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Catheter ablation therapy for persistent atrial fibrillation (AF) typically includes pulmonary 
vein isolation (PVI) and may include additional ablation lesions that target patient-specific 
anatomical, electrical, or structural features. Clinical centers employ different ablation 
strategies, which use imaging data together with electroanatomic mapping data, depending 
on data availability. The aim of this study was to compare ablation techniques across a 
virtual cohort of AF patients. We constructed 20 paroxysmal and 30 persistent AF patient-
specific left atrial (LA) bilayer models incorporating fibrotic remodeling from late-gadolinium 
enhancement (LGE) MRI scans. AF was simulated and post-processed using phase 
mapping to determine electrical driver locations over 15 s. Six different ablation approaches 
were tested: (i) PVI alone, modeled as wide-area encirclement of the pulmonary veins; 
PVI together with: (ii) roof and inferior lines to model posterior wall box isolation; (iii) isolating 
the largest fibrotic area (identified by LGE-MRI); (iv) isolating all fibrotic areas; (v) isolating 
the largest driver hotspot region [identified as high simulated phase singularity (PS) density]; 
and (vi) isolating all driver hotspot regions. Ablation efficacy was assessed to predict 
optimal ablation therapies for individual patients. We subsequently trained a random forest 
classifier to predict ablation response using (a) imaging metrics alone, (b) imaging and 
electrical metrics, or (c) imaging, electrical, and ablation lesion metrics. The optimal ablation 
approach resulting in termination, or if not possible atrial tachycardia (AT), varied among 
the virtual patient cohort: (i) 20% PVI alone, (ii) 6% box ablation, (iii) 2% largest fibrosis 
area, (iv) 4% all fibrosis areas, (v) 2% largest driver hotspot, and (vi) 46% all driver hotspots. 
Around 20% of cases remained in AF for all ablation strategies. The addition of patient-
specific and ablation pattern specific lesion metrics to the trained random forest classifier 
improved predictive capability from an accuracy of 0.73 to 0.83. The trained classifier 
results demonstrate that the surface areas of pre-ablation driver regions and of fibrotic 
tissue not isolated by the proposed ablation strategy are both important for predicting 
ablation outcome. Overall, our study demonstrates the need to select the optimal ablation 
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INTRODUCTION

Current treatment approaches for persistent atrial fibrillation 
(AF) are sub-optimal, with over 40% of patients exhibiting 
AF recurrence within 18  months of catheter ablation therapy 
(Verma et  al., 2015). Catheter ablation typically includes 
pulmonary vein isolation (PVI) and may include additional 
lesions. These additional lesions may target patient-specific 
features of the anatomical, structural, or electrical substrates.

Anatomical ablation approaches aim to either isolate areas 
that are common sites of triggers or anatomical re-entry (Pambrun 
et  al., 2019), or to reduce the space available for re-entry. 
Specifically, PVI aims to isolate triggered beats from the pulmonary 
veins. Linear ablation approaches may include additional ablation 
lines at the mitral isthmus or the roof of the left atrium; for 
example, Kottkamp et  al. (2002) applied lesion lines from the 
mitral valve annulus to the pulmonary vein orifices to prevent 
anatomical reentrant circuits. Yu et  al. (2017) demonstrated 
that linear lesions together with PVI demonstrate similar efficacy 
to PVI alone. Other anatomical approaches include box isolation, 
which includes additional ablation lines to isolate a box of 
tissue on the posterior wall and roof, and aims to reduce the 
spatial size of the atrial substrate, where fibrillatory wavefronts 
may persistently propagate (Hwang et  al., 2015; Williams et  al., 
2019). Pambrun et  al. (2019) used an ablation strategy that 
targeted the coronary sinus and vein of Marshall to eliminate 
potential sites of anatomical re-entry. The anatomical ablation 
lesion set applied will depend on individual patient anatomy; 
however, it will not necessarily take into account electrical or 
structural features of the atrial substrate. We  simulate two 
anatomical ablation approaches: PVI and box isolation.

Structural ablation approaches aim to remove or isolate 
aberrant fibrotic tissue identified through either electroanatomic 
mapping or atrial imaging. For example, Kottkamp et al. (2016) 
performed box isolation of fibrotic areas to remove low voltage 
areas from electroanatomic voltage maps as a surrogate for 
fibrotic tissue. The Delayed-Enhancement MRI Determinant 
of Successful Radiofrequency Catheter Ablation of Atrial 
Fibrillation (DECAAF) study showed that atrial fibrosis detected 
on late-gadolinium enhancement MRI (LGE-MRI) was 
independently associated with AF recurrence (Marrouche et al., 
2014; Chubb et  al., 2019). The current DECAAFII clinical 
study aims to investigate whether ablation guided by LGE-MRI 
is superior to PVI. However, it is challenging to characterize 
atrial tissue from LGE-MRI imaging data and to use this 
characterization to decide which areas to ablate. As a further 
complication, recent studies demonstrate evidence both for and 
against the colocation of fibrillatory drivers with fibrotic tissue 
(Haissaguerre et  al., 2016; Sohns et  al., 2017). We  simulate 

two structural ablation approaches: isolating the largest fibrotic 
area and isolating all fibrotic areas.

