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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of COVID-19. Testing
for SARS-CoV-2 infection is a critical element of the public health response to COVID-19. Point-of-care
(POC) tests can drive patient management decisions for infectious diseases, including COVID-19. POC tests
are available for the diagnosis of SARS-CoV-2 infections and include those that detect SARS-CoV-2 anti-
gens as well as amplified RNA sequences. We provide a review of SARS-CoV-2 POC tests including their
performance, settings for which they might be used, their impact and future directions. Further optimiza-
tion and validation, new technologies as well as studies to determine clinical and epidemiological impact
of SARS-CoV-2 POC tests are needed.
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Current global COVID-19 situation, & role of laboratory testing
Severe acute respiratory syndrome coronavirus (SARS-CoV-2), the etiologic agent of COVID-19, was first detected
in Wuhan, Hubei Province, China in December of 2019 [1]. The rapid increase and spread in reported cases
triggered the World Health Organization to declare COVID-19 to be a global pandemic on 11 March 2020. As of
20 April 2021, over 140 million confirmed COVID-19 cases and over 3 million deaths have been reported globally
(https://www.who.int/emergencies/diseases/novel-coronavirus-2019).

Testing for SARS-CoV-2 infection is a critical component of the public health response to COVID-19, in part
because asymptomatic infections are common and contribute to COVID-19 transmission [2,3]. Testing identifies
infected individuals to be quarantined or isolated for infection control purposes [4], (1) impacts patient management
decisions [5] (2), and guides therapeutic strategies (https://www.covid19treatmentguidelines.nih.gov/). Antivirals
and monoclonal antibody therapies are available for COVID-19, and their initiation is dependent upon positive
results of SARS-CoV-2 testing.

Laboratory tests for SARS-CoV-2
Laboratory tests for SARS-CoV-2 infection include nucleic acid amplification, antigen detection and antibody
or serologic tests [6–8]. Nucleic acid amplification tests (NAATs) and antigen tests provide diagnosis of acute
infection when viral titers are highest. In addition, NAATs can reliably detect asymptomatic and pre-symptomatic
infections [9,10], including in pooled specimens [10–14] due to their high sensitivity [15]. Because of their high
sensitivity and specificity, NAATs are considered the gold standard for diagnostic detection of SARS-CoV-2
(https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antigen-tests-guidelines.html). Because it may take 10
or more days after symptom onset for development of detectable levels of antibodies to SARS-CoV-2 to occur [16,17],
serologic tests should not be used alone to diagnose acute COVID-19 [18,19].

Point-of-care laboratory tests for SARS-CoV-2 & their regulation in USA
The current widely accepted definition of point of care (POC) testing includes testing that occurs at or near the
point of patient care, such that the results drive patient care decisions made during that encounter [20,21]. POC
tests are performed in a variety of settings including physician offices, emergency department, urgent care facilities,
school health clinics and pharmacies. Some POC tests are approved, cleared or authorized by regulatory bodies to
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Table 1. Rapid antigen tests with US FDA EUA for use at settings operating under a CLIA certificate of waiver.
Assay name Manufacturer Assay format SARS-CoV-2 limit of

detection†
Published studies
describing
performance

Published
outcome studies

Ref.

BD Veritor SARS-CoV-2; BD
Veritor SARS-CoV-2 & Flu
A + B

Becton, Dickinson and
Company

Digital chromatographic
immunoassay; instrument
read

2.8 × 102

TCID50/ml
None [24,25]

BinaxNOW COVID-19 Abbott Diagnostics
Scarborough, Inc.

Lateral flow; visual read 140.6 TCID50/ml None [26–32]

CareStart COVID-19 Access Bio, Inc. Lateral flow; visual read 8 × 102 TCID50/ml None None

Clip COVID Luminostics, Inc. Lateral flow
immunoluminescent;
instrument read

0.88 × 102

TCID50/ml
None None

Ellume COVID-19 Ellume Limited Lateral flow; fluorescence;
instrument read

103.80 TCID50/ml None None

LumiraDx SARS-CoV-2 LumiraDx UK Ltd. Microfluidic
immunofluorescence;
instrument read

32 TCID50/ml None [33,34]

QuickVue COVID-19 and
QuickVue SARS

Quidel Corporation Lateral flow; visual read 1.91 × 104

TCID50/ml
None None

Sofia SARS Antigen FIA Quidel Corporation Lateral flow; fluorescence;
instrument read

1.13 × 102

TCID50/ml
None [35–38]

Sofia 2 Flu + SARS Quidel Corporation Lateral flow; fluorescence;
instrument read

91.7 TCID50/ml None [24]

Status COVID-19/Flu Princeton BioMeditech
Corp.

