfer effects are negligible
for small Rd = aησSBcA

p (T4∞ − T4
QS,s)/[2λ∞L ln(BT + 1)] [26], where σSB is the Stefan–Boltzmann

constant and η is the effective absorption coefficient and is estimated as 0.93. Finally, the increase
in surface vapour concentration due to surface tension is negligible for small S = 2ς/(ρlRATQS,sa)
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[22], where ς is the surface tension. As the example in figure 2 shows, all scale-dependent
numbers are small, say <10−1, over a range of droplet sizes spanning approximately three orders
of magnitude and are <10−2 for approximately one order of magnitude for droplet sizes ∼10−5 m.
Droplets of n-octane in this range (∼ 10−5 m) are of significant practical interest in, for example,
fuel sprays for combustion. Each scenario will require individual verification of the validity of
these assumptions.

The dimensionless boundary conditions are as follows. Since Fr � 1, spherical symmetry holds
and therefore spatial derivatives are zero at r̃ = 0. The far-field dimensionless temperature and
mass fraction are zero, i.e. θ̃ , ϕ̃ → 0 for r̃ → ∞ and the far-field dimensionless pressure becomes
unnecessary because incompressibility is assumed. Through the state equation (2.20), this also
fixes the dimensionless density at infinity to unity. From insolubility, equation (2.5) becomes

j̃ev

(
1 + 1

BM
− ϕ̃s

)
+ Γ̃

[
∂ϕ̃

∂ r̃

]
s
= 0, (2.22)

where j̃ev is the dimensionless evaporative mass flux, j̃ev = ρ̃s(ũs − dã/dt̃), and Γ̃ = 1 under the
constant transport property assumption. The rate of change of droplet radius is

dã

dt̃
= −ρ̄ j̃ev. (2.23)

Surface temperature and energy flux continuity, given by equation (2.7), respectively, become

θ̃−
s = θ̃+

s and

[
∂θ̃

∂ r̃

]−

s

= λ̄λ̃

[
∂θ̃

∂ r̃

]+

s

− λ̄c̄p

LeBT
j̃ev, (2.24)

where Γ̃ , λ̃ = 1 assuming constant transport properties. The dimensionless form of equation (2.8)
relates the surface temperature (θ̃s) to the surface mass fraction (ϕ̃s) as

BMΦ

BM + 1
ϕ̃s + 1 − Φ =

{
1 + Ma2P̃

ε
exp

[
γ

γ − 1

(
1

JaT + BT θ̃s
− 1

Ja

)]
+ 1 − 1

ε

}−1

, (2.25)

where 1 + Ma2P̃ ∼ 1 under the incompressibility assumption.
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(c) Initial conditions
The required initial conditions are the liquid temperature field (θ̃ for r̃ ≤ 1) and the gas
temperature and vapour concentration fields (θ̃ , ϕ̃ for r̃ > 1). The dimensionless approach and
assumptions preclude the need to specify the initial droplet size or the pressure and velocity
fields.

The present study considers two types of initial conditions, the first of which is referred to
as the step initial conditions where the liquid is initially at a uniform temperature θ̃l,i and the gas
phase is at uniform temperature and vapour concentration equal to the far-field values, i.e. θ̃ = θ̃l,i
for r̃ ≤ 1 and θ̃ , ϕ̃ = 0 for r̃ > 1. Physically, this is as if the droplet is suddenly immersed into an
undisturbed atmosphere. Generally, in the present study, the initial liquid temperature is set equal
to the QS value, i.e. θ̃l,i = −1, to isolate the gas phase transient effects. It is important to note that
even though the initial liquid temperature may be set to the QS value, this does not mean that
the liquid temperature is constant. The imbalance of heat and mass fluxes at the surface can still
cause droplet heating or cooling, see equation (2.24). The effect of droplet heating (θ̃l,i < −1) is still
considered in the context of recovering past solutions, as will be presented in §4a.

The second type of initial condition is the QS initial conditions, where the initial gas phase fields
are equal to the QS fields, as will be shown in equation (3.4), and the initial liquid temperature θ̃l,i
is −1. It is important to note that in cases where the QS assumption is valid, both types of initial
conditions should give the same results since the initially uniform gas field will rapidly converge
to the QS field and the droplet size histories should be near-indistinguishable.

With the initial conditions defined, the problem is a transient heat and mass transfer problem
with a moving boundary. The close coupling of the governing equations, the nonlinearity
introduced by the ideal gas equation of state and the added complexity of a moving boundary
indicates a numerical solution is required. To solve the system of equations accounting for
the receding droplet surface, a moving mesh was implemented to ensure that the droplet
surface always coincides with the boundary of mesh elements. The governing equations were
transformed using Reynolds transport theorem and then discretized. This introduced the purely
numerical parameters, �r̃nom and �t̃nom, which represent the nominal spatial and temporal
discretization parameters, respectively. The finite numerical space introduces an additional
numerical parameter, r̃∞, which is the size of the domain. It was ensured the obtained solutions
were independent of further refinement of the numerical parameters �r̃nom, �t̃nom and r̃∞. An
arbitrarily large value of 1000 was used for r̃∞ meaning that the domain was 1000 times the initial
size of the droplet. First-order accuracy for spatial derivatives and explicit time discretization was
used. Further details of the discretized equations and solution procedure is given in the electronic
supplementary material, S2.

3. The QS problem
The QS problem is now summarized for two main reasons; firstly, to provide the definitions of BM

and BT which readily derive from the QS solution; and secondly, to define the QS droplet lifetime
t̃ev,QS which is used as a benchmark to compare with the fully transient model. The full derivation
of the QS solution is not presented here but is included in the electronic supplementary material,
S3, for completeness. Various equivalent full derivations can be found in the literature [20], but
these are not in the present dimensionless framework. Here we present only the key results and
discuss the important features of the QS solution.