Electrical ablation approaches are personalized to target areas 
of electrogram fractionation (Nademanee et  al., 2004) or to 
isolate electrical drivers identified using phase singularity (PS) 
analysis (Lim et  al., 2017). Narayan et  al. (2012) demonstrated 
high success rates by ablating focal and re-entrant drivers 
identified through phase and activation mapping of AF. However, 
these approaches require accurate mapping of atrial drivers, 
which is challenging (Handa et al., 2018), and are also complicated 
by the emergence of post-ablation drivers that may not be present 
pre-ablation. We  simulate two electrical ablation approaches: 
isolating the largest driver region and isolating all driver regions.

Biophysical modeling provides essential mechanistic insights 
into the individual contribution of the anatomical, electrical, 
and structural substrates to AF, and each individual patient’s 
response to multiple different ablation strategies. This allows 
the efficacy of specific ablation strategies and the relative effect 
of ablation strategy and atrial debulking to be  predicted. 
However, biophysical models take a significant amount of time 
to construct and simulate and so are both compute and resource 
intensive, limiting their direct clinical applicability. Combining 
the mechanistic insights of biophysical models with machine 
learning techniques may lead to a more robust machine learning 
predictor, which is computationally efficient and allows fast 
prediction in the catheter laboratory on any desktop computer.

We aimed to compare AF ablation techniques that target 
features of the anatomical, structural, and electrical AF substrates 
for patient-specific simulations of paroxysmal and persistent 
AF. Specifically, we  applied different anatomical, structural, 
and electrical ablation strategies to a cohort of 20 virtual 
paroxysmal AF patients and 30 virtual persistent AF patients. 
Subsequently, we  trained a machine learning random forest 
classifier to predict ablation response using (a) imaging metrics 
alone, (b) imaging and electrical metrics, or (c) imaging, 
electrical, and ablation lesion metrics.

MATERIALS AND METHODS

Patient Cohort
Computational models were constructed from cardiac MRI 
data for 20 paroxysmal AF and 30 persistent AF patients 
treated at St Thomas’ Hospital. Paroxysmal and persistent AFs 
were defined following HRS/EHRA/ECAS/APHRS/SOLAECE 
guidelines: paroxysmal AF is AF that terminates spontaneously 
or with intervention within 7 days; persistent AF is continuous 
AF that is sustained beyond 7  days (Calkins et  al., 2018). 
MRI data consisted of contrast enhanced magnetic resonance 

strategy for each patient. It suggests that both patient-specific fibrosis properties and 
driver locations are important for planning ablation approaches, and the distribution of 
lesions is important for predicting an acute response.

Keywords: atrial fibrillation, virtual cohort, catheter ablation, atrial fibrosis, phase singularity mapping
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angiogram (CE-MRA) scans, which were used to delineate the 
left atrial (LA) endocardial wall, together with LGE-MRI data, 
which were processed for fibrosis tissue distribution. Image 
acquisition details have been previously published (Sim et  al., 
2019) and are described in the Supplementary Material. Ethical 
approval was granted by regional ethics committee 
(17/LO/0150 and 15/LO/1803).

Geometry Construction
To build an anatomical model for each patient, the left atrium 
was segmented from the CE-MRA images using semi-automated 
tools within CemrgApp software1 (Sim et  al., 2019; Razeghi 
et  al., 2020, see Figure  1A). LGE-MRI scans were registered 
with CE-MRA images to inform the distribution of fibrotic 
tissue incorporated into each virtual patient model (see 
Figure  1B). Each LA segmentation mesh was post-processed 
using multiple steps, to create a mesh suitable for electrophysiology 
simulations  (See Figure  1C). To create a closed surface, the 
following filters were applied using Meshlab software2: Poisson 
surface reconstruction, marching cubes, and quadric edge collapse 
decimation (Cignoni et  al., 2008; Kazhdan and Hoppe, 2013). 
Paraview software (Kitware, Clifton Park, NY, United  States3; 
Ahrens et  al., 2005) was used to clip the closed surface mesh 
at the mitral valve and four pulmonary veins, and to label 
each of the four pulmonary veins and LA appendage (Roney 
et  al., 2019). The clipped and labeled mesh was then re-meshed 
using mmgtools software4 to create triangular elements of 
approximately equal average edge length (0.34 mm). These steps 
are shown in Supplementary Figure 1. This endocardial surface 
mesh was then duplicated and projected 0.1  mm epicardially 
to produce an epicardial surface, and these were coupled using 
linear elements to produce a bilayer model (Labarthe et  al., 
2014). The projection distance is an arbitrary value, since the 
atrial wall thickness is incorporated in the simulations through 
the choice of coupling coefficient, following (Labarthe et al., 2014).

Endocardial and epicardial fibers from a human atrial ex-vivo 
diffusion tensor MRI atlas (Pashakhanloo et  al., 2016; Roney 
et  al., 2020) were registered to each anatomical mesh using 
the universal atrial coordinate system (Roney et  al., 2019). 
Specifically, the fiber fields corresponding to diffusion tensor 
MRI dataset 1 were used because these were shown to optimally 
predict arrhythmia properties (Roney et  al., 2020). Fiber 
streamlines are shown in Figure  1D. More details on fiber 
field assignment are given in the Supplementary Material and 
Supplementary Figure  2. Meshalyzer software5 was used to 
visualize simulation data.

