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Abstract

Bioartificial kidneys (BAKs) combine a conventional hemofilter in series with a bioreactor unit containing renal
epithelial cells. The epithelial cells derived from the renal tubule should provide transport, metabolic, endocrinolo-
gic and immunomodulatory functions. Currently, primary human renal proximal tubule cells are most relevant for
clinical applications. However, the use of human primary cells is associated with many obstacles, and the develop-
ment of alternatives and an unlimited cell source is one of the most urgent challenges. BAKs have been applied in
Phase I/l and Phase Il clinical trials for the treatment of critically ill patients with acute renal failure. Significant
effects on cytokine concentrations and long-term survival were observed. A subsequent Phase llb clinical trial was
discontinued after an interim analysis, and these results showed that further intense research on BAK-based thera-
pies for acute renal failure was required. Development of BAK-based therapies for the treatment of patients suffer-

ing from end-stage renal disease is even more challenging, and related problems and research approaches are
discussed herein, along with the development of mobile, portable, wearable and implantable devices.

Artificial kidneys

Treatment with an artificial kidney is the most widely
applied therapy for kidney failure. Substantial improve-
ments have been made in artificial kidney technology
during the past decades, such as with regard to mem-
brane technology, dialysate composition, and medication
to address side effects. Despite these improvements, the
high rates of mortality of critically ill patients with acute
renal failure (ARF), ranging between 50% and 70%, did
not change for several decades [1-5]. Also, the rates of
morbidity and mortality of patients with end-stage renal
disease (ESRD) receiving treatment with an artificial kid-
ney remain high [6,7], and the survival advantage asso-
ciated with renal transplantation is evident [8-12]. The
problems associated with ESRD are increasing as the
number of patients increases in industrialized countries,
whereas the number of kidneys available for transplanta-
tion remains relatively low [6,7,13-15].

Which types of improvements of current therapies
would be useful and which types of alternative therapies
could be developed? It would definitely be useful to
further improve artificial kidney technology to achieve a
more efficient clearance of middle-sized uremic toxins
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such as f-2-microglobulin [16,17]. Also, prolonged or
continuous and ambulatory modes of treatment of lar-
ger groups of patients would be desirable.

Continuous treatment with artificial kidneys is usually
only performed in cases of ARF, in which patients are
hospitalized. Concerning ESRD, only those patients with
peritoneal dialysis receive prolonged or continuous
treatment, which is a minority (< 10%, variable between
different countries). The rest of the patients depend on
traditional in-center hemodialysis, which is usually per-
formed three times per week for several hours during
daytime. This type of treatment not only greatly reduces
the quality of life and is associated with high costs, but
also leads to periodic accumulation of fluid, uremic tox-
ins and metabolic wastes. Increasing evidence suggests
that prolonged and/or more frequent therapies offer
improvements in clinical outcomes and the quality of
life, and might also be more cost-effective when per-
formed at home [18-23]. Portable and wearable devices
allow for a more normal lifestyle to be achieved and
enable more frequent or continuous home-based thera-
pies to be performed. A portable device for home hemo-
dialysis that also allows for travel is now available
[24-27]. A wearable artificial kidney is being developed,
and successful human pilot studies have been performed
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[28-33]. This is currently one of the most exciting and
promising developments in the field.

Concepts and achievements in BAK development
Portable or wearable artificial kidneys would only allow
for a certain extent of volume and solute control and
removal of some uremic toxins. However, the kidneys
have many additional functions. These include reabsorp-
tion of glucose, amino acids and water, and excretion of
xenobiotics, drugs and other organic compounds
[34-38]. Furthermore, the kidneys regulate the concen-
trations of sodium, potassium, phosphorus and divalent
cations, and the acid-base balance [37,39,40]. They con-
trol blood volume and pressure, and have important
metabolic and endocrinologic functions [37,41,42]. The
hormones produced by the kidneys include erythropoie-
tin, renin, prostaglandins and 1,25-dihydroxy vitamin
D3, which is also called calcitriol and is the most active
form of vitamin D. The kidneys are also the major
source of the growth factor bone morphogenetic protein
(BMP)-7 in the adult body, which appears to be impor-
tant for bone homeostasis [43-45]. In addition, the kid-
neys may perform immunomodulatory functions
[46-50].

As these complex functions cannot be provided by
artificial kidneys, it was suggested that renal cells be
included in the devices, and the concept of bioartificial
kidneys (BAKs) was first developed by Aebischer and
co-workers in 1987 [51-55]. BAKs based on this con-
cept combined a conventional hemofilter, mimicking
glomerular functions, in series with a bioreactor con-
taining renal tubule-derived cells, which should pro-
vide tubular functions. Epithelial cells derived from the
proximal tubules are most interesting for BAK devel-
opment, because they perform a wide variety of func-
tions, including reabsorption and secretion
[34,35,37,38,40,41,56], as well as metabolic, endocrino-
logic [37,39,41,42,57] and probably also immunomodu-
latory [46-48,50] functions. The bioreactor unit seeded
with proximal tubule-derived cells has also been called
a renal tubule assist device (RAD) [58,59].

Research on BAKs has been performed mainly by
two groups since the late 1990s: the group led by
Akira Saito at the Tokai University School of Medi-
cine, Kanagawa, Japan [60-71] and the group led by H.
David Humes at the University of Michigan, USA
[58,59,72-79]. Additional work on BAKs with a RAD-
type bioreactor has been conducted by other groups
[80,81], also with the goal to develop a device that
clears from the blood toxins such as digoxin using
cells overexpressing multidrug-resistant protein
[82-84]. More recent work has addressed the develop-
ment of a bioartificial glomerulus using CD133+
endothelial progenitor cells [85], and there was a
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conceptual study that proposed a bioartificial nephron-
on-a-chip including glomerulus, proximal tubule and
loop of Henle [86].

Clinical trials with BAKs have been performed by the
group of H. David Humes and collaborators [76,78].
A Phase I/II clinical trial, which was performed with
10 critically ill patients with ARF, had shown that the
device was sufficiently safe [78]. Any significant changes
of parameters, which should be influenced by the
human renal proximal tubule cells included in the
device, could not be observed, and there were no signifi-
cant changes in the pH of the ultrafiltrate or in
1,25-dihydroxy vitamin D3 levels. About 90% of the glu-
tathione passed the RAD. There were some changes in
the levels of the five cytokines tested. The levels of gran-
ulocyte colony-stimulating factor, interleukin-6 and
interleukin-10 were significantly reduced in a subset of
patients.

Subsequently, a multicenter, randomized, controlled,
open-label Phase II clinical trial was performed in 2004
and 2005, which enrolled 58 critically ill patients with
ARF [76]. 18 patients received continuous renal replace-
ment therapy (CRRT), whereas 40 patients were treated
using continuous venovenous hemofiltration (CVVH)
and received additional treatment with a RAD. Patients
were treated for up to 72 h. The results showed effects
on 28-day and 180-day survival, which were improved
in patients receiving CVVH plus RAD treatment. Only
the effects on long-term survival (180 days) were
significant.

This study was revolutionary but was also heavily cri-
ticized. It was pointed out that the study was severely
underpowered [87]. Amongst the various points of criti-
cism raised was also the issue that it was difficult to
understand how long-term survival could be improved
when no significant short-term effects were observed, in
particular when the treatment lasted at most for only
72 hr [87]. A follow-up Phase IIb bridging study enrol-
ling 53 patients was discontinued in 2006 after an
interim analysis because it was not expected that the
study would meet its efficacy goal (discussed in [76]).

The clinical trial was sponsored by RenaMed Biolo-
gics, Inc., a company co-founded by H. David Humes.
The company was founded in 1995 as Nephros Thera-
peutics, Inc. and changed its name in 2005. After sus-
pension of the Phase IIb bridging study in 2006,
RenaMed Biologics, Inc. was restructured and renamed
Nephrion, Inc. in 2007. Nephrion Inc. is now called
CytoPherx, Inc,, and it is engaged in the commercializa-
tion of a selective cytopheretic inhibitory device [88,89].

A first publication on this device [88] was based on
the data from the Phase IIb clinical trial with BAKs,
which had to be discontinued. Only the data from a
control subgroup were evaluated for this study [88], and
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this control group received treatment with a sham non-
cell-containing (SCD) cartridge. Twelve of the
24 patients in this control group received systemic
heparin anticoagulation, and the remaining 12 patients
received regional citrate anticoagulation. The results
indicated improved survival in the citrate-treated group
(67%, 90-day survival), whereas only 25% of the heparin-
treated patients survived after 90 days. The results have
to be interpreted with care owing to the small numbers
of patients, but they were in accordance with other
observations suggesting improved survival with citrate
anticoagulation as compared to heparin treatment [90].
The authors of the study on the selective cytopheretic
inhibitory device [88] interpreted their results in a way
that lymphocyte attachment to the “cytopheretic” mem-
branes in the cell-free cartridge (commercial F40 hemo-
filtration cartridge; Fresenius AG, Bad Homburg,
Germany) improved clinical outcomes.

Altogether the work and the results discussed above
suggested that there were significant challenges with the
cell-containing cartridges and BAKSs in clinical trials. It
would be useful to discuss and review the work con-
ducted so far and the device design presented in the
interest of advancing new concepts for future research.