The full QS problem is obtained by adopting assumptions 1–25 in appendix A. With these
assumptions, the heat diffusion into the droplet balances the mass flux leaving the droplet (related
through L) such that the liquid temperature remains constant at the wet-bulb temperature,
hence θ̃s = −1 and ϕ̃s = 1. From the QS assumption, time derivatives in the gas phase governing
equations (2.17)–(2.21) are zero. Solving the species and energy equation independently yields
two expressions for evaporation rate, which can be equated to give the following significant and
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widely reported result

1 + BM = (1 + BT)Le/c̄p . (3.1)

An additional relationship for BM and BT is obtained from the saturation properties by
substituting θ̃s = −1 and ϕ̃s = 1 into equation (2.25), resulting in

BT = JaT −
[

1
Ja

− γ − 1
γ

ln
(

1 + BM − Φ

1 + BM + Φ(ε − 1)

)]−1
. (3.2)

Solving equations (3.1) and (3.2) simultaneously yields the definition of the dimensionless
numbers BT and BM as a function of six dimensionless numbers, Le/c̄p, Ja, T , Φ, ε and γ .

For given fluid properties, the numbers BM and BT become a function of the boundary
conditions only, as shown in figure 3. In this example, Le/c̄p = 1 such that BM = BT. The saturation
line occurs where BT = 0, meaning that the atmosphere is saturated with vapour and no phase
change occurs. For BT < 0, condensation occurs and for T > 1, the ambient temperature is in
excess of boiling temperature such that BT > 0 for all Φ, i.e. evaporation takes place regardless of
ambient concentration. When T � 1, the surface temperature approaches the boiling temperature
(TQS,s → TBP) such that BT → Ja(T − 1) and BT approaches becoming independent of Φ. In the
limit Φ → 0, the droplet is immersed in its own vapour and phase change occurs at boiling
temperature, meaning that BT = Ja(T − 1).

The QS evaporation rate is

d(ã2)

dt̃
= −2ρ̄

Le
c̄p

ln(1 + BT), therefore t̃ev,QS =
[

2ρ̄
Le
c̄p

ln(1 + BT)
]−1

, (3.3)

which gives the d2-law and the QS droplet lifetime t̃ev,QS, respectively. The dimensionless QS
temperature and concentration fields are respectively

θ̃QS = −BT + 1
BT

[
1 −

(
1

BT + 1

)ã/r̃
]

and ϕ̃QS = BM + 1
BM

[
1 −

(
1

BM + 1

)ã/r̃
]

. (3.4)

Hence, if BT and BM are equal, the temperature and mass fields are equal but opposite. For
small BT, the temperature profile approaches a pure conduction r−1 profile (θ̃QS = −ã/r̃). As BT

increases, the blowing effect (i.e. increased Stefan velocity) leads to a flatter profile near the droplet
surface that partially attenuates the evaporation process.
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Three key features of the QS solution are identified. Firstly, the evaporation process is history
independent since the evaporation rate does not depend on the initial droplet size. This implies
a given droplet may be observed at any arbitrary time at which the initial size can be defined.
Secondly, the concentration and temperature fields are self-similar with space scale, i.e. they scale
down in proportion with the droplet size since the field is only a function of r̃/ã. Finally, the
amount of vapour contained within the field is infinite and the amount of energy required to
cool down the atmosphere to establish the temperature profile is also infinite (further details in
electronic supplementary material, S4). This is a logical inconsistency since the amount the mass
within the droplet and the energy that the drop can absorb is finite.

Liquid phase transients can be considered in conjunction with a QS gas phase by retaining
the time derivative in equation (2.21) as reported in a few notable works [22,29,37] as well as the
present study in §4a. In this model, the droplet surface temperature begins at an initial value θ̃s,i
and then converges to the QS value (−1), at which point the droplet temperature remains constant.
The full QS solution is therefore a special case where θ̃s,i = −1. Generally, in this study, liquid
phase transients are minimized by setting the initial droplet temperature to the QS temperature
such that the gas phase transient effects can be isolated.

4. Results of quasi-stationary and fully transient models
The key results of the present investigation are now presented. Firstly, the present model is
validated through recovering solutions of past results by Hubbard et al. [30]. This is followed
by presenting results from the quasi-stationary model. The quasi-stationary model is distinct from
the QS model and can be seen as an intermediate model between the QS and fully transient
approaches. The QS approach considers a steady gas phase and a stationary droplet surface,
whereas the quasi-stationary approach considers a transient gas phase but still with a stationary
droplet surface and the fully transient approach considers a transient gas phase with a moving
droplet surface. The quasi-stationary model is included as a semi-analytical approach to aid
understanding of the effects of gas phase transients. As a significant result of the quasi-stationary
model, a key parameter emerges, referred to as delta (δ) in the following. It was found that δ is
also important for predicting the outcome of the fully transient model.

(a) Recovering past results
Figure 4a shows results from the present fully transient model compared with those from
Hubbard et al. [30]. These results consider octane vaporizing in air at various temperatures and
pressures. Results from [30] were obtained with fully variable properties, while properties are
constants in the present model and are evaluated at a representative film temperature, given
by Tf = TBP + (T∞ − TBP)/3, which leads to small differences. While the presented size histories
match extremely closely, fine tuning of the film temperature can give a more precise match. For
example, once the droplet reaches its steady temperature, the approximately constant d2-law
gradient is sensitive to transport properties. The full list of parameters that describe the system for
all of the pressure and temperature conditions is given in the electronic supplementary material,
along with the code to reproduce these results.

The present model is advanced to much smaller droplet sizes (ã2 = 0.0001 in this case) rather
than terminating at ã2 ∼ 0.2. To the present authors’ knowledge, terminating at ã2 ∼ 0.2 is a
limitation of all reported fully transient studies to date that address the present problem. The
present model investigates virtually the full droplet lifetime. The present authors’ findings
generally agree with the conclusion of [30] that, in these specific cases, gas phase transients
have a small effect. Figure 4b compares the fully transient results with those obtained with a
QS gas phase for the same conditions. The QS gas phase model (finite conductivity model) still
features transient conduction in the liquid phase. The present work has gone further to quantify
the differences as indicated by percentages in figure 4b. It appears that the differences increase
with ambient pressure but are relatively insensitive to ambient temperature.
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(b) The fixed diameter problem and the quasi-stationary model
This section provides insight into how the gas phase responds to the sudden immersion of
an evaporating droplet. In the special case where ρ̄ = 0, the droplet diameter is fixed and, by
definition, the droplet lifetime is infinite. In the further special case when convection from
the droplet surface is small (e.g. small BT) then a pure conduction case emerges, for which
an analytical solution exists. For a fixed diameter (a = ai) sphere of fixed temperature (TQS,s)
immersed in a gas of initially uniform temperature (T∞), the temperature gradient at the surface
[∇T]s develops as [38]

[∇T]s = T∞ − TQS,s

ai

[
1 + ai

(π α t)1/2

]
, or equivalently [∇̃ θ̃ ]s = 1 + 1

(π Le t̃)1/2
. (4.1)

We define Λ as the fractional difference between the instantaneous surface temperature gradient
and the steady surface temperature gradient, i.e.