Lateral flow; visual read 2.7 × 103

TCID50/ml
None None

† Information from manufacturers’ instructions for use available at [39].

be performed by non-laboratory professionals [22,23]. Recently, the COVID-19 pandemic has shined a spotlight on
Clinical and Laboratory Improvement Amendments (CLIA)-waived diagnostic testing. Some SARS-CoV-2 tests
have received Emergency Use Authorization (EUA) from the US FDA for use in CLIA-waived testing sites. Waived
testing is defined by CLIA as simple tests that carry a low risk for an incorrect result. Waived tests can be performed
without the need for the conduct of more stringent quality standards imposed by CLIA for non-waived testing.
Both waived and non-waived tests can be performed at the POC. But the complexity of tests performed at a testing
site is determined by its type of CLIA certificate; a testing site with a certificate of waiver can perform only waived
tests. Under CLIA, testing sites with a certificate of waiver are generally exempt from most US regulatory oversight
requirements for non-waived laboratories, including personnel qualifications, training, test method verification and
proficiency testing or external quality assessment. However, some accreditation agencies in the US and local or state
governments may have more strict quality requirements for POC sites that perform testing for SARS-CoV-2. For a
list of SARS-CoV-2 antigen tests with EUA for settings operating under a CLIA Certificate of Waiver, see Table 1.
Additional FDA authorizations for at-home use are described separately.

Commercially available SARS-CoV-2 NAATs and antigen tests are available in both high throughput batch-
based format often employing large instrumentation, and single-use portable sample-to-answer format that can
be performed on demand for fast results. Rapid, single-use tests are often used at the POC. The World Health
Organization (WHO) developed the ASSURED criteria as a standard for rapid tests for detection of sexually
transmitted infections in resource-limited settings [40]. These criteria can be applied to POC tests for all infectious
diseases, including COVID-19. The ASSURED criteria describe the most desirable attributes of POC tests, and are
Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users [41].
Some of these criteria, such as equipment-free, are more relevant for resource-limited, remote settings with unreliable
electrical power. But affordability, test accuracy and rapid time to result are attributes of POC that are important
universally.

POC rapid antigen tests
Rapid antigen tests with US FDA EUA as of 4 April 2021, for use in patient care settings operating under a
CLIA certificate of waiver are listed in Table 1. In general, the analytical sensitivity, or lower limit of detection of
rapid antigen tests is several logs less than that of the most sensitive NAATs. This consistently translates in lower
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diagnostic sensitivity, or positive agreement with NAATs [42]. In direct comparisons against RT-PCR, rapid antigen
tests were most likely to produce false-negative results from specimens with late RT-PCR cycle threshold values
(>30) corresponding with lower viral loads.

An evaluation of the BD Veritor SARS-CoV-2 test (Becton, Dickinson and Company, MD, USA) in a symp-
tomatic population with median age of 43 years showed positive percent agreement (PPA) with RT-PCR ranged
from 87.5% for specimens collected within 1 day after symptom onset, to 76.3% for specimens collected 7 days
after symptom onset [24]. Most specimens with false-negative Veritor results had RT-PCR cycle threshold (Ct)
values of 25 or greater. The same study also directly compared the Veritor assay with the Sofia 2 Flu + SARS assay
(Quidel Corporation, CA, USA), and showed high (>97%) PPA and negative percent agreement (NPA). Another
evaluation of the Veritor SARS-CoV-2 test, also performed in a symptomatic population with a similar median
age, showed Veritor sensitivity of 66.4% compared with an EUA RT-PCR test (Simplexa COVID-19; Diasorin
Molecular LLC, CA, USA) [25]. Again, specimens with discordant negative Veritor results had higher Ct values by
RT-PCR.