Renal cell types and growth substrates applied in

BAKs

What distinguishes a BAK from conventional hemofiltra-
tion devices is the bioreactor unit with renal cells. So far,
BAK-related research has focused on renal proximal
tubule-derived cells. Human primary renal proximal
tubule cells (HPTCs) have been used in the clinical trials
[76,78]. In contrast, most of the preceding experimental
work and the animal studies performed by H. David
Humes and co-workers have been performed with por-
cine primary renal proximal tubule cells [58,59,74,75]
(the earlier studies [58,59] claimed that proximal tubule
progenitor cells were used, although no evidence has
been presented that a specific subfraction of progenitor
cells had been isolated from the porcine kidneys). Also,
the proximal tubule-like porcine cell line LLC-PK;
(Lewis lung cancer-porcine kidney 1) has been used fre-
quently for BAK research [51,52,54,62-65,67], and part of
the work has been performed with other animal-derived
cell lines, which were not always of proximal tubule ori-
gin, such as Madin-Darby canine kidney (MDCK) cells.

It is mandatory that the renal cells form a confluent
differentiated epithelium sealed by tight junctions on the
porous membranes of the device. If this does not occur,
the cellular functions would be absent or compromised.
Under such conditions, the entire BAK would only per-
form the functions of a normal hemofiltration device,
with the undesired diffusion of ultrafiltrate components
back into the blood in the bioreactor unit. The problem
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with using animal cells for BAK research is that animal
cell lines and probably also primary animal cells would
show different requirements for growth and differentia-
tion from the primary human cells. This is obvious, for
instance, with regard to the formation of differentiated
epithelia on different membrane materials. Figure 1
shows hollow fiber membranes consisting of polyether-
sulfone/polyvinylpyrrolidone (PES/PVP), within which
MDCK cells form a polarized epithelium with a well-
developed brush border. No such results could be
obtained with HPTCs, which would not grow and sur-
vive on PES/PVP, regardless of whether it was coated
with an extracellular matrix (ECM) or not (M. Nj, J. C.
M. Teo, M. S. bin Ibrahim, K. Zhang, F. Tasnim, P.-Y.
Chow, D. Zink and J. Y. Ying, unpublished results). It
was also found that HPTCs would not grow well on
polysulfone (PSF) membranes or membranes consisting
of PSF blended with a phospholipid polymer; mem-
branes coated with a fibronectin ECM did not improve
the situation [68]. In contrast, MDCK and LLC-PK;
cells formed confluent monolayers on these materials,
regardless of whether an ECM coating was present [68].
Furthermore, we found that HPTCs would not grow
and survive on polysulfone/polyvinylpyrrolidone (PSF/
PVP) membranes, and in this case, cell performance
could not be sufficiently improved by a single coating of
a suitable ECM consisting of collagen IV (M. Nj, J. C.
M. Teo, M. S. bin Ibrahim, K. Zhang, F. Tasnim, P.-Y.
Chow, D. Zink and J. Y. Ying, unpublished results).

Commercial cartridges with hollow fiber membranes
consisting of PSF/PVP have been applied in BAKs for
animal studies and clinical trials, and cells were seeded
after ECM coating [58,74-78]. In many cases, ECM coat-
ings of either laminin or collagen IV were used, and sys-
tematic tests revealed that these were indeed the most
suitable ECM components for applications with HPTCs
[91]. However, the results discussed above show that
cell performance was mainly influenced by the underly-
ing membrane material, and a single ECM coating
would not sufficiently improve cell performance.

Together, the findings suggested that PSF/PVP was
not suitable for applications with HPTCs, which was the
cell type used in clinical trials. The fact that most of the
in vitro and in vivo work on BAKs was not performed
with HPTCs, while HPTCs were then applied in clinical
trials, might explain some of the problems experienced.
It would be important to perform future in vitro and
preclinical studies with exactly the same cell type that
would be used in clinical trials.

Improvement of HPTC performance, alternative
cell types and growth factor-releasing BAKs

An important question is whether HPTCs are indeed
the most useful cell type for BAKs or whether other cell
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were obtained by scanning electron microscopy.

Figure 1 Madin-Darby canine kidney (MDCK) cells form a polarized epithelium on the inner surface of polyethersulfone/
polyvinylpyrrolidone (PES/PVP) hollow fiber membranes. (a) Confluent monolayer of MDCK cells on the inner surface of a PES/PVP hollow
fiber membrane. Cracks in the monolayer (indicated by arrowheads) are artifacts resulting from sample preparation (scale bar = 100 um). (b)
Luminal surface of the MDCK cell layer on the inner surface of a PES/PVP hollow fiber membrane (scale bar = 1 um). The cell surface is densely
covered with microvilli. The inset in the lower left corner shows an enlargement of the microvilli-covered surface (scale bar = 1 um). All images

types might be more appropriate. HPTCs are obtained
from nontransplantable human kidneys. Material from
diseased kidneys would be suboptimal because, depend-
ing on the underlying condition, cell functions might be
altered. Thus, it would be better to use only nondiseased
kidneys that have been rejected for other reasons,
although it might be difficult to obtain sufficient
amounts of material. The limited cell source is indeed a
serious problem, as the primary cells have a limited life-
span. As the membrane area of the bioreactor unit of
one BAK should have a size of about 0.7-1.0 m?
[70,76,78], it is questionable whether sufficient numbers
of HPTCs can be obtained for the regular applications
of BAKs and the commercialization of this approach.

Furthermore, primary proximal tubule cells show
functional changes during passaging, and dedifferentia-
tion as well as transdifferentiation processes occur
[91-95]. This, together with the interdonor variability,
makes standardization difficult; at the minimum, it
would require extensive functional characterization of
each cell batch at defined passage numbers.

In addition, recent results showed that HPTCs form
spontaneously large and functional kidney tubules on 2-
D surfaces and within tubular substrates (Figure 2) [96].
The epithelium becomes disrupted during the process of
tubule formation. Although such renal tubules generated
in vitro in a gel-free system are very interesting for other
applications, such as in vitro nephrotoxicology, their
appearance in BAKs would compromise device func-
tions and lead to clogging of the hollow fibers.

Interestingly, Humes and Cieslinski described the forma-
tion of renal tubules from primary rabbit proximal
tubule cells on 2-D surfaces in 1992 [97]. However, this
phenomenon, which is in our experience a serious
obstacle in BAK development, was not further addressed
by Humes and Cieslinski. One reason for this could be
the finding that tubule formation on 2-D surfaces was
dependent on supplementation with different factors,
including transforming growth factor (TGF)-f1 [97].
Thus, tubule formation would not occur spontaneously.
However, we found that in vitro cultures of HPTCs
expressed TGF-B1 and did not depend on supplementa-
tion; this was in agreement with our observation that
formation of renal tubules by HPTCs occurred sponta-
neously [96].

Recent results showed that inhibition of tubule forma-
tion by HPTCs could be achieved by either co-culturing
of HPTCs with primary human umbilical vein endothe-
lial cells or by supplementation with 1 nM of BMP-7
(Tasnim et al., unpublished results). The latter finding
was particularly interesting. BMP-7 (also called osteo-
genic protein (OP)-1) is a growth factor of the TGF-§
superfamily and counteracts TGF-B1-induced effects
[98-101]. The kidney is the major source of BMP-7 in
the adult body, and BMP-7 appears to be important for
bone homeostasis [43-45]. Animal experiments have
shown that administration of BMP-7 improves kidney
recovery in models of acute and chronic renal disease
[44,100,102-107]. BMP-7 also has positive effects on vas-
cular calcification and bone disease associated with
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Figure 2 Renal tubules that have formed spontaneously on 2-D surfaces in vitro. Renal cells were cultivated on the bottom of the wells of
multiwell plates for several days until spontaneous tubule formation occurred. (a) Part of a renal tubule formed by human primary renal
proximal tubule cells (HPTCs). The left end of the tubule is attached to the edge of the well (dark rim in the lower left corner). The epithelium
on the bottom of the well was partially disrupted during the process of tubule formation (area devoid of cells in the upper left corner). The
image was obtained by bright field microscopy, and the appearance of areas with bright and dark illumination is due to optical effects close to
the edge of the well and around the tubule. (b) Part of a renal tubule formed by LLC-PK; cells. The cell nuclei were stained with 4, 6-
diamidino-2"-phenylindole (DAPI, blue). The image was obtained by epifluorescence microscopy. Scale bars = (a) 400 um and (b) 100 pm.

chronic kidney failure in animal models [108-114]. Stry-
ker Biotech is currently developing BMP-7-based treat-
ments for kidney disease. It provides products consisting
of a collagen sponge releasing human recombinant
BMP-7 (OP-1 Putty and OP-1 Implant) for the treat-
ment of bone disease.