Λ = [∇̃ θ̃ ]s

[∇̃ θ̃ ]QS,s
− 1, where [∇̃ θ̃ ]QS,s = ln(1 + BT)

BTã
from equation (3.4). (4.2)

Therefore, for the pure conduction case (BT → 0), Λ = (π Le t̃)−1/2. The temperature gradient at
the surface is significant in the context of evaporation since this determines the evaporation rate
for a steady surface temperature. The parameter Λ can be seen as a time-dependent correction to
the surface temperature gradient due to gas phase transients.

Figure 5a shows the time development of the surface temperature gradient for various
evaporative fluxes obtained from the present fully transient model with ρ̄ = 0. Increasing BT

indicates increased evaporative flux and hence increased convective velocity. Firstly, in the small
BT limit, it can be seen that the present model precisely recovers the analytical solution for pure
conduction. At elevated BT, there is initially a greater fractional deviation from the steady value
compared with the pure conduction limit. As time advances, the elevated BT cases converge
closely towards the pure conduction case. A key finding here is that there is relatively little
difference between the convergence time for the high and low BT cases.

Figure 5b,c shows how the temperature field develops over time for small and relatively large
values of BT. The increased convective flow in the large BT case causes more rapid temperature
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colour.)

changes in the region close to the droplet. However, because the steady temperature profile in the
region surrounding the droplet is much flatter, the convergence towards the QS field is slower
at elevated BT. This is the reason for the greater initial deviation (in fractional terms) of the
temperature gradient as BT increases in figure 5a.

The temporal development of the surface temperature gradient in this stationary case can
be used as a first approximation to determine how the gas phase transients will affect the
evaporation process. The time scale for droplet evaporation is given by equation (3.3) and if
this time is comparable with the convergence time of the surface temperature gradient, then
transient effects should be expected to manifest. For example, if the dimensionless evaporation
time is approximately 10 then this quasi-stationary approach predicts that the surface gradient
will, for all the droplet lifetime, be 10% greater in magnitude than the QS value. Conversely, if
the dimensionless evaporation time is approximately 104 then, for the majority of the droplet’s
lifetime, the surface temperature gradient will be within 1% of the QS value. In terms of
quantitatively predicting how this will effect the entire droplet lifetime, one can construct a quasi-
stationary model. This semi-analytical approach assumes that the surface temperature gradient
develops as if the droplet size is fixed. This is accomplished as follows.

Combining equations (2.22)–(2.24) for fixed surface conditions (ϕ̃s = 1) leads to

dã

dt̃
= −ρ̄

Le
c̄p

BT[∇̃ θ̃ ]s, (4.3)
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which combined with (4.2) gives

d(ã2)

dt̃
= − 1

t̃ev,QS
(1 + Λ) . (4.4)

For small BT, then Λ = (π Le t̃)−1/2, and equation (4.4) can be integrated to give the quasi-
stationary evaporation time t̃ev,Qstat as

t̃ev,Qstat = t̃ev,QS + 2
πLe

[
1 − (1 + π Le t̃ev,QS)1/2

]
. (4.5)

Defining δ as the fractional difference between the predicted evaporation time from the quasi-
stationary model and the full QS model, i.e.

δ = t̃ev,Qstat

t̃ev,QS
− 1, then δ = 2

π Le t̃ev,QS

[
1 − (1 + π Le t̃ev,QS)1/2

]
, (4.6)

which, for π Le t̃ev,QS � 1, reduces to the final expression for δ as

δ = −
[

8ρ̄ ln(1 + BT)
π c̄p

]1/2
. (4.7)

This gives a first approximation for quantifying the deviation from QS evaporation caused by an
initially undisturbed atmosphere, i.e. the step initial conditions. In the early stages of droplet
lifetime, faster evaporation results from large temperature and concentration gradients at the
surface that take time to converge towards the steady value because of the thermal and mass
inertia introduced by the atmosphere. Figure 6 shows an example of the droplet size development
predicted by this model and shows graphically what the quantity δ represents. In this case, the full
numerical solution gives δ = −0.0525, while equation (4.7) gives δ = −0.0529. The small difference
is due to the approximations in deriving equation (4.7) such as small BT.

It should be stressed that the quasi-stationary model is purely an initial approximation for
quantifying the effects of gas phase transients since the convergence of the surface temperature
gradient was formed based on a fixed diameter droplet. However, the trends captured by
equation (4.7) are extremely informative. The fully transient model goes further to investigate
the dynamic effects of a moving boundary.

(c) Characterizing fully transient evaporation dynamics
The previous quasi-stationary model does not capture the effects of a moving boundary in terms
of the convergence of the gas phase towards the steady field and the analysis breaks down for
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ã2 ã2
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large BT. It is therefore desired to develop a complete understanding of gas phase transients in
conjunction with a moving boundary and to quantify the differences between the fully transient
model and the QS model for a wide variety of conditions. This section first presents some
illustrative examples in order to define the transient deviation criteria used and to present and
explain typical evaporation dynamics observed. The next section then generalizes these findings
for a wide range of conditions by exploring how each of the governing dimensionless numbers
influence the gas phase transients.