Several studies have evaluated the performance of the BinaxNOW test (Abbott Diagnostics Scarborough, Inc.,
ME, USA) [26–32]. Prince-Guerra reported high specificity of BinaxNOW in a population with median age of
41 years, but sensitivities of 35.8 and 64.2% from asymptomatic and symptomatic patients, respectively [26].
When viral culture was positive, BinaxNOW sensitivity increased to 78.6 and 92.6% among asymptomatic and
symptomatic subjects, respectively. James et al. reported slighter higher sensitivity of BinaxNOW than reported by
Prince-Guerra, (51.6 and 83.3% in asymptomatic and symptomatic persons, respectively) [30] but their study was
conducted in an entirely adult population. Another study reported BinaxNOW sensitivity of specificities of 93.3
and 99.9%, respectively, in subjects with high viral loads (RT-PCR Ct values <30) [27]. Pollock et al. evaluated
the performance of BinaxNOW in a community drive-through testing site. BinaxNOW specificity was high in
both adults and children. Sensitivities were 96.5 and 84.6%, compared with RT-PCR, in adults and children,
respectively, within 7 days of symptom onset. In asymptomatic adults and children, sensitivities were 70.2 and
65.4%, respectively [31]. As reported elsewhere, sensitivity was highest (95.8%) when RT-PCR Ct values were ≤30.
Okoye et al. evaluated BinaxNOW in an asymptomatic university setting (mean age 24 years) and found 53.3%
sensitivity compared with RT-PCR.

As described above, the Sofia 2 assay was shown to have high agreement with BD Veritor assay for SARS-CoV-2
antigen detection. Another study reported Sofia PPA with Aptima SARS-CoV-2 TMA test (Hologic, Inc., CA,
USA) of 82% in patients presenting within 5 days of symptom onset, and 54.5% when specimens were collected
greater than 5 days after symptom onset [32]. Unlike other studies which showed lower sensitivity/positive agreement
for antigen tests performed in children, the positive agreement of Sofia did not vary substantially between children
and adults. Evaluation of Sofia at a university setting (primarily students) showed sensitivities of 80 and 41.2%,
compared with RT-PCR, in symptomatic and asymptomatic persons, respectively [35]. Kohmer et al. compared
the LumiraDx SARS-CoV-2 test (LumiraDx UK Ltd, Alloa, UK) to quantitative RT-PCR [33]. Among residents
of a shared living facility, screened without regard for clinical symptoms, LumiraDx sensitivity and specificity
were 50 and 100%, respectively. Of RT-PCR positive specimens containing ≥6 log10 RNA copies/ml, LumiraDx
sensitivity was 100%. Drain et al. compared LumiraDx to the cobas 6800 RT-PCR test (Roche Molecular Systems,
NJ, USA) in a multi-site study [34]. Most subjects (81%) were symptomatic and the mean age was 34 years. Overall,
the LumiraDx assay had a reported sensitivity of 97.6% and specificity of 96.6% up to 12 days post symptom onset
for nasal swab samples.

A recent meta-analysis reported the sensitivities of rapid POC antigen tests [43]. Time post symptom onset and
viral loads [as estimated by PCR cycle threshold (Ct) values] impacted the sensitivity of antigen tests. Average
sensitivity of antigen tests was higher when specimens were collected during the first week compared with second
week post symptom onset (78.3 vs 51.0%, respectively). Average sensitivity in specimens with PCR Ct values ≤25
was 94.5%, compared with 40.7% in specimens with Ct values >25. Unfortunately, we were unable to find any
published peer-review studies evaluating the outcomes provided by rapid antigen tests performed at the POC.

POC NAATs
NAATs, particularly RT-PCR, are considered the gold-standard for laboratory diagnosis of SARS-CoV-2 infection
because of their high sensitivity and specificity. However, some rapid NAATs are less sensitive than RT-PCR-based
POC tests. Table 2 provides a list of SARS-CoV-2 NAATs with EUA for use in CLIA-waived testing sites, as of 3
April 2021. Additional authorizations for at-home use are described separately.
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Table 2. Nucleic acid amplification tests with US FDA EUA for use at settings operating under a CLIA certificate of
waiver.
Assay name Manufacturer Assay format SARS-CoV-2 limit of

detection†
Published studies
describing
performance

Published
outcome studies

Ref.