Treatment of kidney disease would require systemic
administration of BMP-7, and in this regard, the short
serum half-life of the growth factor of about 30 min is a
problem. Treatment based on frequent administration of
BMP-7 to kidney patients would be associated with high
costs. A BMP-7-releasing BAK, which delivers low con-
centrations of the growth factor to kidney patients dur-
ing extended time periods (Figure 3), might be an
elegant solution for these problems. BMP-7 could either
be released in a controlled manner from the membranes
or other parts of the device, using, for instance, micro-
particle technology. Alternatively, HPTCs, which nor-
mally do not express BMP-7, could be genetically
engineered to achieve BMP-7 secretion. A third possibi-
lity would be the inclusion of additional renal cell types
(e.g., distal tubule cells) that express endogenous BMP-
7. However, with the latter approach, it might be diffi-
cult to exactly control the amounts of BMP-7 released
by the device. Apart from the beneficial effects on kid-
ney patients treated with the BMP-7-releasing BAK,
BMP-7 secretion within the device would also be
expected to inhibit tubule formation and improve cell
performance within the BAK. However, we would like
to point out that the benefit of BMP-7 release by BAKs
is still speculative at this point, and the discussion above
reflects our personal view. It is also worth mentioning

that secretion of active proteins into the bloodstream is
one possible application of BAKs, and the use of BMP-7
is one possible example of such an application.

However, the question remains whether HPTCs, even
if their performance can be improved, are indeed the
best cell type for BAKs. Problems with the limited cell
source, limited proliferative capacity, dedifferentiation,
transdifferentiation and interdonor variability will
remain. Also, for genetic engineering approaches, per-
manent cell lines would be preferable. For these reasons,
Akira Saito and co-workers focused their work on cell
lines, and the porcine cell line LLC-PK; has been used
in most of their studies. This cell line, which is fre-
quently applied in in vitro nephrotoxicology, is very well
characterized; as compared to other proximal tubule-
derived cell lines, LLC-PK; cells are relatively well dif-
ferentiated [92]. However, the results of the work by
Saito’s group suggest that the passage of blood urea
nitrogen (BUN) and creatinine when LLC-PK; cells are
used in a BAK is not appropriate for clinical applica-
tions [64], and the use of other cell types is suggested.
Furthermore, multilayered overgrowth of LLC-PK; cells
in hollow fiber membranes was observed, which led to
functional impairment after about 13 days [63]. Over-
growth could be inhibited with the mitogen-activated
protein/extracellular signal-regulated kinase kinase inhi-
bitor U0126 [65], but it was unclear what effects this
inhibitor might have on kidney patients in BAK
applications.

Recently, we have observed that LLC-PK; cells also
spontaneously formed renal tubules in gel-free cultures
(Figure 2), and some of the multicellular structures
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Figure 3 Schematic of a bone morphogenic protein (BMP)-7-producing bioartificial kidney (BAK). The patient’s blood (red) first enters the
hemofiltration unit (left), which contains hollow fiber membranes for ultrafiltration. The blood and the ultrafiltrate (yellow) leaving the
hemofiltration unit then flow into the bioreactor unit (right), which contains hollow fiber membranes with an epithelium of renal cells (green)
on the inner surfaces. The cells secrete BMP-7 (violet), which becomes enriched in the ultrafiltrate during processing and in the blood flowing
on the outside of the hollow fiber membranes. The blood enriched in BMP-7 flows back into the patient, and the processed ultrafiltrate (orange)
is discarded. An enlarged cross-section of a hollow fiber membrane from the bioreactor unit is shown in the lower right corner. The ultrafiltrate
flows in the lumen of the hollow fiber membrane, and the blood flows on the outside. The inner surface of the hollow fiber membrane is
covered with BMP-7-secreting renal cells, and BMP-7 becomes enriched in the ultrafiltrate and the blood in the bioreactor unit. BMP-7 in the
ultrafiltrate would regulate HPTC performance, whereas BMP-7 in the bloodstream would be delivered to the patient.

observed by Saito’s group [63,65] might have been gen-
erated by tubule-forming processes and might not just
represent overgrowth. Apart from these specific pro-
blems with LLC-PK; cells, animal-derived cells are gen-
erally problematic due to (1) the concerns associated
with approval for clinical applications and (2) their dif-
ferent physiology. Therefore, it would be preferable to
apply human cells instead of porcine cells in BAKs, but
are appropriate human cell lines available?

The first permanent human proximal tubule-derived
cell lines have been generated in the 1990 s by using
oncogenes [115,116]. These cell lines include the widely
used HK-2 cells. HK-2 cells show some differentiated
functions of proximal tubule cells, but are functionally
and morphologically not equivalent to primary cells
[91,116-118], and the use of oncogenes is associated with
safety concerns. Drawbacks due to high and uncontrolled
levels of oncogene expression have been addressed by
using a temperature-sensitive mutant of the simian virus
(SV) 40 large T antigen [119], also in combination with
the human telomerase reverse transcriptase (hTert) gene
[120] for the conditional immortalization of HPTCs.

Retroviral constructs were used in these studies, and the
use of retroviral vectors, especially in combination with
an oncogene, is associated with safety concerns in clinical
applications. Also, the human proximal tubule-derived
cell lines obtained did not express some important func-
tional proteins, and further functional characterization
would be required. In general, expression of important
functional proteins or their mRNA is often markedly
lower in renal cell lines than in primary cells, and this
applies in particular to proximal tubule cells [121].

The SV40 T antigen has also been used in combina-
tion with hTert to generate reversibly immortalized
HPTCs, taking advantage of the Cre/lox system [117].
The transgenes can be cut out when sufficient cell num-
bers have been obtained. The results showed that differ-
entiated functions such as a-methylglucopyranoside
uptake (indicator for glucose transport) or y-glutamyl
transferase (GGT) activity were compromised in com-
parison to primary HPTCs, and the levels of activity
observed in primary cells were not restored after
removal of the transgenes. This might be due to stable
epigenetic changes.
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Another approach to generate human proximal
tubule-derived cell lines with improved properties for
various applications is based on the expression of the
hTert transgene only and does not involve oncogenes.
The results suggested that expression of hTert alone
was sufficient to achieve immortalization of HPTCs
[118]. Characteristic features and functions of differen-
tiated HPTCs did not appear to be severely compro-
mised after immortalization. The hTert-expressing cells
were obtained by using retroviral vectors, and this
would be a safety concern in clinical applications. Also,
the cells were not cloned after transduction, and thus
the existing mixture of different immortalized cell clones
might change over time. These issues should be
addressed for applications in BAKs. It is worth mention-
ing that hTert-immortalized human proximal tubule-
derived cells as well as the cell lines mentioned above
are very interesting for a variety of other applications
such as in vitro nephrotoxicology.

Stem cell-based approaches are most attractive for
achieving an unlimited and less variable cell source for
BAKs. It has been shown that murine embryonic stem
(ES) cells cultured in vitro can be induced to express
markers specific for the intermediate mesoderm, from
which the kidneys arise during embryonic development,
by using a combination of retinoic acid, activin-A, and
BMP-7 [122]. The treated ES cells appear to be primed
to respond to inductive signals and to differentiate along
the renal epithelial lineage, although no true renal
epithelial cells have been obtained in vitro. Another
recent study demonstrated the induction of markers
specific for renal precursors using similar inducers
applied to in vitro cultivated human ES cells [123].

Wnt signaling is important for the proper develop-
ment of kidney tubules in mice [124,125], and improper
stimulation of the canonical Wnt pathway plays a role
in various types of human cystic kidney diseases [126].
It would be expected that Wnt signaling would be
essential for the differentiation of renal precursor cells
into epithelial renal tubule cells in vitro. Human
mesenchymal stem cells differentiate into mature kidney
cells, including epithelial renal tubule cells, in an organ-
specific environment in rodent embryos [127,128].
In vitro conditioned medium from injured proximal
tubule cells induced epithelial differentiation of human
adipose-derived adult mesenchymal stem cells [129].
Although the results suggest potential utility of stem
cells in kidney bioengineering, further work is required
to develop protocols for the differentiation of stem cells
into mature human renal proximal tubule cells and
other renal cell types in vitro. Currently, such cells are
not available for applications in BAKs.

If stem cell-based approaches should be developed, the
relevant legislation of those countries where the BAK is
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to be applied must be carefully considered. In this
regard, the use of mesenchymal or other types of adult
stem/progenitor cells (the presence of adult renal stem
or progenitor cells is controversially discussed) is less
problematic, as compared to the use of embryonic stem
cells. Applications of induced pluripotent stem (iPS)
cells might be most attractive, but the use of oncogenes
and integrating viral vectors for reprogramming is asso-
ciated with safety concerns. The recently developed iPS
cells free of vectors and transgene sequences may
provide a solution for this problem [130-134].

In conclusion, from those cell types currently avail-
able, HPTCs appear to be most appropriate for clinical
applications. However, the use of HPTCs is associated
with many problems, and it would be important
to explore stem cell-based and other alternative
approaches. Whatever cell type is selected in the future,
it would be important to carefully examine exactly this
cell type under the actual BAK conditions during the
preclinical phase before advancing to clinical trials.