Figure 7 shows three example droplet size histories that deviate from the QS case to varying
degrees. The x-axis is rescaled with respect to the QS evaporation time, τ = t̃/t̃ev,QS, such that all
cases follow the same d2-law path if the QS assumption is applied. The inputs for each of the three
cases are given in table 2. To quantify the deviation from QS behaviour, three parameters are now
introduced and are defined as

εnet = τev − 1, εstart = [τ ]−1

1 − [ã2]−1
− 1 and εend = τev − [τ ]−1

[ã2]−1
− 1, (4.8)

where τev is the normalized evaporation time and the point ([τ ]−1, [ã2]−1) is defined as the point
where the transient gradient equals the QS gradient, i.e. d(ã2)/dτ = −1. In figure 7a, this is the
point of maximum deviation from the QS profile. The parameter εnet effectively describes the
overall difference in the total lifetime of the droplet, while εstart and εend collectively describe
the shape of the profile. If all ε parameters are zero, then the fully transient solution equals the
QS solution. The regimes separated by [τ ]−1 are distinct in that the initial evaporation rate is
greater than that predicted by the QS model (εstart < 0), while the evaporation rate towards the
end of life is slower than that predicted by the QS model (εend > 0). In the presented cases (and
in most cases), this transition [ã2]−1 occurs at approximately ã2 ∼ 0.3, equivalent to when the
droplet is approximately half its original diameter. Therefore, failure to advance the solution past
ã2 ∼ 0.2 will not capture the dynamic evaporation behaviour observed. To the present authors’
knowledge, the evaporation dynamics towards the end of life have not yet been described and
explained in the available literature. They do, however, match qualitatively with results presented
when only transient mass transport was considered in conjunction with a moving boundary [39].

Considering figure 7a, the three cases differ significantly in their deviation from QS
evaporation. Case (1) is essentially indistinguishable from QS evaporation, i.e. QS evaporation
has been recovered by the model in the limit of small BT. This case resembles what would be
seen, for example, when water evaporates under atmospheric conditions. Case (2) exhibits notable
deviation from QS evaporation where the majority of the deviation occurs in the initial stages.
One could conceivably interpret this profile as being linear (ignoring the initial period) if this
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Table 2. Transient deviation parameters (εstart, εend, εnet) calculated for various cases. Inputs kept constant for all cases are:
Le= 1,Φ = 1, c̄p = 1, ε = 1, γ = 1.4, λ̄ = 0.2, c̄ = 0.5, θ̃l,i = −1.

step initial conditions QS initial conditions

inputs BT εstart εend εnet εstart εend εnet

(1) ρ̄ = 1 × 10−3 0.018 −0.006 0.002 −0.003 0 0.004 0.004

T = 0.9, Ja= 0.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2) ρ̄ = 20 × 10−3 1.04 −0.167 0.076 −0.089 0 0.116 0.116

T = 3, Ja= 0.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3) ρ̄ = 80 × 10−3 10.2 −0.468 0.370 −0.256 0 0.525 0.525

T = 5, Ja= 2.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

size history was measured, despite the curve. Case (3), however, departs significantly from QS
evaporation and shows a very distinctive curve of decreasing gradient resulting in a factor ∼ 2
difference in the time to reach ã2 ∼ 0.25 and an overall 26% difference in total droplet lifetime.

Figure 8 presents the surface temperature gradient development with time for the selected
three cases and provides insight into why the size histories of figure 7 are observed. A key
observation is that once the temperature gradient converges towards the steady value with
step initial conditions (figure 8a–c), it does not remain constant as may be implied by the term
steadiness. The temperature gradient instead diverges from the steady value towards the end of
life. This is because the cooled and saturated boundary layer established during the early stages of
evaporation can remain and insulate the droplet during the late stages of evaporation. Therefore,
the environment experienced by the droplet towards the end of life is of lower temperature
and is more saturated than suggested by T∞ and ω∞ leading to slower evaporation rates. It
was found that this self-insulating effect can lead to the droplet temperature heating or cooling
towards the end of life. Whether the droplet heats or cools depends on the quantity Le/c̄p,
where the droplet temperature increases for Le/c̄p > 1 and vice versa. Figure 8a–c also shows the
transient temperature gradient as predicted by the quasi-stationary model. The quasi-stationary
model matches the fully transient model in the early stages when ã2 ∼ 1 since these are the
conditions under which the quasi-stationary model is derived. Following this, the fully transient
model predicts a much more rapid convergence towards the steady value of surface temperature
gradient. Since the steady surface temperature gradient increases as the droplet shrinks, see
equation (4.2), the reducing droplet size assists in more rapid convergence. Additionally, the
quasi-stationary model does not predict the reversal and divergence from the QS value. This
dynamic behaviour is only predicted by full solution and by implementing a moving boundary.

Figures 7b and 8d–f show the effect of the QS initial conditions for the same inputs. With
the QS initial conditions, by definition, [τ ]−1 = 0 because the initial gradient is the QS gradient
and therefore the initial transient regime is eliminated (εstart = 0). However, a key observation
is that the second transient regime remains. The cooled and saturated boundary layer insulates
the droplet and reduces the evaporation rate. The occurrence of this self-insulating behaviour is
therefore independent of initial conditions, while the exact magnitude of the deviation (εend) is
still affected by the initial conditions.

The two types of initial conditions considered are the two possible extremes. The step
initial conditions represent the case where there is initially zero influence of the droplet on the
surrounding atmosphere, i.e. sudden immersion, while the QS initial conditions represent the
case where the droplet has established an infinite boundary layer (θ̃ and ϕ̃ vary continuously
up to an infinite distance). The infinite boundary layer of cooled and saturated gas with the QS
initial conditions is more effective at insulating and slowing evaporation compared with the finite
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Figure 8. Normalized surface temperature gradient histories based on the quasi-steady (QS)model (dashed), quasi-stationary
model (dotted) and the fully transient model (solid), (a–c) with step initial conditions and (d–f ) with QS initial conditions. The
temperature gradient relative to the QS value (Λ) is also shown. Three cases shown with input values given in table 2. (Online
version in colour.)

boundary layer established at [τ ]−1 with the step initial conditions. It is for this reason that εend
is always larger with the QS initial conditions.

Under conditions where the QS assumption is valid, the solution is essentially independent
of initial conditions. This is evidenced by case (1) in figure 7. With varying initial conditions,
the parameter εend does remain somewhat comparable. However, under conditions where gas
phase transients are significant, there is a large difference in the total droplet lifetime prediction
(τev) depending on the initial conditions. This carries important implications for experiments,
since when conditions are present where gas phase transients become significant, the droplet size
history depends on the full gas phase history, which is a challenge to quantify.

To assist understanding, videos are provided in the electronic supplementary material that
animate the process of droplet evaporation for each of the three discussed cases with both types
of initial conditions.

(d) Quantifying deviations from the classical QS solution
The previous section used illustrative examples to describe the fully transient evaporation
dynamics and to provide the metrics to quantify deviations from QS evaporation (εstart, εend
and εnet, collectively referred to as ε). This section quantifies the deviation in the general
case to understand and define the bounds under which the QS assumption obtains reasonable
approximation to the fully transient solution. This is achieved by quantifying how εstart, εend and
εnet vary with changes to the governing dimensionless numbers and finding conditions under
which they are acceptably small. The physical understanding obtained is used to produce a
predictive tool for calculating the three ε parameters. The remainder of this study proceeds with
the step initial conditions.