Biophysical Modeling Details
Biophysical simulations were run using Cardiac Arrhythmia 
Research Package CARPentry simulator (Vigmond et al., 2003), 
with the monodomain model for excitation propagation. 

1 www.cemrgapp.com
2 www.meshlab.net
3 www.paraview.org
4 www.mmgtools.org
5 https://git.opencarp.org/openCARP/meshalyzer

The Courtemanche–Ramirez–Nattel human atrial ionic model 
(Courtemanche et al., 1998) was used with the following changes: 
maximal IKr conductance was multiplied by 1.6 to represent 
LA tissue; maximal INa conductance was multiplied by 2 to 
ensure physiological action potential upstroke velocities; and 
maximal IK1 conductance was multiplied by 0.8 for a closer 
agreement with clinical restitution data (Krummen et al., 2012). 
To incorporate the effects of electrical heterogeneity, the cell 
model for the LA model was modified as follows for the LA 
appendage region: maximal ICaL conductance was multiplied 
by 1.06 and maximal Ito conductance was multiplied by 0.67 
(Seemann et al., 2006). For the PV region, the following changes 
were applied to the LA model maximal conductances: gto × 0.75, 
gCaL  ×  0.75, gKr  ×  1.5, and gKs  ×  0.67 (Dorn et  al., 2012; Roney 
et  al., 2016). AF electrical remodeling was incorporated in all 
atrial regions by reducing the maximal ionic conductances of 
Ito, IKur, and ICaL by 50, 50, and 70%, respectively, following 
Courtemanche et  al. (1999). Longitudinal conductivity was 
assigned as 0.4  S/m and transverse as 0.1  S/m.

Fibrosis Modeling
The effects of fibrotic remodeling were included for each anatomy 
according to LGE-MRI intensity values (see Figure 1E). Fibrotic 
remodeling was modeled as regions of conduction slowing 
together with electrophysiological changes. LGE intensity was 
normalized for assigning tissue conductivity regions using the 
maximum and minimum values. Tissue conductivities were 

A B C

D E F

FIGURE 1 | Model construction and atrial fibrillation (AF) simulation. (A) 
Contrast enhanced magnetic resonance angiogram (CE-MRA) imaging 
showing semi-automatic segmentation of atrial imaging. (B) Late-gadolinium 
enhancement (LGE) imaging with registered segmentation overlaid in red. 
Anatomical models for each patient were segmented from CE-MRA images 
and post-processed to create meshes suitable for running biophysical 
simulations. (C) Atrial regions were labeled as follows: left atrial (LA) body 
(light blue), LA appendage (dark blue), left superior pulmonary vein (pink), left 
inferior pulmonary vein (orange), right superior pulmonary vein (yellow), and 
right inferior pulmonary vein (green). (D) Atrial fibers from a human atrial ex-
vivo DTMRI atlas were incorporated using the universal atrial coordinate 
system, and endocardial fibers are visualized here as streamlines. (E) Fibrotic 
tissue was added through registration of LGE-MRI data. (F) AF simulation. AF 
simulations were run on the models using Cardiac Arrythmia Research 
package (CARPentry) software. The images included in this figure are an 
example of one of the virtual patient models of the cohort.
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then modified to result in 100% conduction velocity in regions 
of 0–56% normalized LGE intensity; 80% conduction velocity 
for 56–60% LGE; 60% conduction velocity for 60–64% LGE, 
and 40% conduction velocity for >64% normalized LGE intensity 
(Krueger et al., 2014). For electrophysiological remodeling, LGE 
intensity was rescaled by subtracting the mean blood pool 
intensity and dividing by the standard deviation (SD). Ionic 
properties were modified to represent the effects of elevated 
TGF-ß1 (maximal ionic conductances were rescaled in regions 
with LGE intensity >3 SDs above the mean of the blood pool 
as follows: 50% of the regional ionic model value of gK1, 60% 
of gNa, and 50% of gCaL; Avila et al., 2007; Ramos-Mondragón 
et al., 2011; Roney et al., 2016; Zahid et al., 2016a). To identify 
fibrotic regions, LGE-MRI maps were thresholded at 3 SDs 
above the blood pool mean and separated into different regions 
using a connected component analysis (Roney et  al., 2016).

AF Induction and Post-processing
Atrial fibrillation was equivalently initiated for each anatomy 
(see Figure  1F) by setting initial conditions for each simulation 
which corresponded to four spiral wave re-entries (Matene et al., 
2014; Roney et  al., 2020). This set-up was defined using the 
universal atrial coordinate system (Roney et  al., 2019) as an 
activation time field with two Archimedean spirals on each of 
the posterior and anterior walls, with opposite chirality for 
adjacent spirals. AF induction is described in more detail in 
the Supplementary Material and Supplementary Figure  3.