Accula™ SARS-CoV-2 Mesa Biotech, Inc. RT-PCR; lateral flow; visual
read

150 copies/ml None [44]

BioFire R© Respiratory Panel
2.1-EZ

Biofire Diagnostics,
LLC

Reverse transcription;
nested multiplex PCR;
instrument read

500 copies/ml No evaluations of
2.1-EZ. Studies of de
novo 510(k)-cleared
Respiratory Panel 2.1
for non-waived testing
laboratories

None [45,46]

cobas R© SARS-CoV-2 &
Influenza A/B; cobas Liat
System

Roche Molecular
Systems, Inc.

RT-PCR; instrument read 0.012 TCID50/ml None [47]

Cue™ COVID-19 Cue Health, Inc. Reverse transcription;
isothermal amplification;
mobile smart device read

20 genome
copies/sample
wand

None [48]

ID NOW COVID-19 Abbott Diagnostics
Scarborough, Inc.

Reverse transcription;
isothermal amplification;
instrument read

125 genome
equivalents/ml

[30,43,49–63]

Lucira™ COVID-19 Lucira Health, Inc. Reverse transcription;
isothermal amplification;
disposable device read

2700 copies per
swab

None None

Xpert R© Xpress SARS-CoV-2 Cepheid RT-PCR; instrument read 0.0200 PFU/ml [43,53,56,59,60,
62,64–8283,84]

Xpert Xpress
SARS-CoV-2/Flu/RSV

Cepheid RT-PCR; instrument read 131 copies/ml None [85,86]

Visby Medical™ COVID-19 Visby Medical, Inc. RT-PCR; visual read 435 copies/swab None None

† Information from manufacturers’ instructions for use, available at [87].

Hogan et al. compared the Accula™ SARS-CoV-2 test (Mesa Biotech, Inc., CA, USA) to a laboratory developed
RT-PCR test [44]. The Accula test had poor PPA of 68%, missing specimens containing low viral loads. We were
unable to find published studies of the performance of the BioFire R© Respiratory Panel 2.1-EZ panel (BioFire
Diagnostics, LLC, UT, USA). However, the non-waived version of the panel has been evaluated and demonstrated
good agreement with laboratory-developed and EUA RT-PCR tests [45,46]. Analytically, the BioFire SARS-CoV-2
assay was less sensitive than the Xpert R© Xpress SARS-CoV-2 (Cepheid, CA, USA) and cobas tests, but more
sensitive than ID NOW [46]. A multi-site study comparing the cobas Liat SARS-CoV-2 & influenza A/B nucleic
acid test to the cobas 68/8800 SARS-CoV-2 test showed PPA and NPA for SARS-CoV-2 of 100 and 97.4%,
respectively [47]. Donato et al. compared the Cue™ COVID-19 test (Cue Health Inc., CA, USA) to the Aptima
SARS-CoV-2 on a Hologic Panther instrument. In a community drive through collection setting including both
symptomatic and asymptomatic outpatients the overall PPA and NPA were 91.7 and 98.4%, respectively [48].

The ID NOW COVID-19 test (Abbott Diagnostics Scarborough, Inc.) has been extensively evaluated [30,43,49–

62]. Analytically, ID NOW is substantially less sensitive than RT-PCR-based methods [62]. This lower analytical
sensitivity translates into lower PPA compared with RT-PCR, which ranged from 48 to 94% in the cited studies.
As expected, specimens positive by RT-PCR that were negative by ID NOW had higher Ct values (lower viral
loads). In one study, ID NOW PPA was 34.3% among specimens with RT-PCR Ct values >30 [60]. Processing
nasal swabs directly by the ID NOW assay, versus pre-elution in 3 ml of viral transport medium (VTM), has
been recommended to improve sensitivity. However, two studies showed that direct processing of swabs actually
decreased ID NOW PPA compared with swabs in VTM [53,88]. Studies showed high NPA of ID NOW, near or at
100%.