Membranes
As discussed above, commercial hemodialysis/hemofiltra-
tion cartridges with ECM-coated hollow fiber mem-
branes consisting of PSF/PVP have been applied in
BAKSs, but such materials do not appear to be appropriate
for applications with HPTCs. The PVP component
appears to contribute to the problems in HPTC growth
and survival (M. Ni, J. C. M. Teo, M. S. bin Ibrahim, K.
Zhang, F. Tasnim, P.-Y. Chow, D. Zink and J. Y. Ying,
unpublished results). Membranes consisting of pure PSF
are hydrophobic, which leads to difficulties in the adhe-
sion of hydrophobic serum proteins. Thus, to prevent
protein adhesion, all modern PSF- or PES-based mem-
branes for hemodialysis/hemofiltration contain hydrophi-
lic additives, which is in most cases PVP [135]. Although
these components improve the antifouling properties, it
is not too surprising that highly sensitive primary cells do
not perform well on nonadhesive membrane surfaces.
Ueda et al. suggested in 2005 the use of asymmetric
membranes with one hemocompatible and one cytocom-
patible surface [68]. These authors described a mem-
brane consisting of PSF blended with a phospholipid
polymer, which was asymmetrically distributed between
the skin and the sponge layer of the membrane. In a sta-
tic in vitro test, platelets could only slightly adhere to the
sponge layer surface, which had a higher content of the
phospholipid polymer. MDCK and LLC-PK; cells formed
confluent monolayers on the more adhesive skin layer
[68]. However, this did not apply to HPTCs, and thus
this type of membrane would not be appropriate for use
with HPTCs. In general, it would be preferable to use the
relatively rough sponge layer for cell growth and to
expose the smooth skin layer to the blood.



Tasnim et al. Fibrogenesis & Tissue Repair 2010, 3:14
http://www.fibrogenesis.com/content/3/1/14

Ueda et al.’s development of improved asymmetric
membranes with a hemocompatible surface and a cell-
compatible surface represented a major advance in the
field. This could be achieved not only by generating
asymmetric distributions of membrane components, but
also by asymmetric coating of the surfaces using anti-
fouling agents such as polyethylene glycol on the blood-
exposed side and adhesive coatings on the cell-exposed
side. The development of dual-layered membranes with
each layer composed of a different material would be
interesting. Dual-layered hollow fiber membranes have
been developed for gas separation and water purification
[136,137]. Membrane materials that are currently
employed in hemodialysis/hemofiltration with demon-
strated hemocompatibility would be suitable for the
blood-exposed layer. In addition, the surface of this
blood-exposed layer could be conjugated to anticoagu-
lants (e.g., heparin) to reduce the requirement for other
conventional anticoagulation treatments.

The remaining challenge involves the selection of
materials and coatings appropriate for the cell-exposed
layer. Our recent findings revealed problems with HPTC
survival and differentiation on a variety of commercially
available membrane materials (M. Ni, J. C. M. Teo, M.
S. bin Ibrahim, K. Zhang, F. Tasnim, P.-Y. Chow, D.
Zink and J. Y. Ying, unpublished results). Various sur-
face treatments and single ECM coatings did not lead to
sufficient improvements. In contrast, after double coat-
ing of PES/PVP or PSF/PVP with 3,4-dihydroxy-L-phe-
nylalanine (DOPA) and collagen IV, improvement of
HPTC performance was observed and the cells formed
confluent epithelia with tight junctions on the double-
coated PSF/PVP.

As PVP appeared to be problematic, other additives
were tested. HPTCs formed confluent epithelia on
membranes consisting of PSF blended with FullCure
(FC) under bioreactor conditions. Single or double coat-
ing did not further improve cell performance on such
PSF-FC membranes (Ni et al., unpublished results). The
fact that PCF-FC membranes do not require any coating
for applications with HPTCs makes this material very
attractive.

Growth and differentiation of primary human cortical
tubular epithelial cells were also observed on collagen
IV-coated thin film and nanostructured materials [138].
The materials tested included silicon nanopore mem-
branes. These membranes have monodisperse slit-
shaped nanopores and display greater selectivity at a
given value of hydraulic permeability in comparison to
conventional membranes with cylindrical polydispersed
pores [138,139]. High hydraulic permeability would be
particularly important for the development of miniatur-
ized wearable or implantable devices.
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Challenges related to the development of
portable, wearable and implantable devices
Current BAKs are large and immobile. The development
of portable, wearable or implantable devices would be
highly desirable and has been suggested by different
authors during the past 20 years [53,62,70,140,141].
Such devices would allow for prolonged or continuous
treatment, which would be expected to have beneficial
effects on the patients’ health status. In addition, higher
mobility would substantially improve the patients’ qual-
ity of life. Also, given the high costs associated with in-
center treatment of ESRD, the costs associated with
in-center BAK therapy with immobile devices might be
a serious obstacle.

Portable artificial kidneys are already available [24-27],
and clinical trials with wearable artificial kidneys are
currently underway [28-33]. Thus, the engineering pro-
blems associated with miniaturization of cell-free artifi-
cial kidneys seem to be challenging but solvable. A
problem specifically related to BAKs is the viability and
functional performance of the cell layer. Currently, it is
unclear whether renal epithelial cells, which react highly
sensitively in vitro to the environmental conditions
[142-144], can be maintained in a viable and functional
state when they are moved around in a mobile device.
Mobility will be associated with mechanical stress,
which easily damages renal epithelial cells [142-144]. If
the cells are functionally compromised, their reabsorp-
tion rate will decline. Removal of an excessive volume of
extracellular fluid in the hemofiltration unit without suf-
ficient reabsorption in the bioreactor will lead rapidly to
a critical condition. Furthermore, if the cell layer in the
device should become leaky, uremic toxins from the
ultrafiltrate will diffuse back into the bloodstream. Thus,
in a mobile device, the cell cartridge must be embedded
in a way that damage by mechanical stress and other
environmental factors is minimized, and a miniaturized
system for monitoring the cell functions and the integ-
rity of the epithelium would be required. Such housing
and monitoring systems have yet to be developed, and it
is unclear how cells could be shielded from mechanical
stress.

Another challenge is the development of new mem-
brane and device materials with improved anticoagula-
tion and antifouling properties. Currently, the lifetime of
hemodialysis/hemofiltration membranes is only about
100 hr. Exchange of cartridges would be relatively easy
when an extracorporeal device would be used. However,
an extracorporeal circulation is associated with a high
risk of infection, and on-site handling requires extremely
well-trained and dexterous patients. Given these
and other problems, an implantable device appears to
be preferable. However, even if the lifetime of the



Tasnim et al. Fibrogenesis & Tissue Repair 2010, 3:14
http://www.fibrogenesis.com/content/3/1/14

membranes could be dramatically extended to several
weeks or months, this would still mean frequent surgery
for an implantable device. Even for a device with a
housing and an exchangeable cassette that would be
implanted close to the body surface [141], the situation
might not be acceptable.

Apart from the unsolved problems with the lifetime of
membranes, it is currently not clear for how long an
intact epithelium can be maintained in the bioreactor
unit. Differentiated epithelia formed by HPTCs can be
maintained under optimized in vitro conditions in the
laboratory for several weeks. The lifetime of the epithe-
lium might be shorter under BAK conditions whereby
not all of the parameters can be optimized for cell per-
formance. Thus, it is expected that the cell cartridge
would also require frequent exchange, and this would
apply to mobile as well as to immobile devices. This
raises again the issue of cell source, as it would be diffi-
cult to obtain sufficient number of primary cells from
nontransplantable organs. Thus, as long as the cell sour-
cing problem is not resolved, regular long-term treat-
ment of a large number of ESRD patients would not be
feasible with immobile or mobile devices.

Conclusions

After 23 years of BAK research, there remain many
challenges to be addressed. Given the problem of cell
sourcing, the costs associated with in-center BAK
treatment and the issues associated with mobile
devices, the development of BAK-based therapies for
ESRD patients would take many more years of intense
research. The most straightforward path ahead may
involve the development of immobile devices for the
treatment of ARF. This was the approach followed by
H. David Humes and co-workers, and the existing
complications demonstrate that a great deal of further
research would still be needed. In the future, it would
be important to perform the experimental work with
exactly the same cell type that would be used in clini-
cal studies. Otherwise, it would be difficult to predict
how the clinically relevant cell type would perform
under the actual BAK conditions. Although currently
HPTCs appear to be the most relevant cell type, pri-
mary cells are suboptimal, and this issue as well as the
cell sourcing problem must be addressed. Also, it
would be critical to design and synthesize novel mem-
brane materials with cytocompatibility, antifouling and
anticoagulation properties, as well as other features
such as hydrodynamic permeability and selectivity.
Progress in this multidisciplinary research area would
provide a solid basis for the development of more
advanced BAK-based therapies.

Page 9 of 12

Acknowledgements

We thank Joscha Muck (Institute of Bioengineering and
Nanotechnology (IBN), Singapore) for help with arran-
ging the figures, and Kangyi Zhang (IBN, Singapore)
and Mohammed Shahrudin bin Ibrahim (IBN, Singa-
pore) for comments and discussions. This work is sup-
ported by the Institute of Bioengineering and
Nanotechnology (Biomedical Research Council, Agency
for Science, Technology and Research, Singapore).

Abbreviations

ARF: acute renal failure; BAK: bioartificial kidney; BMP-7: bone morphogenetic
protein-7; BUN: blood urea nitrogen; CVWH: continuous venovenous
hemofiltration; CRRT: continuous renal replacement therapy; DAPI: 4, 6-
diamidino-2"-phenylindole; DOPA: 3,4-dihydroxy-L-phenylalanine; ECM:
extracellular matrix; ES: embryonic stem; ESRD: end-stage renal disease; FC:
FullCure; GGT: y-glutamy! transferase; HPTC: primary human renal proximal
tubule cell; hTert: human telomerase reverse transcriptase; iPS: induced
pluripotent stem; LLC-PK;: Lewis lung cancer-porcine kidney 1; MDCK:
Madin-Darby canine kidney; OP-1: osteogenic protein-1; PES:
polyethersulfone; PSF: polysulfone; PVP: polyvinylpyrrolidone; RAD: renal
tubule assist device; SCD: sham non-cell containing; SV40: simian virus 40;
TGF: transforming growth factor.