Arrhythmia simulations were post-processed to identify the 
PS locations for 15  s of arrhythmia data. Spatial PS density 
maps were calculated using our previous methodology (Roney 
et  al., 2016). To identify regions of high PS density, termed 
PS hotspots, PS density maps were thresholded at 1 SD above 
the mean and separated into different regions using a connected 
component analysis.

Ablation Modeling
We tested six different ablation approaches: (i) PVI alone, 
modeled as wide-area encirclement of the pulmonary veins; 
PVI together with: (ii) roof and inferior lines to model posterior 
wall box isolation (box ablation); (iii) isolating the largest 
fibrotic area (identified as high LGE-MRI intensity; single fibrosis 
ablation); (iv) isolating all fibrotic areas (all fibrosis ablation); 
(v) isolating the largest driver region (identified as high PS 
density; single PS hotspot ablation); and (vi) isolating all driver 
regions (all PS hotspots ablation).

To automate ablation lesion application and to produce 
consistent lesions across anatomies, the six different ablation 
approaches (see Supplementary Figure  4) were defined as 
follows. PVI was applied at a fixed distance threshold from 
the junction of the LA body with the pulmonary veins. Roof 
and inferior lines for the box isolation approach were defined 
using the universal atrial coordinate system at the same coordinate 
locations across the virtual cohort (Roney et  al., 2019). To 
identify fibrotic areas for ablation, LGE-MRI maps were first 
thresholded at 3 SDs above the blood pool mean 
(Roney et  al., 2016). Thresholded tissue was then separated 

into connected component regions, and the area of each region 
was calculated. To isolate the largest fibrotic area, the region 
with the largest area was selected for ablation and joined to 
the closest mesh boundary or ablation lesion – in this case, 
either the mitral valve or the PVI lesions. To isolate all fibrotic 
areas, a lesion set was constructed as PVI together with each 
fibrotic region joined to either the closest mesh boundary or 
lesion within the set. Driver region ablation lesions were performed 
in the same way as fibrosis region ablation but according to 
PS density maps thresholded at 1 SD above the mean. Figure 2 
shows the six ablation approaches for one anatomy in the cohort.

Ablation responses were automatically classified as either 
termination, macroreentry, or AF. Macroreentry was classified as 
cases with dominant frequency <4.7  Hz, and AF as cases with 
dominant frequency >4.7 Hz (Ng et al., 2006; Jarman et al., 2012).

Random Forest Classifier
Random forest classifiers were trained to predict binary ablation 
response for three sets of input variables, corresponding to (a) 
imaging metrics alone; (b) imaging and electrical metrics; and 
(c) imaging, electrical, and lesion metrics. The imaging metrics 
used were the total LA body surface area (the surface area of 
the light blue region in Figure  1A), the total pulmonary vein 
surface area (the sum of the surface areas of the pink, orange, 
yellow, and green regions in Figure  1A), and the total fibrotic 
tissue surface area (thresholded at 3 SDs above the blood pool mean).

The electrical metrics were measured from pre-ablation AF 
simulations and included the mean dominant frequency and 
the total PS hotspot area (thresholded at 1 SD above the mean). 
Five lesion metrics were calculated on the atrial mesh after 
ablated tissue was removed. Three metrics were calculated in 
the largest connected region post-ablation as the remaining 
hotspot area, LA surface area, and fibrosis area (calculated as 
the remaining tissue area with reduced conductivity values i.e., 

FIGURE 2 | Anatomical, electrical, and structural ablation approaches. The 
six ablation approaches are indicated by the gray ablation lesions. Anatomical 
approaches, shown in the blue box, include pulmonary vein isolation (PVI) and 
box ablation. Structural ablation approaches, shown in the green box, include 
ablating either a single fibrosis area or all areas of fibrosis on the LGE intensity 
map. Electrical approaches, shown in the red box, include ablating either a 
single phase singularity (PS) hotspot or all PS hotspots based on the pre-
ablation PS hotspot map.
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normalized LGE intensity value >56%). The width of the roof 
metric was calculated as the width of the largest connected 
region measured at a universal atrial coordinate value of 0.5 
(this is zero in the case of box isolation as the roof is not in 
the largest connected region post-ablation). The metric 
corresponding to the smallest channel height post-ablation was 
calculated as the minimum Euclidean distance between the mitral 
valve and ablation lesions of significant size (defined as those 
with area greater than 80% of the second largest ablation lesion).

We split the dataset into training and test sets as a 70:30 
split ensuring that all ablation types for a given anatomical 
model were in the same set. To select hyperparameters for 
the random forest classifiers, we performed 5-fold cross validation 
with a balanced-accuracy criterion on the number of estimators, 
the maximum depth, and the minimum number of samples 
per leaf. The values tested are given in Table  1. These 
hyperparameters were then used for the random forest model 
that was trained using a balanced weighting. Accuracy, precision, 
and recall were calculated on the test set for the three random 
forest classifiers. To assess the importance of the input features 
to the trained random forest classifier, we  used the SHapley 
Additive exPlanations (SHAP) methodology (Štrumbelj and 
Kononenko, 2014). This was performed using scikit-learn in 
python, using the functions RandomForestClassifier and 
GridSearchCV (Varoquaux et al., 2015), and the SHAP toolbox 
(available at: https://github.com/slundberg/shap).