Figure 9 shows the local sensitivity of εstart, εend and εnet to the various governing
dimensionless numbers. The significance of gas phase transients is sensitive to, approximately
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Figure 9. (a–c) Local sensitivity of transient deviation parameters (εstart, εend, εnet) to each dimensionless governing number
centred about the reference case : ρ̄ = 10 × 10−3,T = 3, Ja= 0.5, Le= 1,Φ = 1, c̄p = 1, ε = 1,γ = 1.4, λ̄ = 0.2, c̄ =
0.5. For each dimensionless number, the change relative to the reference case is denoted by X/Xref . (Online version in colour.)

in order of significance, T , ρ̄, c̄p, Ja and ε. The result has a low sensitivity to Le, γ and Φ. An even
lower sensitivity is seen to c̄ and λ̄ such that these are omitted from the figure for clarity.

It was hypothesized that the gas phase transient effects are determined primarily by how
closely the QS vapour concentration and temperature fields can be approximated by the droplet
releasing mass and absorbing heat, respectively. By comparing the amount of vapour contained
in the QS field with the amount of mass available in the droplet, one can determine if the droplet
is capable of approximating the QS field and, therefore, if the QS assumption is appropriate.
To quantify these effects, the parameters R̃M and R̃E are now defined. Here, we provide only
the main points, but further details are given in the electronic supplementary material, S4.
Defining RM as the radial distance at which the sum of the mass of vapour in the initial
QS field equals the mass of vapour available (i.e. the mass of the droplet), then we can
write

ρlVi = 4π

∫RM

ai

ρQS

(
ωQS − ω∞

1 − ω∞

)
r2 dr, (4.9)

where Vi = (4π/3) a3
i is the initial droplet volume and the l.h.s. is the mass of the droplet and the

r.h.s. represents the sum of vapour in the QS concentration field between the droplet surface and
RM. The dimensionless equivalent R̃M is defined by

1
3ρ̄

= BM

BM + 1

∫ R̃M

1
ρ̃QSϕ̃QSr̃2 dr̃, (4.10)

where ϕ̃QS is the QS concentration field, as given by equation (3.4), and ρ̃QS is the QS density field,
obtained by substituting equation (3.4) into equation (2.20). If R̃M is small (close to unity), there
is insufficient mass within the droplet to even approximate the initial QS vapour concentration
field. However, if R̃M is large then the droplet mass is large compared with the vapour mass
surrounding the droplet and, by releasing a small fraction of the droplet mass, the vapour field
surrounding the droplet can be established or closely approximated.

Similarly, defining RE as the radial distance at which the energy required to be removed from
the atmosphere to establish the QS temperature field TQS equals the amount of energy that the
droplet is capable of absorbing, then

ρlVi[L + cA
p (T∞ − TQS,s)] = 4πcp,∞T∞

∫RE

ai

(
P∞

R∞TQS
− ρ∞

)
r2 dr, (4.11)

where the l.h.s. is the energy required to bring the droplet into equilibrium with its environment
and the r.h.s. is the heat required to establish the QS temperature field in the ambient gas between



20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210078

...........................................................

the droplet surface and RE. The dimensionless equivalent R̃E is defined by

c̄p(BT + 1)
3ρ̄JaT

=
∫ R̃E

1

(
1

1 + κθ̃QS
− 1

)
r̃2d r̃. (4.12)

Expanding expressions for ϕ̃QS and ρ̃QS at an infinite distance up to the first order in r̃ and
substituting into equation (4.10) yields the leading order expression for R̃M as

R̃(0)
M =

[
2

3ρ̄ ln(1 + BM)
+ 1

]1/2
=
[

16
3πLe δ2 + 1

]1/2
, (4.13)

where superscript (0) indicates the leading order and the expression is simplified by recalling
δ, as given by equation (4.7). Similarly, expanding θ̃QS at infinity up to the first order in r̃ and
substituting into equation (4.12) gives the leading-order expression for R̃E as

R̃(0)
E =

[
2c̄p

3ρ̄ ln(1 + BT)
+ 1

]1/2

=
[

16
3πδ2 + 1

]1/2
. (4.14)

The key finding from equations (4.13) and (4.14) is that at the leading order R̃(0)
M is a function of

Le and δ, while R̃(0)
E is a function of only δ. Therefore, for large R̃E, or equivalently small δ, the

dimensionless combination parameter δ alone quantifies the relationship between the energy that
can be absorbed by the droplet and the energy removed to establish the steady temperature field.
This is significant because δ was derived in a separate framework (the quasi-stationary model) yet
it emerges again in this context as a measure of relating the energy contained within the droplet
to the energy required to cool the surrounding atmosphere.

Figure 10 shows the local sensitivity plot as shown in figure 9, but in terms of the
dimensionless combination variables R̃M, R̃E and δ. Note that R̃M, R̃E and δ are quantified
using equations (4.10), (4.12) and (4.7), respectively. While figure 9 shows a complex 10-variable
problem (with eight variables shown), the quantities R̃M, R̃E and δ remove much of the variance
and distil the problem to closely depend on just these combination variables. Figure 10 shows
that R̃M closely captures the effect of all dimensionless numbers on the ε parameters, with the
exception of Le. Each of the lines, which correspond to locally varying one dimensionless input,
closely collapse onto a single trendline. This is particularly evident in the case of εnet, while the
shape parameters εstart and εend show some deviation even though the general trend is captured.
The inability of R̃M to capture the variance due to changes in Le means that Le requires special
treatment in order to use R̃M as a predictor of εstart, εend and εnet. Similarly, R̃E and δ capture
the εnet trend but are less capable of capturing how changes to the inputs affect εstart and εend. In
particular, figure 10d,e,g and h shows that the variance due to changes in molecular mass ratio ε

is not correctly captured. The suspected reason for this is the added complexities introduced by
the density dependence on composition as ε deviates from unity, see equation (2.20).