Authors’ contributions

DZ drafted the manuscript, and the other authors critically revised it. RD,
MH, FT and YL contributed the figures. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 1 June 2010 Accepted: 10 August 2010
Published: 10 August 2010

References

1. Du Cheyron D, Bouchet B, Parienti JJ, Ramakers M, Charbonneau P: The
attributable mortality of acute renal failure in critically ill patients with
liver cirrhosis. Intensive Care Med 2005, 31:1693-1699.

2. Mehta RL, Chertow GM: Acute renal failure definitions and classification:
time for change? J Am Soc Nephrol 2003, 14:2178-2187.

3. Silvester W, Bellomo R, Cole L: Epidemiology, management, and outcome
of severe acute renal failure of critical illness in Australia. Crit Care Med
2001, 29:1910-1915.

4. Ympa YP, Sakr Y, Reinhart K, Vincent JL: Has mortality from acute renal
failure decreased? A systematic review of the literature. Am J Med 2005,
118:827-832.

5. Cheung CM, Ponnusamy A, Anderton JG: Management of Acute Renal
Failure in the Elderly Patient: A Clinician’s Guide. Drugs Aging 2008,
25:455-476.

6. U.S. Renal Data System: USRDS 2008 Annual Data Report: Atlas of Chronic
Kidney Disease and End-Stage Renal Disease in the United States National
Institutes of Health, National Institute of Diabetes and Digestive and Kidney
Diseases, Bethesda, MD 2008.

7. U.S. Renal Data System: USRDS 2009 Annual Data Report: Atlas of Chronic
Kidney Disease and End-Stage Renal Disease in the United States National
Institutes of Health, National Institute of Diabetes and Digestive and Kidney
Diseases, Bethesda, MD 20009.

8. Bayat S, Kessler M, Briancon S, Frimat L: Survival of transplanted and
dialysed patients in a French region with focus on outcomes in the
elderly. Nephrol Dial Transplant 2010, 25:292-300.

9. McDonald SP, Russ GR: Survival of recipients of cadaveric kidney
transplants compared with those receiving dialysis treatment in
Australia and New Zealand, 1991-2001. Nephrol Dial Transplant 2002,
17:2212-2219.


http://www.ncbi.nlm.nih.gov/pubmed/16244877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16244877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16244877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12874474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12874474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11588450?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11588450?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16084171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16084171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18540687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18540687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19749147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19749147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19749147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12454235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12454235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12454235?dopt=Abstract

Tasnim et al. Fibrogenesis & Tissue Repair 2010, 3:14
http://www.fibrogenesis.com/content/3/1/14

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

Oniscu GC, Brown H, Forsythe JL: Impact of cadaveric renal
transplantation on survival in patients listed for transplantation. J Am
Soc Nephrol 2005, 16:1859-1865.

Rabbat CG, Thorpe KE, Russell JD, Churchill DN: Comparison of mortality
risk for dialysis patients and cadaveric first renal transplant recipients in
Ontario, Canada. J Am Soc Nephrol 2000, 11:917-922.

Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, Held PJ,
Port FK: Comparison of mortality in all patients on dialysis, patients on
dialysis awaiting transplantation, and recipients of a first cadaveric
transplant. N Engl J Med 1999, 341:1725-1730.

Lin S: Nephrology in China: a great mission and momentous challenge.
Kidney Int Supp! 2003, 83:5108-S110.

Rutkowski B: Changing pattern of end-stage renal disease in central and
eastern Europe. Nephrol Dial Transplant 2000, 15:156-160.

Vathsala A: Twenty-five facts about kidney disease in Singapore: in
remembrance of World Kidney Day. Ann Acad Med Singapore 2007,
36:157-160.

Tattersall J: Clearance of beta-2-microglobulin and middle molecules in
haemodiafiltration. Hemodiafiltration Basel: KargerRonco C, Canaud B,
Aljama P 2007, 158:201-209.

Thomas G, Jaber BL: Convective therapies for removal of middle
molecular weight uremic toxins in end-stage renal disease: a review of
the evidence. Semin Dial 2009, 22:610-614.

Bayliss G, Danziger J: Nocturnal versus conventional haemodialysis: some
current issues. Nephrol Dial Transplant 2009, 24:3612-3617.

Klarenbach S, Manns B: Economic evaluation of dialysis therapies. Semin
Nephrol 2009, 29:524-532.

Kliger AS: More intensive hemodialysis. Clin J Am Soc Nephrol 2009,
4(Suppl 1):5121-5124.

Lockridge RS Jr, Pipkin M: Short and long nightly hemodialysis in the
United States. Hemodial Int 2008, 12(Suppl 1):548-S50.

Pierratos A, Ouwendyk M, Francoeur R, Vas S, Raj DS, Ecclestone AM,
Langos V, Uldall R: Nocturnal hemodialysis: three-year experience. / Am
Soc Nephrol 1998, 9:859-868.

Uldall R, Ouwendyk M, Francoeur R, Wallace L, Sit W, Vas S, Pierratos A:
Slow nocturnal home hemodialysis at the Wellesley Hospital. Adv Ren
Replace Ther 1996, 3:133-136.

Jaber BL, Finkelstein FO, Glickman JD, Hull AR, Kraus MA, Leypoldt JK, Liu J,
Gilbertson D, McCarthy J, Miller BW, Moran J, Collins AJ, FREEDOM Study
Group: Scope and design of the Following Rehabilitation, Economics and
Everyday-Dialysis Outcome Measurements (FREEDOM) Study. Am J
Kidney Dis 2009, 53:310-320.

Kohn OF, Coe FL, Ing TS: Solute kinetics with short-daily home
hemodialysis using slow dialysate flow rate. Hemodial Int 2010, 14:39-46.
Kraus M, Burkart J, Hegeman R, Solomon R, Coplon N, Moran J: A
comparison of center-based vs. home-based daily hemodialysis for
patients with end-stage renal disease. Hemodial Int 2007, 11:468-477.
Scott A: Portable home hemodialysis for kidney failure. /ssues Emerg
Health Technol 2007, 108:1-4.

Davenport A, Gura V, Ronco C, Beizai M, Ezon C, Rambod E: A wearable
haemodialysis device for patients with end-stage renal failure: a pilot
study. Lancet 2007, 370:2005-2010.

Gura V, Davenport A, Beizai M, Ezon C, Ronco C: ,-microglobulin and
phosphate clearances using a wearable artificial kidney: a pilot study.
Am J Kidney Dis 2009, 54:104-111.

Gura V, Macy AS, Beizai M, Ezon C, Golper TA: Technical breakthroughs in
the wearable artificial kidney (WAK). Clin J Am Soc Nephrol 2009,
4:1441-1448.

Gura V, Ronco C, Davenport A: The wearable artificial kidney, why and
how: from holy grail to reality. Semin Dial 2009, 22:13-17.

Gura V, Ronco C, Nalesso F, Brendolan A, Beizai M, Ezon C, Davenport A,
Rambod E: A wearable hemofilter for continuous ambulatory
ultrafiltration. Kidney Int 2008, 73:497-502.

Ronco C, Davenport A, Gura V: A wearable artificial kidney: dream or
reality? Nat Clin Pract Nephrol 2008, 4:604-605.

Anzai N, Jutabha P, Kanai Y, Endou H: Integrated physiology of proximal
tubular organic anion transport. Curr Opin Nephrol Hypertens 2005,
14:472-479.

Lee YJ, Lee YJ, Han HJ: Regulatory mechanisms of Na*/glucose
cotransporters in renal proximal tubule cells. Kidney Int Suppl 2007, 72:
S27-S35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

54.

55.

56.

57.

58.

59.

60.

61.

Page 10 of 12

Mount DB, Kwon CY, Zandi-Nejad K: Renal urate transport. Rheum Dis Clin
North Am 2006, 32:313-331, vi.

Wilson CO, Block JH, Gisvold O, Beale JM: Wilson and Gisvold's textbook of
organic medicinal and pharmaceutical chemistry Philadelphia: Lippincott
Williams and Wilkins, 11 2004.

Wright SH: Role of organic cation transporters in the renal handling of
therapeutic agents and xenobiotics. Toxicol Appl Pharmacol 2005,
204:309-319.

Curthoys NP, Godfrey SS: Properties of rat kidney glutaminase enzymes
and their role in renal ammoniagenesis. Curr Probl Clin Biochem 1976,
6:346-356.

Soleimani M: Na*:HCO5" cotransporters (NBC): expression and regulation
in the kidney. J Nephrol 2002, 15(Suppl 5):532-540.

Brenner BM: Brenner and Rector’s The Kidney Philadelphia: Saunders Elsevier,
8 2008.

Fraser DR, Kodicek E: Unique biosynthesis by kidney of a biological active
vitamin D metabolite. Nature 1970, 228:764-766.