We compared random forest classification to both logistic 
regression (LogisticRegression in scikit-learn) and support vector 
machine classifiers (SVCs in scikit-learn), following 5-fold 
cross-validation to select the optimal hyperparameters.

RESULTS

Paroxysmal and Persistent AF Model 
Ablation Outcomes
Patient characteristics including LA, pulmonary vein and fibrotic 
tissue surface area calculated from the atrial models are given 
in Table  2 for each of the paroxysmal and persistent AF 
cohorts. Supplementary Figure 5 shows that LGE-MRI intensity 
values and distributions vary across the cohort.

The average electrical metrics measured pre-ablation for the 
cohort were a mean dominant frequency of 4.86  ±  0.11  Hz 
and a mean total PS hotspot area of 27.7  ±  9.12  cm2. 
Supplementary Figure 6 shows that AF duration varies between 
models in the cohort. The mean AF duration is 11.0  ±  4.77  s, 
with 11 cases between 2–5  s, 6 between 5–10  s, 10 between 
10–14.9  s, and 23 over 15  s.

Ablation simulations demonstrated a range of outcomes, 
which were classified as AF, atrial tachycardia (AT), or 
termination. Figure  3 shows transmembrane voltage snapshots 
1.5  s after each of the six ablation approaches for one virtual 
patient. For this example, AF continued after three of the 
ablation strategies (PVI, single PS hotspot ablation, and single 
fibrosis area ablation); AF converted to AT after box isolation; 
and the arrhythmia terminated after all PS hotspot ablation 
and after all fibrosis area ablation. The three AF cases were 

labeled acute ablation non-responders, and AT and termination 
cases were labeled acute ablation responders.

Table  3 shows the average lesion metrics for the cohort, 
calculated as properties of the mesh with ablation lesion sets. 
These include the following metrics calculated in the largest 
connected region post-ablation: the remaining hotspot area, 
LA surface area, and fibrosis area; as well as the width of the 
roof and the smallest channel height in the post-ablation mesh.

Ablation outcomes, classified as AF, AT, or termination, are 
shown in Figure 4 for the whole virtual paroxysmal and persistent 
AF cohort with the six ablation strategies. The ablation approaches 
are ordered by the largest area of connected non-ablated LA 
tissue in the post-ablation mesh, with PVI resulting in the largest 
connected area (corresponding to the smallest ablation area), 
and box resulting in the smallest connected area on average 
across the cases. This plot shows that ablating all PS hotspots 
results, on average, in a larger connected area post-ablation 
than box isolation, but more of the cases converted to AT or 
terminated. This demonstrates that it is not simply the area of 

TABLE 1 | Hyperparameter values tested using cross-validation for training 
random forest classifiers.

Hyperparameter Values tested

Number of estimators 10, 20, 50, 70, 80, 100
Maximum depth 4, 8, 16
Minimum number of samples per leaf 5, 10, 20

TABLE 2 | Patient characteristics calculated from the atrial models for the 
paroxysmal and persistent AF cohorts.

Paroxysmal

(n = 20)

Persistent

(n = 30)

Left atrial surface area (cm2) 102.1 ± 19.0 120.1 ± 23.3
Pulmonary vein surface area (cm2) 28.1 ± 7.29 30.4 ± 8.73
Fibrotic tissue surface area (cm2) 23.2 ± 7.89 26.2 ± 5.78

FIGURE 3 | Example transmembrane voltage snapshots demonstrating the 
six ablation approaches. Plots are shown 1.5 s post-ablation, with ablation 
lesions overlaid in gray. Ablation response is indicated by background color: 
responders (AT or termination) are shown with a gray background, and non-
responders (AF) with white.
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ablated tissue that is important, but also the spatial location 
of ablation lesions. The final bar of Figure  4 shows the 
distribution of outcomes if the optimal treatment was chosen 
for each virtual patient. The optimal treatment was defined as 
the strategy that results in termination, or if no termination 
was possible, strategies that resulted in AT were selected. If 
multiple strategies resulted in the same outcome, the strategy 
that resulted in the smallest ablation burden was selected. 
Selecting the optimal treatment for each patient has a greater 
number of termination and AT cases than any of the six 
ablation approaches, and results in a larger connected surface 
area than ablating all PS hotspots.

For 10 of the virtual patients, all ablation strategies tested 
resulted in AF continuation. These cases are therefore 
non-responders to the six strategies used. Conversely, for nine 
of the virtual patients, AF converted to AT or terminated for 
all six strategies. For each case, we  ranked all strategies that 
result in an acute ablation response by decreasing remaining 
tissue surface area. Optimal ablation approaches were all driver 
regions (46%), PVI (20%), box (6%), all fibrosis areas (4%), 
single driver regions (2%), and single fibrosis area (2%). Twenty 
percentage of cases remained in AF for all ablation strategies.

Supplementary Table  1 shows that the methodology used 
for modeling atrial fibrosis and tuning model properties affects 
the predicted ablation outcome.