This local sensitivity example explores only a narrow region of the possible 10-dimensional
input domain, but is informative in terms of the role of each governing dimensionless number. It
was desired to test the robustness of R̃M, R̃E and δ as predictors of εstart, εend and εnet. This was
performed by evaluating the ε parameters over a wide range of inputs with the fully transient
model and plotting them against the corresponding R̃M, R̃E and δ values, as shown in figure 11.
The range of inputs considered are given in table 3. Each data point, therefore, corresponds to a
random, unique set of inputs within the bounds defined in table 3. The limits given in table 3 are
informed by typical values seen in practice.

The results presented in figure 11 are the key findings of this study. The trends captured
show that fully transient evaporation dynamics can be closely predicted by the readily calculable
parameters R̃M, R̃E and δ. The wide envelope of inputs considered covers a large range
of cases, e.g. R̃E varies from 1.06 to 195. Note that as R̃M or R̃E tend towards unity, the
utility of equations (4.13) and (4.12), respectively, diminishes and higher-order effects come into
significance.
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Figure 10. (a–i) Local sensitivity of transient deviation parameters (εstart, εend, εnet) in terms of dimensionless combination
variables (R̃M, R̃E , δ). Each line represents changing the indicated dimensionless number relative to the specific case with
values: ρ̄ = 10 × 10−3, T = 3, Ja= 0.5, Le= 1, Φ = 1, c̄p = 1, ε = 1, γ = 1.4, λ̄ = 0.2, c̄ = 0.5. (Online version in
colour.)

Table 3. Upper and lower bounds for input domain in obtaining figure 11.

input variable (lower bound, upper bound) input variable (lower bound, upper bound)

T [1, 10] Le [0.25, 4]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ̄ [2 × 10−4, 0.3] γ [1.01, 1.66]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c̄p [0.25, 4] Φ [0.1, 1]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ja [0.1, 10] c̄ [0.1, 1.5]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε [0.2, 5] λ̄ [0, 1]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The correlations between the three predictors (R̃M, R̃E, δ) and the outputs (εstart, εend, εnet)
of the fully transient model are captured in the equations shown on the plots of figure 11.
Figure 12 shows the general accuracy of the proposed equation’s ability to predict the result of
the fully transient model. The data points shown in figure 12 are the same as in figure 11 but
figure 12 shows more clearly the scattering from the proposed equations. The 95% confidence
values indicate the given equation’s predictive capability, where smaller values indicate greater
accuracy. For example, the equation shown in figure 12a predicts εstart to within ±28% for 95% of
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Figure 11. (a–i) Transient deviation parameters (εstart,εend,εnet) plotted in terms of dimensionless combination variables (R̃M

and Le, R̃E ,δ) for awide range of inputs. Each point represents results from the fully transientmodel for different sets of inputs.
Lines are curves fitted to data with the equations shown.

the cases considered. Reasons for the scattering can clearly be seen and understood from figure 9.
For example, figure 9a shows the variance in εstart due to changes to ε is not adequately captured
by changes to R̃E. If the input domain was made narrower (i.e. by reducing the bounds in table 3)
then less scattering would be observed.

From the scatter shown in figure 12, it was concluded that εnet can be predicted by all proposed
equations with good accuracy. However, the shape of the droplet size history curve (informed by
εstart and εend) is more challenging to predict. The parameter R̃M (combined with Le) was found
to be the best predictor of these parameters, followed by R̃E and then δ. In particular, δ alone is a
poor predictor of εend. It is logical that δ would have the least predictive power since it is closely
related to the leading order approximation of R̃M and R̃E. The higher order effects captured
by the R̃M and R̃E increase their predictive capability as they approach unity. However, δ is
far simpler to compute since evaluating the integrals in equations (4.10) and (4.12) to accurately
quantify R̃M and R̃E requires numerical integration except in some special cases. It may therefore
seem erroneous that δ is the most accurate predictor of εnet. However, the confidence bounds are
skewed significantly by the large amount of data with large R̃M and R̃E values, where εnet is small
and so large percentage errors can occur with the proposed equations. This could be corrected by
adding additional terms to the εnet = f (R̃M, Le) and εnet = f (R̃E) equations. However, there is little
to gain from this since δ is an adequate predictor in this range (for small δ) and is simpler to
evaluate.

Each ε parameter, therefore, has three possible predictive equations. The choice of selecting
which is most effective was done on the basis of which gives the lowest 95% confidence values.



23

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210078

...........................................................

−1.326
(RE − 1) + 2.017˜

−0.5574
(RE − 1) + 0.6091˜

−0.5748
(RE − 1) + 1.409˜

1.119 1
1 − 0.983d

−1 0.779 1
1 − 0.706d

−1−0.5d

95% confidence = ±28% 95% confidence = ±47% 95% confidence = ±25%

prediction = actual

±20%

95% confidence =  ±44% 95% confidence = ±87% 95% confidence = ±21%

95% confidence = ±36% 95% confidence = ±59% 95% confidence = ±23%

(a) (b) (c)

(d) (e)

(g) (h) (i)

( f )

st
ar

t

' en
d' ne
t

'

st
ar

t

' en
d' ne
t

'

st
ar

t

' en
d' ne
t

'

0

–0.2

–0.4

–0.6

–0.8
–0.8 –0.6 –0.4 –0.2 0

0

0.25

0.50

0.75

1.00

1.25

0 0.25 0.75 1.250.50 1.00
–0.5

–0.4

–0.3

–0.2

–0.1

0

–0.5 –0.4 –0.3 –0.2 –0.1 0

0

–0.2

–0.4

–0.6

–0.8
–0.8 –0.6 –0.4 –0.2 0 0

0.25

0.50

0.75

1.00

1.25

0.25 0.75 1.250.50 1.00
–0.5

–0.4

–0.3

–0.2

–0.1

0

–0.5 –0.4 –0.3 –0.2 –0.1 0

0

–0.2

–0.4

–0.6

–0.8
–0.8 –0.6 –0.4 –0.2 0 0

0.25

0.50

0.75

1.00

1.25

0.25 0.75 1.250.50 1.00
–0.5

–0.4

–0.3

–0.2

–0.1

0

–0.5 –0.4 –0.3 –0.2 –0.1 0

Le (RM − 1) + 1.822

–1.236
Le (RM − 1) + 0.3443

0.4282
Le (RM − 1) + 1.429

0.5752
˜ ˜ ˜÷

––
÷

–– ÷
––

Figure 12. Transient deviation parameters (εstart, εend, εnet) taken from the fully transient model (y-axis) compared with the
transient deviation parameters as calculated from equations in terms of combination input variables (x-axis). (a–c) Function of
R̃M and Le, (d–f ) function of R̃E , (g–i) function of δ.