Gould SE, Day M, Jones SS, Dorai H: BMP-7 regulates chemokine,
cytokine, and hemodynamic gene expression in proximal tubule cells.
Kidney Int 2002, 61:51-60.

Simic P, Vukicevic S: Bone morphogenetic proteins in development and
homeostasis of kidney. Cytokine Growth Factor Rev 2005, 16:299-308.
Simon M, Maresh JG, Harris SE, Hernandez JD, Arar M, Olson MS,

Abboud HE: Expression of bone morphogenetic protein-7 mRNA in
normal and ischemic adult rat kidney. Am J Physiol 1999, 276:F382-F389.
Boswell RN, Yard BA, Schrama E, van Es LA, Daha MR, van der Woude FJ:
Interleukin 6 production by human proximal tubular epithelial cells in
vitro: analysis of the effects of interleukin-1o (IL-1a) and other
cytokines. Nephrol Dial Transplant 1994, 9:599-606.

Prodjosudjadi W, Gerritsma JS, Klar-Mohamad N, Gerritsen AF, Bruijn JA,
Daha MR, van Es LA: Production and cytokine-mediated regulation of
monocyte chemoattractant protein-1 by human proximal tubular
epithelial cells. Kidney Int 1995, 48:1477-1486.

Van Kooten C, Woltman AM, Daha MR: Immunological function of tubular
epithelial cells: the functional implications of CD40 expression. £xp
Nephrol 2000, 8:203-207.

Wahl P, Schoop R, Bilic G, Neuweiler J, Le Hir M, Yoshinaga SK, Wuthrich RP:
Renal tubular epithelial expression of the costimulatory molecule B7RP-1
(inducible costimulator ligand). J Am Soc Nephrol 2002, 13:1517-1526.
Wuthrich RP, Glimcher LH, Yui MA, Jevnikar AM, Dumas SE, Kelley VE: MHC
class Il, antigen presentation and tumor necrosis factor in renal tubular
epithelial cells. Kidney Int 1990, 37:783-792.

Aebischer P, Ip TK, Panol G, Galletti PM: The bioartificial kidney: progress
towards an ultrafiltration device with renal epithelial cells processing.
Life Support Syst 1987, 5:159-168.

Ip TK, Aebischer P, Galletti PM: Cellular control of membrane permeability.
Implications for a bioartificial renal tubule. ASAIO Trans 1988, 34:351-355.
Ip TK, Aebischer P: Renal epithelial-cell-controlled solute transport across
permeable membranes as the foundation for a bioartificial kidney. Artif
Organs 1989, 13:58-65.

Uludag H, Ip TK, Aebischer P: Transport functions in a bioartificial kidney
under uremic conditions. Int J Artif Organs 1990, 13:93-97.

Uludag H, Panol G, Aebischer P: Control of water flux in a bioartificial
kidney. ASAIO Trans 1989, 35:523-527.

Berndt WO: The role of transport in chemical nephrotoxicity. Toxicol
Pathol 1998, 26:52-57.

Curthoys NP: Role of gamma-glutamyltranspeptidase in the renal
metabolism of glutathione. Miner Electrolyte Metab 1983, 9:236-245.
Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF: Replacement
of renal function in uremic animals with a tissue-engineered kidney. Nat
Biotechnol 1999, 17:451-455.

Humes HD, MacKay SM, Funke AJ, Buffington DA: Tissue engineering of a
bioartificial renal tubule assist device: in vitro transport and metabolic
characteristics. Kidney Int 1999, 55:2502-2514.

Fujita Y, Kakuta T, Asano M, Itoh J, Sakabe K, Tokimasa T, Saito A:
Evaluation of Na* active transport and morphological changes for
bioartificial renal tubule cell device using Madin-Darby canine kidney
cells. Tissue Eng 2002, 8:13-24.

Saito A, Aung T, Sekiguchi K, Sato Y, Vu DM, Inagaki M, Kanai G, Tanaka R,
Suzuki H, Kakuta T: Present status and perspectives of bioartificial
kidneys. J Artif Organs 2006, 9:130-135.


http://www.ncbi.nlm.nih.gov/pubmed/15857921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15857921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10770970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10770970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10770970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10580071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10580071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10580071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12864886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10648659?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10648659?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17450258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17450258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20017830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20017830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20017830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19767631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19767631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19751898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19995995?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18638241?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18638241?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9596084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8814919?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18823688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18823688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19758296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19758296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17922746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17922746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17922746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18041173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18083402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18083402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18083402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19376616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19376616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19376616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19696219?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19696219?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19000114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19000114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18059456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18059456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18779855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18779855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16046907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16046907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16716882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15845420?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15845420?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12027220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12027220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12027220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12027220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12027220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4319631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4319631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11786084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11786084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15923134?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15923134?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10070161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10070161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7970084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7970084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7970084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8544404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8544404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8544404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10940717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10940717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12039981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12039981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2407890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2407890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2407890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3669723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3669723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3196532?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3196532?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2653286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2653286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2347662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2347662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2597524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2597524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9502387?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6140623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6140623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10331803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10331803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10354300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10354300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10354300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11886650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11886650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11886650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11886650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16998696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16998696?dopt=Abstract

Tasnim et al. Fibrogenesis & Tissue Repair 2010, 3:14
http://www.fibrogenesis.com/content/3/1/14

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

82.

83.

Fujita Y, Terashima M, Kakuta T, Itoh J, Tokimasa T, Brown D, Saito A:
Transcellular water transport and stability of expression in aquaporin 1-
transfected LLC-PK1 cells in the development of a portable bioartificial
renal tubule device. Tissue Eng 2004, 10:711-722.

Ozgen N, Terashima M, Aung T, Sato Y, Isoe C, Kakuta T, Saito A: Evaluation
of long-term transport ability of a bioartificial renal tubule device using
LLC-PK1 cells. Nephrol Dial Transplant 2004, 19:2198-2207.

Terashima M, Fujita Y, Sugano K, Asano M, Kagiwada N, Sheng Y,
Nakamura S, Hasegawa A, Kakuta T, Saito A: Evaluation of water and
electrolyte transport of tubular epithelial cells under osmotic and
hydraulic pressure for development of bioartificial tubules. Artif Organs
2001, 25:209-212.

Inagaki M, Yokoyama TA, Sawada K, Duc VM, Kanai G, Lu J, Kakuta T,

Saito A: Prevention of LLC-PK; cell overgrowth in a bioartificial renal
tubule device using a MEK inhibitor, U0126. J Biotechnol 2007, 132:57-64.
Kanai N, Fujita Y, Kakuta T, Saito A: The effects of various extracellular
matrices on renal cell attachment to polymer surfaces during the
development of bioartificial renal tubules. Artif Organs 1999, 23:114-118.
Sato Y, Terashima M, Kagiwada N, Tun T, Inagaki M, Kakuta T, Saito A:
Evaluation of proliferation and functional differentiation of LLC-PK1 cells
on porous polymer membranes for the development of a bioartificial
renal tubule device. Tissue Eng 2005, 11:1506-1515.

Ueda H, Watanabe J, Konno T, Takai M, Saito A, Ishihara K: Asymmetrically
functional surface properties on biocompatible phospholipid polymer
membrane for bioartificial kidney. J Biomed Mater Res A 2006, 77:19-27.
Saito A: Development of bioartificial kidneys. Nephrology (Carlton) 2003,
8(Suppl):S10-S15.

Saito A: Research into the development of a wearable bioartificial kidney
with a continuous hemofilter and a bioartificial tubule device using
tubular epithelial cells. Artif Organs 2004, 28:58-63.

Saito A, Aung T, Sekiguchi K, Sato Y: Present status and perspective of the
development of a bioartificial kidney for chronic renal failure patients.
Ther Apher Dial 2006, 10:342-347.

MacKay SM, Funke AJ, Buffington DA, Humes HD: Tissue engineering of a
bioartificial renal tubule. ASAIO J 1998, 44:179-183.

Humes HD, MacKay SM, Funke AJ, Buffington DA: Acute renal failure:
growth factors, cell therapy, and gene therapy. Proc Assoc Am Physicians
1997, 109:547-557.

Fissell WH, Lou L, Abrishami S, Buffington DA, Humes HD: Bioartificial
kidney ameliorates gram-negative bacteria-induced septic shock in
uremic animals. J Am Soc Nephrol 2003, 14:454-461.

Fissell WH, Dyke DB, Weitzel WF, Buffington DA, Westover AJ, MacKay SM,
Gutierrez JM, Humes HD: Bioartificial kidney alters cytokine response and
hemodynamics in endotoxin-challenged uremic animals. Blood Purif 2002,
20:55-60.

Tumlin J, Wali R, Williams W, Murray P, Tolwani AJ, Vinnikova AK,

Szerlip HM, Ye J, Paganini EP, Dworkin L, Finkel KW, Kraus MA, Humes HD:
Efficacy and safety of renal tubule cell therapy for acute renal failure. J
Am Soc Nephrol 2008, 19:1034-1040.

Humes HD, Fissell WH, Weitzel WF, Buffington DA, Westover AJ, MacKay SM,
Gutierrez JM: Metabolic replacement of kidney function in uremic
animals with a bioartificial kidney containing human cells. Am J Kidney
Dis 2002, 39:1078-1087.