Predicting Outcome Using Random Forest 
Classifiers
There are many factors that contribute to the continuation of 
AF. We used a machine learning classifier to identify the factors 
that predicted response to ablation strategies. To predict ablation 
response for the virtual patients, we  trained random forest 
classifiers with the following input variables: (a) imaging metrics 
alone; (b) imaging and electrical metrics; and (c) imaging, 
electrical, and lesion metrics. Optimal hyperparameters were 
50 estimators, a maximum depth of 8, and a minimum number 
of samples per leaf of 5. The accuracy, precision, and recall 
measured on the test set were as follows for each of the three 
classifiers: (a) 0.72, 0.73, and 0.72; (b) 0.73, 0.74, and 0.73; 
and (c) 0.83, 0.85, and 0.83. As such, the addition of lesion 
metrics to the model improves its predictive capability compared 
to simply including the ablation type. The effects of the choice 
of classifier were tested by also training a logistic regression 
and SVC. Using all input variables (imaging, electrical, and 
lesion metrics), the accuracy, precision, and recall on the test 
set were lower for the trained logistic regression: 0.67, 0.69, 
and 0.67, and for the trained SVC: 0.76, 0.76, and 0.76.

SHapley Additive exPlanations analysis was performed to 
determine the relative importance of each variable to the classifier 
prediction. For classifiers (a) and (b), the type of ablation 
applied was the most important feature for the prediction. For 
the imaging metric model, the total fibrosis area and the total 
LA surface area were the next most important variables, where 
higher values of each were more likely to be  associated with 
AF post-ablation. For the imaging and electrical metric model, 
this was also the case, and electrical metrics were less important.

Figure  5 shows the SHAP summary plot for the combined 
imaging, electrical, and lesion metrics model. Each point 
represents a variable value for one of the 300 cases. The 
horizontal location indicates whether the effect leads to a higher 
or lower predicted probability (with 0 as responder and 1 as 
non-responder). Blue points indicate a low value, and red 
points indicate a high value for an observation. Each of the 
following lesion metrics was found to be  positively correlated 
with positive prediction (AF, non-responder): remaining hotspot 
area, remaining fibrosis area, post-ablation roof width, and 
remaining LA surface area.

Effects of Lesion Metrics on Acute 
Ablation Response
The SHAP analysis highlighted that the remaining pre-ablation 
PS hotspot area following ablation is a key determinant of 
AF termination. As an example of this, Figure  6 shows PS 

FIGURE 4 | Simulated ablation outcomes classified as AF, AT, or termination 
varies between the six ablation approaches. The strategies are ordered by the 
largest area of connected non-ablated tissue in the post-ablation mesh, which 
are listed as mean and standard deviation (SD) values above the bar chart. The 
number of outcomes classified as AF is in blue, AT in red, and termination in 
yellow. The final bar shows the distribution of outcomes if the optimal treatment 
was chosen for each virtual patient. AF, atrial fibrillation; AT, atrial tachycardia; 
Term, termination; PVI, pulmonary vein isolation; PS, phase singularity.

TABLE 3 | Average lesion metrics across the virtual cohort for the different ablation approaches.

Property PVI Box Single hotspot All hotspots Single fibrosis All fibrosis

Remaining LA surface area (cm2) 90.1 ± 22.4 70.2 ± 19.2 87.1 ± 22.2 80.2 ± 20.6 88.3 ± 21.8 82.9 ± 20.2
Remaining fibrosis area (cm2) 32.6 ± 22.9 25.3 ± 19,6 30.1 ± 22.5 25.6 ± 20.5 30.9 ± 23.1 27.1 ± 22.4
Remaining hotspot area (cm2) 21.0 ± 8.02 19.6 ± 7.40 15.4 ± 7.08 0.00 ± 0.00 17.9 ± 7.29 13.1 ± 7.05
Conducting roof width (cm) 2.84 ± 1.05 0.00 ± 0.00 2.75 ± 1.14 2.60 ± 1.13 2.83 ± 1.05 2.81 ± 1.06
Smallest post-ablation channel 
height (cm)

1.96 ± 0.81 1.87 ± 0.79 1.89 ± 0.89 1.02 ± 0.87 1.96 ± 0.82 1.34 ± 0.98
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hotspot maps with ablation lesions that targeted all fibrosis 
regions indicated in gray on the atrial shell. The maps are 
shown in order of increasing remaining PS hotspot area, with 
background color indicating acute ablation outcome (gray for 
responders and white for non-responders). There are more 
acute responders for low than high remaining PS hotspot areas. 
This is indicated by a higher number of maps with a gray 
background in the upper rows of the figure.

The area of fibrosis remaining post-ablation was also found 
to be  an important factor for predicting ablation outcome. 
Figure 7 shows an example of cases with high and low remaining 
fibrosis area following single PS hotspot ablation. The case 
with a larger non-isolated fibrosis area (47.9  cm2) shown in 
the top row is an acute ablation non-responder since AF 
continues post-ablation, while a case with a smaller non-isolated 
fibrosis area (1.57 cm2) converts post-single PS hotspot ablation.