It is therefore recommended that the following equations should be used to predict the transient
deviation parameters

εstart = −1.236√
Le(R̃M − 1) + 1.822

, εend = 0.4282√
Le(R̃M − 1) + 0.3443

and εnet = 0.779
(

1
1 − 0.706δ

− 1
)

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.15)

The validity of the QS assumption decreases as the magnitude of εnet increases. If the
magnitude of εnet, evaluated through equation (4.15), is large (e.g. |εnet| > 0.05, meaning greater
than 5% error), then the QS assumption is invalid. The precise value of εnet at which the QS
assumption becomes invalid is dependent on the error tolerance of the given application, but
equation (4.15) provides the general method to calculate the overall percentage error from the QS
assumption.

(e) Application to real fluids
The fully transient evaporation problem has been solved for a very wide envelope of governing
dimensionless numbers that encompasses many scenarios that may be encountered in practice.
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This section now considers real fluids to quantify the actual input variables that may be
encountered and consequently quantify the error in adopting the classical QS gas phase
assumption. As has been demonstrated, the difference between the fully transient and QS models
is a function of 10 dimensionless numbers, four of which are dominant (ρ̄, T , Ja, c̄p). However,
the problem can be reduced to just three numbers as follows, at the expense of some accuracy.
For T � 1, then BT → Ja(T − 1) and equation (4.7) can therefore be written as

δ = −
{

8
π

(
ρ̄T
c̄p

)
ln[Ja(T − 1) + 1]

T

}1/2
, (4.16)

and equation (4.16) can evaluate εnet through equation (4.15), meaning that εnet = f (T , ρ̄T /c̄p, Ja).
In terms of accuracy, for T = 3 this approximation can lead to an ∼ 5% error in evaluating BT

(where the error is always an underprediction) and equation (4.15) for εnet has an associated
uncertainty of approximately 21%. For a given ambient gas and evaporating liquid, these
dimensionless numbers are a function of system temperature and pressure only (T∞, P∞). The
effect of increasing T∞ is twofold: to increase T and decrease ρ̄. It is for this reason that the term
ρ̄T /c̄p is used since this is mainly a function of pressure (c̄p is a weak function of temperature).
Similarly, Ja is mainly a function of pressure.

Before proceeding, the validity of the assumptions should be addressed. The key results of
this study considered ideal fluids that have no critical point. However, when considering real
fluids at elevated pressures, deviations from ideal behaviour can occur as the critical point is
approached. The following results presented in figure 13 go up to a reduced pressure (P∞/Pc,
where Pc is the critical pressure) of 0.9, at which deviations from ideal gas behaviour will occur.
The greatest non-ideal gas effects will occur near the droplet surface where temperatures are low.
Addressing accurately the impact of non-ideal behaviour is beyond the scope of the present work
so results are presented under the knowledge that non-ideal gas effects will lead to some errors.
However, it is noted that the ideal gas equation generally underpredicts the density for a given
pressure and temperature (when the compressibility factor is less that unity). Therefore, non-ideal
behaviour will lead to increased gas density in the vicinity of the droplet compared with an ideal
gas. A high-density gas phase (increased ρ̄) has been shown to increase the gas phase transient
effects and, therefore, it is logical that a non-ideal gas would increase the difference between the
QS and fully transient models. This suggests that the results shown in figure 13 are likely to be
underpredictions of the magnitude of εnet. However, this is yet to be demonstrated and is the
topic of future work.
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Figure 13 shows how εnet varies in terms of the three dimensionless numbers (T , ρ̄T /c̄p, Ja).
It emerges that εnet is overall a weak function of ambient temperature, where sensitivity to T
depends on Ja. For small Ja, there is little difference moving from T = 3 to 6. However, for large Ja,
εnet is marginally lower for elevated T . Inspection of equation (4.16) shows there is a T that gives
a maximum magnitude of εnet depending on Ja. For example, if Ja = 1, maximum magnitude of
εnet is predicted to occur at T = 2.6.

For given fluids, the dominant factor that determines the significance of gas phase transients is
the system pressure. Figure 13 shows the path followed by various fluids in air as the pressure is
varied from reduced pressure P∞/Pc = 0.02 to 0.9. As the pressure increases, εnet increases in
all cases. Physically, this is because as pressure increases, the density of the gas surrounding
the droplet increases. Hence, the thermal and mass inertia of the surrounding gas increases,
meaning that more energy must be removed from the atmosphere and more vapour must be
added to establish the surrounding temperature and mass fraction fields, respectively. There
is a compounding effect because increasing pressure decreases the latent heat of vaporization,
meaning that the droplet has a reduced amount of energy it can absorb from the atmosphere
before being completely vaporized. The preceding logic is quantified by the variable R̃E (closely
related to δ) which effectively compares the energy to completely vaporize the droplet with the
energy to establish the QS temperature profile.

Identifying fluids that experience greater gas phase transient effects (i.e. increased εnet

magnitude) is purely a question of the fluid properties. However, from the fluids considered in
figure 13, some general trends can be extracted. Generally, fluids with lower boiling points are
more susceptible to greater εnet (for a given P∞/Pc). This is because, with a lower boiling point,
one can simultaneously have a high T and high ρ̄. For a fluid with a high boiling point, the high
temperature environments required to attain high T lead to low gas densities. There are some
exceptions to this trend; for example, Ar shows higher εnet than N2. This is mainly due to the low
heat capacity of Ar. H2O also goes against the trend due to a much larger latent heat than other
fluids, but also due to a substantially greater critical pressure. Among the alkanes, the trend is
robust, with heavier components displaying lower εnet.