The Xpert Xpress SARS-CoV-2 test (Cepheid) has also been extensively evaluated [43,53,56,59,60,62,64–82]. Most
studies have reported high sensitivity or PPA- >98%- compared with other RT-PCR-based tests. Lowe et al.
reported 100% PPA between Xpress SARS-CoV-2 test and cobas among specimens with cobas Ct values between
30 and 33.9, but Xpress test failed to detect three of nine specimens with cobas Ct values ≥34 [67]. Most studies
also report high NPA with other RT-PCR-based tests. When positive Xpress SARS-CoV-2 results were discordant
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with the comparator method, testing with a third highly sensitive method usually agreed with Xpress test [65,79].
Falasca et al. described specimens with late Xpress SARS-CoV-2 Ct values for the N2 target [73]. Authors attempted
to concentrate specimens by centrifugation to increase the positive signal. This failed in some instances, but the
relative centrifugal force used may have been insufficient to pellet free virus. Khoshchehreh et al. reported that Xpress
SARS-CoV-2 results with late Ct values occurred in symptomatic patients with new COVID-19 diagnosis, and in
asymptomatic patients with clinical findings consistent with sub-clinical disease [74]. In one study, the Xpert Xpress
test was compared in parallel to two SARS-CoV-2 assays (BioGerm and Sansure) cleared by the Chinese National
Medical Products Administration in China. The sensitivity of Xpress SARS-CoV-2 test was 100% compared with
96.15% for the BioGerm and 90% for the Sansure kits. The specificity was 100% for all three assays. The limit of
detection is 100 copies/ml for Xpert Xpress and 500 copies/ml for the BioGerm kit and Sansure kit [66].

Recognizing that SARS-CoV-2 transmission may occur during seasonal influenza and concurrent with trans-
mission of other respiratory viruses such as respiratory syncytial virus (RSV), several manufacturers have created
multiplexed assays for simultaneous detection of SARS-CoV-2 and additional respiratory viruses. These include
the BD Veritor SARS-CoV-2 & Flu A + B (Becton, Dickinson and Company), Sofia 2 Flu + SARS (Quidel
Corporation), Status COVID-19/Flu (Princeton BioMeditech Corp.), BioFire R© Respiratory Panel 2.1-EZ (Biofire
Diagnostics, LLC), cobas R© SARS-CoV-2 & Influenza A/B (Roche Molecular Systems, Inc.), and Xpert R© Xpress
SARS-CoV-2/Flu/RSV (Cepheid) (Tables 1 & 2). The performance of the Xpert Xpress SARS-CoV-2/Flu/RSV
test has been described in two studies [85,86]. PPA and NPA were high when compared with other RT-PCR based
tests.

Impact of SARS-CoV-2 NAATs performed at the POC
We identified three peer-reviewed studies that evaluated the impact of rapid NAAT performed at the POC,
including one which involved the Xpert Xpress SARS-CoV-2 test. Hinson et al. performed the Xpress SARS-CoV-
2 test on demand in the Emergency Department and compared impact with batch RT-PCR testing in a central
laboratory [89]. Rapid testing at the POC was associated with a significant reduction in the time to removal from
isolation for patients with negative test results, an increase in COVID-19 treatment capacity, and conservation of
personal protective equipment. Another study compared the impact of a non-EUA NAAT performed at POC, to a
batch-based RT-PCR performed in a central laboratory [89]. The time to result for the POC NAAT was significantly
shorter than the standard lab RT-PCR, and POC testing resulted in faster time to final bed placement from the
Emergency Room, increased isolation room availability, and faster patient discharge. Brendish et al. reported that
time to arrival in a definitive clinical area was significantly shortened by rapid POC molecular testing [90].
Hengel et al. described a model for the implementation of decentralized COVID-19 POC testing in remote locations
by use of the Cepheid GeneXpert R© platform, which has been successfully scaled up in remote Aboriginal and Torres
Strait Islander communities across Australia. The analysis indicated that implementation of the decentralized POC
testing model should be considered for communities in need, especially those that are undertested and socially
vulnerable [91].