DISCUSSION

Main Findings
This virtual patient cohort study demonstrates the use of a 
simulation and a machine learning platform for trialing and 
analyzing different ablation approaches. We  present an efficient 
pipeline for constructing models from LGE-MRI imaging data 
(4.5 h from imaging to patient-specific model with DTMRI fibers, 
regional heterogeneity, and fibrotic remodeling), which we utilized 
to generate the first cohort of atrial models with fibers from a 
DTMRI atlas and the largest cohort of atrial models constructed 
from LGE-MRI data. Specifically, we  automatically applied six 
ablation approaches that target features of the anatomical, structural, 

FIGURE 5 | SHapley Additive exPlanations (SHAP) variable importance plot for the trained classifier using imaging, modeling, and ablation lesion metrics. Variables 
are ranked by the SHAP analysis in descending order of importance, with a red or blue color indicating a high or low value for the observation, respectively.

FIGURE 6 | Remaining PS hotspot areas affect ablation outcome. Pre-
ablation PS hotspot maps are shown for each virtual patient with ablation 
lesions targeting all fibrosis regions (ablation strategy iv) overlaid in gray. Cases 
are ordered by increasing remaining PS hotspot area, shown by directions of 
horizontal red arrows and increasing by row, indicated by the red vertical ramp. 
The background color indicates acute ablation outcome: gray for responders 
(AT or termination) and white for non-responders (AF). There are more acute 
responders for cases with low than high remaining PS hotspot areas.

FIGURE 7 | Non-isolated fibrosis area affects ablation outcome. The top row 
shows an acute non-responder and the bottom row shows an acute responder 
to the single PS hotspot ablation strategy (strategy number v). For each, the 
pre-ablation PS hotspot map is shown in the first column; the fibrosis intensity 
map in the second column; and a transmembrane voltage map at 1.5 s post-
ablation in the third column. Ablation lesions corresponding to the largest PS 
hotspot are shown in gray overlaid on the fibrosis maps and transmembrane 
voltage maps. There is a larger area of non-ablated fibrosis for the largest post-
ablation tissue region in the top row (47.9 cm2) than the bottom row (1.57 cm2) 
suggesting that non-isolated fibrosis area affects ablation outcome.
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or electrical AF substrates to 20 paroxysmal and 30 persistent 
patient-specific models. Optimal ablation approaches in order of 
prevalence were all driver regions (46%), PVI (20%), box (6%), 
all fibrosis areas (4%), single driver regions (2%), and single 
fibrosis area (2%). Around 20% of cases remained in AF for all 
ablation strategies. Randomized controlled trials have answered 
some of the questions regarding ablation of long-standing persistent 
AF; however, the critical question of technique over debulking 
persists (Brooks et  al., 2010). We  show that optimal outcomes 
require targeting different ablation strategies in different patients 
and that targeting the AF substrate can be  effective beyond its 
effect on debulking the atria. Overall, our study suggests that 
both patient-specific fibrosis properties and driver locations are 
important for planning ablation approaches, and the distribution 
of lesions is important for predicting an acute response.

Anatomical Ablation Approaches
We observed a variation in the outcome of the six ablation 
approaches used across the cohort of models constructed 
(Figures 3, 4). For example, PVI ablation alone was sufficient 
for an acute response – and hence the optimal ablation 
approach – for 20% of the virtual patient models. Lim et  al. 
(2015) reported a higher acute AF termination rate with 
PVI of 30–60% across multiple clinical trials. This value may 
be  lower in our study because we  only studied the ability 
of the atria to sustain rather than initiate AF; the significant 
impact of trigger removal on outcome is therefore not captured 
by our current model. The box ablation lesion set applied 
in our study converted AF to either AT or termination for 
58% of the virtual patient models (Figure  4). However, the 
box approach removes a large area of LA tissue and so this 
approach was optimal for only 6% of these models. This 
success rate could be  improved by applying a patient-specific 
box size and location depending on the individual patient 
conduction and repolarization properties. Williams et  al. 
(2019) proposed an approach for targeting box ablation lesion 
sets depending on the patient-specific electrical size. This 
proposition should also be considered when aiming to achieve 
a greater success rate.

Structural Ablation Approaches
Several clinical centers target the fibrotic substrate during 
ablation therapy to remove or isolate fibrotic tissue which may 
or may not anchor electrical drivers. Fibrotic tissue can 
be identified through either electroanatomic mapping (Kottkamp 
et  al., 2016) or atrial imaging (Cochet et  al., 2015). In our 
study, we  simulated ablation of fibrotic areas identified from 
LGE-MRI data. The area of fibrotic tissue in the largest remaining 
tissue region post-ablation was found to be  important for 
predicting ablation response (Figure  7). This suggests that 
identifying fibrotic tissue either through imaging or 
electroanatomic mapping is important, and the choice of 
measuring modality is likely to affect the identified substrate. 
However, our findings also indicate that structural ablation 
approaches targeting fibrotic tissue areas were not as successful 
as electrical ablation approaches targeting PS driver hotspots. 

Thus, it may be important to map or predict using simulations, 
the distribution of electrical drivers when planning ablation 
therapy and fibrosis imaging alone may not be  sufficient to 
guide ablation in all cases.