In terms of the magnitudes of εnet found, it was concluded that at low pressures
(approximately atmospheric), and for the cases considered, gas phase transient effects are not
significant since |εnet| < 3% for all cases. This is not to say applications do not exist where high
εnet magnitude may be experienced at atmospheric pressure, for example, by varying the ambient
gas. An ambient gas with high heat capacity (cp,∞) and high average molecular mass (hence
low R∞) is predicted to result in greater gas transient effects. It was also found that for heavy
hydrocarbons, even at elevated pressures, gas phase transient effects can still be relatively small.
For example, the maximum transient deviation found for decane at a pressure equivalent to 19
bar was 9% (εnet = −0.09). Of course, whether this error is acceptable depends on the desired
accuracy in the context of the application. It is also important to note that transient effects manifest
in more complex ways than only changing the total lifetime prediction. The two transient regimes
discussed previously have an opposite effect on the total lifetime prediction such that a reasonably
small εnet could also display a significant departure from classical, linear, d2-law behaviour. For
reference, case (3) shown in figure 7 departs significantly from linear behaviour for a resulting
εnet = −0.26.

It was found for low boiling point substances such as some of the cryogens listed, the QS
assumption could lead to substantial errors at elevated pressures even at room temperature, e.g.
for nitrogen evaporating under ambient conditions of 11 bar/ 315 K, εnet = −0.1. The magnitude
of εnet increases to −0.2 at a pressure of 30 bar. It is also important to note that for these substances,
the initial condition of θ̃l,i = −1 is more applicable since cryogens are often stored under saturation
conditions, i.e. there are negligible liquid phase transients due to droplet heating or cooling.
Overall, quantifying the significance of gas phase transients is case specific for the application
under consideration. The presented study provides the tools for researchers to quantify errors
resulting from the QS assumption for a general application.
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5. Conclusion
We analysed the effect of gas phase transients on the droplet evaporation process by means of
an exhaustive, fully transient model with carefully controlled and clearly stated assumptions.
The main output of this study is a predictive tool, equation (4.15), that can accurately predict
the error caused by assuming a QS gas phase. It is proposed that this predictive tool can be
applied by researchers to justify the use of the widely used QS assumption or alternatively to
highlight situations where QS assumption may not be appropriate. The predictive equations
provided in the main text were found to be robust over a wide range of conditions. The classical
justifications of the QS assumption, i.e. ρ∞/ρl � 1 and ρ∞/(Leρl) � 1, were found to be inaccurate
since an illustrative example demonstrated a 9% error in the case where ρ∞/ρl = ρ∞/(Leρl) = 0.02
(table 2). While the quantities ρ∞/ρl and ρ∞/(Leρl) were found to be important parameters, these
parameters alone lack significant predictive capability.

It was found that the QS assumption breaks down when the amount of energy required to
establish the QS temperature field in the vicinity of the droplet is of the same order as the
amount of energy required to bring the droplet into equilibrium with its environment. Also
significant, and closely related, is the ratio of vapour mass accumulated in the QS concentration
field compared with the mass of vapour contained within the droplet.

When the fully transient and the QS solution differ, it was found that two transient regimes
exist. When a droplet is first exposed to an undisturbed atmosphere, the evaporation rate is
initially faster than predicted by the QS model since the temperature and concentration profiles
take time to establish around the droplet. The second transient regime occurs towards the end
of droplet life and, to the present authors’ knowledge, this has not previously been explained or
quantified. Towards the end of droplet life, the surface temperature gradient and concentration
gradient diverge from the QS value as the droplet becomes insulated by a cold region of its own
vapour, causing a reduced evaporation rate. The solution, therefore, becomes history dependent.
It was found that the occurrence of this second regime is only predicted by correctly accounting
for the effects of the moving droplet surface.

For a given system of fluids, it was found that gas phase transients are relatively insensitive
to the ambient temperature but are highly sensitive to ambient pressure. Gas phase transients
become more significant at elevated pressures primarily due to a denser gas phase with greater
thermal and mass inertia. Considering a wide range of liquids evaporating in air, we show
that deviation from the d2-law can reach approximately 20% while still at subcritical pressures
(e.g. liquid nitrogen in air at 30 bar). Deviations in excess of 45% were demonstrated for
certain combinations of dimensionless numbers that do not necessarily correspond to real fluids.
Physically, a 45% deviation means the QS assumption overpredicts droplet lifetime by a factor of
approximately 1.8 compared with the fully transient solution.

The new fully transient model presented here was shown to precisely recover analytical
solutions where available (e.g. heated sphere problem) and trivial cases of QS evaporation, when
the ambient temperature is less than boiling, for example (T < 1). Further validation was provided
through recovering past results. The dimensionless approach and the assumptions made distil
the problem into 10 governing dimensionless numbers, four of which have a large effect on the
result. The assumptions such as constant specific heats were made to obtain the desired generality.
Relaxing assumptions such as these will obtain more accurate, yet case-specific solutions.
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Table 4. List of possible assumptions relevant to droplet evaporation problems.

no. assumption no. assumption

1. spherical droplet 15. inviscid fluids

2. infinite domain 16. incompressible gas phase

3. isolated droplet 17. negligible thermal expansion of

4. pure (mono-component) droplet the liquid phase

5. stationary droplet 18. radiative heat transfer is neglected

6. microgravity 19. ideal gas

7. the fluid is a continuum 20. pure conduction within the liquid (no convection)

8. surface tension effects are negligible 21. constant gas specific heats (cp)

9. infinitely thin phase transition zone/ 22. constant transport properties (Γ , λ,μ)

negligible Knudsen layer 23. quasi-steady gas phase

10. local phase equilibrium at the 24. uniform liquid temperature

droplet surface 25. steady (constant in time)

11. ambient gas is insoluble within droplet liquid temperature

12. Soret/Dufour effect neglected 26. constant density/isothermal gas phase

13. incompressible liquid phase 27. no net gas velocity (Stefan velocity)

14. constant liquid phase properties (cl , λl)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Appendix A. List of assumptions
Table 4 lists the assumptions relevant to droplet evaporation problems. Assumptions 1–5 define
the class of problem considered in the present article; that of a single, spherical, pure droplet in a
stagnant, infinite, isotropic gaseous medium. Assumptions 7–9 are important considerations for
small droplets. Assumptions 1–22 are the full list of assumptions used in the present work and
leads to the stated conclusions. Adopting all 27 assumptions (with the exception of assumption
26 if constant Γ is used) obtains Maxwell’s equation (1.1). Relaxing assumption 27, and 26 if
constant mass diffusivity Γ is used, obtains the full QS solution (1.2). Further relaxing 25 obtains
the infinite conductivity model. Further relaxing 24 obtains the finite or effective conductivity
model. Further relaxing 23 obtains the present model.
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