Humes HD, Weitzel WF, Bartlett RH, Swaniker FC, Paganini EP, Luderer JR,
Sobota J: Initial clinical results of the bioartificial kidney containing
human cells in ICU patients with acute renal failure. Kidney Int 2004,
66:1578-1588.

Song JH, Humes HD: The bioartificial kidney in the treatment of acute
kidney injury. Curr Drug Targets 2009, 10:1227-1234.

Dong X, Chen J, He Q, Yang Y, Zhang W: Construction of bioartificial renal
tubule assist device in vitro and its function of transporting sodium and
glucose. J Huazhong Univ Sci Technolog Med Sci 2009, 29:517-521.

Huijuan M, Xiaoyun W, Xumin Y, Hengjin W, Xia S: Effect of continuous
bioartificial kidney therapy on porcine multiple organ dysfunction
syndrome with acute renal failure. ASAIO J 2007, 53:329-334.

Tsuruoka S, Nishiki K, Sugimoto K, Suzuki M, Imai M, Fujimura A: Specific
therapy of digoxin intoxication in dogs by hybrid kidney overexpressing
multidrug resistance protein. Kidney Int 2002, 62:1332-1337.

Tsuruoka S, Nishiki K, Wakaumi M, Wang N, Yamamoto H, Ando H, Imai M,
Fujimura A: Treatment of digoxin intoxication model by hybrid-kidney

84.

85.

86.

87.

88.

89.

90.

91

92.

93.

94.

95.

96.

97.

98.

99.

100.

103.

104.

105.

Page 11 of 12

with hollowfibre module for clinical haemodialysis. Nephrol Dial
Transplant 2004, 19:1339-1340.

Tsuruoka S, Sugimoto Kl, Ueda K, Suzuki M, Imai M, Fujimura A: Removal of
digoxin and doxorubicin by multidrug resistance protein-overexpressed
cell culture in hollow fiber. Kidney Int 1999, 56:154-163.

Vu DM, Masuda H, Yokoyama TA, Fujimura S, Kobori M, Ito R, Sawada K,
Saito A, Asahara T: CD133+ endothelial progenitor cells as a potential cell
source for a bioartificial glomerulus. Tissue Eng Part A 2009, 15:3173-3182.
Weinberg E, Kaazempur-Mofrad M, Borenstein J: Concept and
computational design for a bioartificial nephron-on-a-chip. Int J Artif
Organs 2008, 31:508-514.

Chertow GM, Waikar SS: Toward the promise of renal replacement
therapy. J Am Soc Nephrol 2008, 19:839-840.

Humes HD, Sobota JT, Ding F, Song JH: A selective cytopheretic inhibitory
device to treat the immunological dysregulation of acute and chronic
renal failure. Blood Purif 2010, 29:183-190.

Song JH, Humes HD: Renal cell therapy and beyond. Semin Dial 2009,
22:603-609.

Oudemans-van Straaten HM, Bosman RJ, Koopmans M, van der Voort PH,
Wester JP, van der Spoel JI, Dijksman LM, Zandstra DF: Citrate
anticoagulation for continuous venovenous hemofiltration. Crit Care Med
2009, 37:545-552.

Zhang H, Tasnim F, Ying JY, Zink D: The impact of extracellular matrix
coatings on the performance of human renal cells applied in bioartificial
kidneys. Biomaterials 2009, 30:2899-2911.

Bach PH, Obatomi DK, Brant S: In vitro methods for nephrotoxicity
screening and risk assessment. In vitro methods in pharmaceutical research
San Diego: Academic PressCastell JV, Gdmez-Lechon MJ 1997, 55-101.
Vesey DA, Qi W, Chen X, Pollock CA, Johnson DW: Isolation and primary
culture of human proximal tubule cells. Methods Mol Biol 2009, 466:19-24.
Weiland C, Ahr HJ, Vohr HW, Ellinger-Ziegelbauer H: Characterization of
primary rat proximal tubular cells by gene expression analysis. Toxicol In
Vitro 2007, 21:466-491.

Verhulst A, Sayer R, De Broe ME, D'Haese PC, Brown CD: Human proximal
tubular epithelium actively secretes but does not retain rosuvastatin.
Mol Pharmacol 2008, 74:1084-1091.

Zhang H, Lau SF, Heng BF, Teo PY, Alahakoon PK, Ni M, Tasnim F, Ying JY,
Zink D: Generation of easily accessible human kidney tubules on two-
dimensional surfaces in vitro. J Cell Mol Med 2010.

Humes HD, Cieslinski DA: Interaction between growth factors and retinoic
acid in the induction of kidney tubulogenesis in tissue culture. Exp Cell
Res 1992, 201:8-15.

Wang S, Hirschberg R: BMP7 antagonizes TGF-B-dependent fibrogenesis
in mesangial cells. Am J Physiol Renal Physiol 2003, 284:F1006-F1013.

Wang S, Hirschberg R: Bone morphogenetic protein-7 signals opposing
transforming growth factor B in mesangial cells. J Biol Chem 2004,
279:23200-23206.

Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F,

Kalluri R: BMP-7 counteracts TGF-31-induced epithelial-to-mesenchymal
transition and reverses chronic renal injury. Nat Med 2003, 9:964-968.

. Flier SN, Tanjore H, Kokkotou EG, Sugimoto H, Zeisberg M, Kalluri R:

Identification of epithelial to mesenchymal transition as a novel source
of fibroblasts in intestinal fibrosis. J Biol Chem 2010, 285:20202-20212.

. Hruska KA, Guo G, Wozniak M, Martin D, Miller S, Liapis H, Loveday K,

Klahr S, Sampath TK, Morrissey J: Osteogenic protein-1 prevents renal
fibrogenesis associated with ureteral obstruction. Am J Physiol Renal
Physiol 2000, 279:F130-F143.

Morrissey J, Hruska K, Guo G, Wang S, Chen Q, Klahr S: Bone
morphogenetic protein-7 improves renal fibrosis and accelerates the
return of renal function. J Am Soc Nephrol 2002, 13(Suppl 1):514-S21.
Wang S, Chen Q, Simon TC, Strebeck F, Chaudhary L, Morrissey J, Liapis H,
Klahr S, Hruska KA: Bone morphogenic protein-7 (BMP-7), a novel therapy
for diabetic nephropathy. Kidney Int 2003, 63:2037-2049.

Zeisberg M, Bottiglio C, Kumar N, Maeshima Y, Strutz F, Muller GA, Kalluri R:
Bone morphogenic protein-7 inhibits progression of chronic renal
fibrosis associated with two genetic mouse models. Am J Physiol Renal
Physiol 2003, 285:F1060-F1067.

. Zeisberg M, Kalluri R: Reversal of experimental renal fibrosis by BMP7

provides insights into novel therapeutic strategies for chronic kidney
disease. Pediatr Nephrol 2008, 23:1395-1398.


http://www.ncbi.nlm.nih.gov/pubmed/15265288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15265288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15265288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15266032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15266032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15266032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11284888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11284888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11284888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17884223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17884223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17884223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9950189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9950189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9950189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16259605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16259605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16259605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16345080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16345080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16345080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15012685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14720290?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14720290?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14720290?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16911187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16911187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9617948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9617948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9394416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9394416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12538747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12538747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12538747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11803160?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11803160?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18272842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11979353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11979353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15458454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15458454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19715535?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19715535?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19662374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19662374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19662374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17515724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17515724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17515724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12234303?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12234303?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12234303?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15102990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15102990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10411688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10411688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10411688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19358628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19358628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18609503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18609503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18385414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18385414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20093825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20093825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20093825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20017829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19114912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19114912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19217158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19217158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19217158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19148604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19148604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17134868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17134868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18612079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18612079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1612129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1612129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12676736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12676736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15047707?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15047707?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12808448?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12808448?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20363741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20363741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10894795?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10894795?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11792757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11792757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11792757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12753291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12753291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12915382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12915382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18446379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18446379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18446379?dopt=Abstract

Tasnim et al. Fibrogenesis & Tissue Repair 2010, 3:14
http://www.fibrogenesis.com/content/3/1/14

107.

108.

109.

110.

1.

112

113.

114.

115.

116.

118.

119.

120.

122.

124.

125.

126.

127.

Vukicevic S, Basic V, Rogic D, Basic N, Shih MS, Shepard A, Jin D,
Dattatreyamurty B, Jones W, Dorai H, Ryan S, Griffiths D, Maliakal J, Jelic M,
Pastorcic M, Stavljenic A, Sampath TK: Osteogenic protein-1 (bone
morphogenetic protein-7) reduces severity of injury after ischemic acute
renal failure in rat. J Clin Invest 1998, 102:202-214.

Davies MR, Lund RJ, Hruska KA: BMP-7 is an efficacious treatment of
vascular calcification in a murine model of atherosclerosis and chronic
renal failure. J Am Soc Nephrol 2003, 14:1559-1567.

Davies MR, Lund RJ, Mathew S, Hruska KA: Low turnover osteodystrophy
and vascular calcification are amenable to skeletal anabolism in an
animal model of chronic kidney disease and the metabolic syndrome. J
Am Soc Nephrol 2005, 16:917-928.

Gonzalez EA, Lund RJ, Martin KJ, McCartney JE, Tondravi MM, Sampath TK,
Hruska KA: Treatment of a murine model of high-turnover renal
osteodystrophy by exogenous BMP-7. Kidney Int 2002, 61:1322-1331.
Hruska KA, Mathew S, Davies MR, Lund RJ: Connections between vascular
calcification and progression of chronic kidney disease: therapeutic
alternatives. Kidney Int Suppl 2005, S142-5151.