Electrical Ablation Approaches
Ablating all PS driver hotspots was the most effective ablation 
strategy in our study; resulting in a positive response for 74% 
of cases and represented the optimal approach for 46% of 
cases. This suggests that PS hotspots play a key role in driving 
AF (Figure  7). However, despite ablating all the PS hotspots 
identified through pre-ablation simulation processing, 26% of 
cases were still able to sustain AF. This suggests that not all 
possible PS hotspots are identified during a single AF episode, 
motivating the methodology of Boyle et al. (2019) that identifies 
different driver locations through different AF initiation protocols. 
Narayan et al. (2012) demonstrated high success rates by ablating 
focal and re-entrant drivers identified through phase and 
activation mapping of basket catheter data (Schricker and 
Zaman, 2015). Ensuring the correct classification of phase 
singularities is critical for targeting ablations because wavefront 
break up does not represent an equal target to a stable rotor. 
An optimal method of ablation likely involves an appropriate 
combination of anatomical, structural, and electrical 
ablation approaches.

Comparison With Other Ablation 
Simulation Studies
There is a variation between both clinical and simulation studies 
in the ablation approaches utilized. We  joined ablation lesions 
to their closest boundary similar to the study of Weiss et  al. 
(2016) which showed that ablating from the center of a mother 
rotor to a boundary terminated the arrhythmia. Shim et  al. 
(2017) compared persistent AF ablation using empirically chosen 
ablation lesion sets (n  =  55) to simulation guided lesion sets 
(n  =  53), chosen from five different lesion sets (PVI, three 
linear ablations, and one electrogram-guided ablation). They 
demonstrated that ablation guided by simulations was feasible 
in clinical practice and not inferior to empirically chosen 
ablation lesion sets. Bayer et al. (2016) performed a simulation 
study to compare (1) PVI with roof and mitral lines; (2) circles, 
lines, or crosses near rotor locations; and (3) 4–8 lines applied 
to streamline the patient-specific sinus rhythm activation 
sequence. They found that streamlining activation sequences 
is a robust alternative ablation approach for cases where other 
approaches do not terminate AF. This represents a further 
ablation pattern that could be  tested using our simulation and 
machine learning methodology. In addition, Roney et al. (2018) 
used a virtual pilot clinical study to predict whether ablating 
interatrial connections would return the right atrium to sinus 
rhythm. Our current study could be extended to biatrial meshes 
to investigate the importance of the right atrium in AF. In a 
pioneering clinical trial, the optimal target identification via 
modeling of arrhythmogenesis approach clinically ablates fibrotic 
tissue identified as an ablation target using computational 
simulations (Boyle et  al., 2019).
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Designing Patient-Specific Lesion Sets
We have developed a virtual patient cohort that can be  used 
to predict the optimal ablation strategy for a given patient. 
Our results (Figure  4) demonstrate that it is not simply the 
area of ablated tissue that is important in determining ablation 
outcome, but also the spatial location of ablation lesions in 
relation to the anatomy, fibrotic tissue distribution and driver 
positions, and necessitating patient-specific therapy. While 
providing mechanistic understanding, current simulation strategies 
take extensive time to create, simulate, and analyze the model 
output. We  have shown that with a limited dataset we  can 
create a classifier with accuracy of 0.83. Increasing the dataset 
size or number of features may increase the classifier accuracy. 
Alternately, the simulation-trained classifier could be  used to 
initialize a classifier based on clinical data to accelerate learning 
from smaller clinical data sets. In addition, the classifier could 
be used together with a minimal cut analysis to find a successful 
ablation approach that minimizes ablation area and maximizes 
the area of conducting tissue (Zahid et  al., 2016b).

Limitations
The results of our simulation predictions need to be  compared 
to the clinical ablation approach and outcome. Our study investigates 
whether an arrhythmia can be  sustained and does not include 
the effects of triggered beats. There was no significant difference 
between paroxysmal and persistent virtual patient ablation outcomes 
in our study. This may be  because we  did not simulate the 
effects of triggered beats for initiating AF. We  did not include 
personalized electrophysiology in our simulations, and this may 
affect AF properties and ablation outcome. Similar to previous 
studies (Roney et  al., 2016), our current study shows that the 
modeling methodology used for incorporating the effects of atrial 
fibrosis affects simulation outcome. Future studies should optimize 
the choice of fibrosis modeling methodology through comparison 
with clinical outcome. In addition, we  did not model the effects 
of variable wall thickness, which has been shown to affect PS 
stability and meander (Roy et al., 2018). We performed monodomain 
simulations, and although the differences with bidomain simulations 
for paced activation have been shown to be  small (Potse et  al., 
2006), differences for our AF simulations should be  investigated. 
We only included 50 patient-specific models which are insufficient 
to predict optimal ablation pattern for the six approaches simulated. 
We simulated and predicted acute outcome, which while correlated 
with, is not equivalent to long term outcome (Lim et  al., 2015). 
We  joined ablated regions to their closest region with additional 
ablation lines to avoid islands of ablated tissue causing re-entry; 
however, how best to do this requires further investigation.

CONCLUSION

Overall, our virtual cohort study has demonstrated the 
importance of considering the effect of patient-specific fibrosis 
properties and driver locations when planning ablation 
approaches. It is important to consider these factors and the 
distribution of lesions in order to select the optimal ablation 
strategy for each patient.
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