Hruska KA, Saab G, Chaudhary LR, Quinn CO, Lund RJ, Surendran K: Kidney-
bone, bone-kidney, and cell-cell communications in renal
osteodystrophy. Semin Nephrol 2004, 24:25-38.

Li T, Surendran K, Zawaideh MA, Mathew S, Hruska KA: Bone
morphogenetic protein 7: a novel treatment for chronic renal and bone
disease. Curr Opin Nephrol Hypertens 2004, 13:417-422.

Mathew S, Davies M, Lund R, Saab G, Hruska KA: Function and effect of
bone morphogenetic protein-7 in kidney bone and the bone-vascular
links in chronic kidney disease. Eur J Clin Invest 2006, 36(Suppl 2):43-50.
Ryan MJ, Johnson G, Kirk J, Fuerstenberg SM, Zager RA, Torok-Storb B: HK-
2: an immortalized proximal tubule epithelial cell line from normal adult
human kidney. Kidney Int 1994, 45:48-57.

Racusen LC, Monteil C, Sgrignoli A, Lucskay M, Marouillat S, Rhim JG,

Morin JP: Cell lines with extended in vitro growth potential from human
renal proximal tubule: characterization, response to inducers, and
comparison with established cell lines. J Lab Clin Med 1997, 129:318-329.

. Kowolik CM, Liang S, Yu Y, Yee JK: Cre-mediated reversible

immortalization of human renal proximal tubular epithelial cells.
Oncogene 2004, 23:5950-5957.

Wieser M, Stadler G, Jennings P, Streubel B, Pfaller W, Ambros P, Ried| C,
Katinger H, Grillari J, Grillari-Voglauer R: hTERT alone immortalizes
epithelial cells of renal proximal tubules without changing their

functional characteristics. Am J Physiol Renal Physiol 2008, 295:F1365-F1375.

Orosz DE, Woost PG, Kolb RJ, Finesilver MB, Jin W, Frisa PS, Choo CK,

Yau CF, Chan KW, Resnick MI, Douglas JG, Edwards JC, Jacobberger JW,
Hopfer U: Growth, immortalization, and differentiation potential of
normal adult human proximal tubule cells. In Vitro Cell Dev Biol Anim
2004, 40:22-34.

Wilmer MJ, Saleem MA, Masereeuw R, Ni L, van der Velden TJ, Russel FG,
Mathieson PW, Monnens LA, van den Heuvel LP, Levtchenko EN: Novel
conditionally immortalized human proximal tubule cell line expressing
functional influx and efflux transporters. Cell Tissue Res 2010, 339:449-457.

. Chassin C, Bens M, Vandewalle A: Transimmortalized proximal tubule and

collecting duct cell lines derived from the kidneys of transgenic mice.
Cell Biol Toxicol 2007, 23:257-266.

Kim D, Dressler GR: Nephrogenic factors promote differentiation of
mouse embryonic stem cells into renal epithelia. / Am Soc Nephrol 2005,
16:3527-3534.

. Batchelder CA, Lee CC, Matsell DG, Yoder MC, Tarantal AF: Renal ontogeny

in the rhesus monkey (Macaca mulatta) and directed differentiation of
human embryonic stem cells towards kidney precursors. Differentiation
2009, 78:45-56.

Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP: Wnt9b plays a
central role in the regulation of mesenchymal to epithelial transitions
underlying organogenesis of the mammalian urogenital system. Dev Cell
2005, 9:283-292.

Park JS, Valerius MT, McMahon AP: Wnt/B-catenin signaling regulates
nephron induction during mouse kidney development. Development
2007, 134:2533-2539.

Benzing T, Simons M, Walz G: Wnt signaling in polycystic kidney disease.
J Am Soc Nephrol 2007, 18:1389-1398.

Yokoo T, Fukui A, Ohashi T, Miyazaki Y, Utsunomiya Y, Kawamura T,
Hosoya T, Okabe M, Kobayashi E: Xenobiotic kidney organogenesis from

128.

129.

132.

133.

134.

135.

137.

138.

139.

140.

=

142.

143.

Page 12 of 12

human mesenchymal stem cells using a growing rodent embryo. / Am
Soc Nephrol 2006, 17:1026-1034.

Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, Utsunomiya Y,
Takahashi M, Terada Y, Eto Y, Kawamura T, Osumi N, Hosoya T: Human
mesenchymal stem cells in rodent whole-embryo culture are
reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci USA
2005, 102:3296-3300.

Baer PC, Bereiter-Hahn J, Missler C, Brzoska M, Schubert R, Gauer S,
Geiger H: Conditioned medium from renal tubular epithelial cells
initiates differentiation of human mesenchymal stem cells. Cell Prolif
2009, 42:29-37.

. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M: Efficient induction of

transgene-free human pluripotent stem cells using a vector based on
Sendai virus, an RNA virus that does not integrate into the host
genome. Proc Jpn Acad Ser B Phys Biol Sci 2009, 85:348-362.

. Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY,

Robbins RC, Kay MA, Longaker MT, Wu JC: A nonviral minicircle vector for
deriving human iPS cells. Nat Methods 7:197-199.

Marchetto MC, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR:
Transcriptional signature and memory retention of human-induced
pluripotent stem cells. PLoS One 2009, 4:27076.

Yusa K, Rad R, Takeda J, Bradley A: Generation of transgene-free induced
pluripotent mouse stem cells by the piggyBac transposon. Nat Methods
2009, 6:363-369.

Yu J, Hu K Smuga-Otto K, Tian S, Stewart R, Slukvin Il, Thomson JA: Human
induced pluripotent stem cells free of vector and transgene sequences.
Science 2009, 324:797-801.

Ronco C, Ballestri M, Cappelli G: Dialysis membranes in convective
treatments. Nephrol Dial Transplant 2000, 15(Suppl 2):31-36.

. Li DF, Chung T-S, Wang R, Liu Y: Fabrication of fluoropolyimide/

polyethersulfone (PES) dual-layer asymmetric hollow fiber membranes
for gas separation. J Membr Sci 2002, 198:211-223.

Yang Q, Wang KY, Chung T-S: Dual-layer hollow fibers with enhanced flux
as novel forward osmosis membranes for water production. Environ Sci
Technol 2009, 43:2800-2805.

Fissell WH, Manley S, Westover A, Humes HD, Fleischman AJ, Roy S:
Differentiated growth of human renal tubule cells on thin-film and
nanostructured materials. ASAIO J 2006, 52:221-227.

Kanani DM, Fissell WH, Roy S, Dubnisheva A, Fleischman A, Zydney AL:
Permeability-selectivity analysis for ultrafiltration: effect of pore
geometry. J Memb Sci 2010, 349:405.

Fissell WH, Fleischman AJ, Humes HD, Roy S: Development of continuous
implantable renal replacement: past and future. Trans/ Res 2007,
150:327-336.

. Fissell WH, Roy S: The implantable artificial kidney. Semin Dial 2009,

22:665-670.

Minuth WW, Schumacher K, Strehl R: Renal epithelia in long term gradient
culture for biomaterial testing and tissue engineering. Biomed Mater Eng
2005, 15:51-63.

Minuth WW, Strehl R: Technical and theoretical considerations about
gradient perfusion culture for epithelia used in tissue engineering,
biomaterial testing and pharmaceutical research. Biomed Mater 2007, 2:
R1-R11.

. Minuth WW, Strehl R, Schumacher K, de Vries U: Long term culture of

epithelia in a continuous fluid gradient for biomaterial testing and
tissue engineering. J Biomater Sci Polym Ed 2001, 12:353-365.

doi:10.1186/1755-1536-3-14
Cite this article as: Tasnim et al. Achievements and challenges in
bioartificial kidney development. Fibrogenesis & Tissue Repair 2010 3:14.



http://www.ncbi.nlm.nih.gov/pubmed/9649574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9649574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9649574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12761256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12761256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12761256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15743994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15743994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15743994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11918739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11918739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16336568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16336568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16336568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14730507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14730507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14730507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15199292?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15199292?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15199292?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16884397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16884397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16884397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8127021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8127021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8127021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9042817?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9042817?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9042817?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15208689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15208689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18715936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18715936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18715936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14748622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14748622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19902259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19902259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19902259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17219250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17219250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16267156?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16267156?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19500897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19500897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19500897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16054034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16054034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16054034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17537789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17537789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17429050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16524947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16524947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15728383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15728383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15728383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19143761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19143761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19838014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19838014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19838014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19838014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20139967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20139967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19763270?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19763270?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19337237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19337237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19325077?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19325077?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11051035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11051035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19475953?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19475953?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16760708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16760708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20161691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20161691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18022594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18022594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20017839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15623930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15623930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18458434?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18458434?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18458434?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11484942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11484942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11484942?dopt=Abstract

	Abstract
	Artificial kidneys
	Concepts and achievements in BAK development
	Renal cell types and growth substrates applied in BAKs
	Improvement of HPTC performance, alternative cell types and growth factor-releasing BAKs
	Membranes
	Challenges related to the development of portable, wearable and implantable devices
	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