At-home testing for SARS-CoV-2
SARS-CoV-2 tests with FDA authorization for use at home are primarily based on rapid isothermal amplification
of nucleic acids or antigen detection. The advantages and limitations of these methods have been described [92].
At-home testing (specimen collection, test and result interpretation) is performed by an individual on their own
without supervision of a trained health professional. For the purpose of this review, we considered at-home tests
separately from POC tests, because they are not performed at the same location where care is provided. At-home
test results do not guarantee initiation of treatment or other interventions. Nonetheless, at-home tests have the
potential to broaden access to testing and increase testing rates [93,94]. To date the US FDA has granted EUA to five
SARS-CoV-2 tests for at-home use. Four of these at-home tests have received EUA for over-the-counter (OCT)
use without a prescription, and one has received EUA for prescription home testing. Rapid antigen tests with
at-home OTC use authorization include the QuickVue R© At-Home OTC COVID-19 test (Quidel), BinaxNOW™
COVID-19 Antigen test (Abbott), and Ellume COVID-19 Home Test (Ellume Limited, East Brisbane, Australia).
A single NAAT has received EUA for OTC at-home use: Cue™ COVID-19 Test (Cue Health). Finally, one NAAT
has EUA for prescription home testing: Lucira™ COVID-19 All-In-One Test (Lucira Health, Inc., CA, USA).
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Challenges
While there are now many commercial options for SARS-CoV-2 POC testing, challenges remain. These challenges
include maintaining a reliable supply chain, and a lack of healthcare infrastructure to manage a pandemic the scope
of COVID-19, particularly in low and middle-income countries [95]. The accuracy of SARS-CoV-2 POC tests
varies widely as described in this review and many published studies. Providing access to highly accurate primary
testing is ideal, and assuring prompt confirmatory testing is critical when less accurate POC tests are used. It is
important that providers understand the characteristics of the SARS-CoV-2 tests that they perform.

Rapid antigen SARS-CoV-2 tests are substantially less sensitive than most NAATs. POC rapid antigen tests
have higher sensitivity when viral loads are high, allowing these tests to identify infected persons at highest risk
of transmission. However, it is important to identify all infected persons, even those with low-to-moderate viral
loads, as these infections represent opportunity for the virus to mutate. Additionally, identification and tracking all
infections is necessary to have a full understanding of the COVID-19 pandemic epidemiology, and effectiveness
of interventions. Cases with low to moderate viral loads could represent early infection, or pre-syndromic cases.
Identifying and isolating these persons before they have high viral loads and are most contagious is important to
control the spread of SARS-CoV-2.

Additionally, the global COVID-19 public health emergency will eventually end and EUAs expire, but the need
for SARS-CoV-2 testing will remain. It is crucial that manufacturers of SARS-CoV-2 tests have a long-term strategy
for product registration beyond EUA. Finally, studies evaluating the impact of NAATs versus rapid antigen tests
performed at the POC are urgently needed. The higher sensitivity of SARS-CoV-2 NAATs may provide greater
impact than rapid antigen tests, as has been shown for influenza virus testing performed at the POC [96]. While
more impact studies including cost-benefit analysis are needed for SARS-CoV-2 POC tests, the decentralized POC
testing model should be part of the core global response toward suppressing COVID-19.

Conclusion
There are a number of new point-of-care tests for SARS-CoV-2. The performance of these tests varies greatly.
Rapid antigen SARS-CoV-2 tests and some rapid NAATs are substantially less sensitive than most RT-PCR
based NAATs. While all POC SARS-CoV-2 tests are able to identify most highly infectious cases when viral loads
are high, sensitive tests that allow detection of early pre-symptomatic infection prior to peak contagiousness are
also important to prevent disease transmission. Detection of asymptomatic infections, often with low viral loads,
is crucial for bringing the COVID-19 pandemic to an end as these infections represent opportunity for the virus
to mutate. Studies evaluating the impact of NAATs versus rapid antigen tests performed at the POC are urgently
needed. While more impact studies including cost-benefit analysis are needed for SARS-CoV-2 POC tests, the
decentralized POC testing model should be part of the core global response towards combatting COVID-19.

Future perspective
The scope of the COVID-19 pandemic and the impact on testing access has driven heightened interest in new
and portable diagnostic technologies. A challenge is the often-conflicting test characteristics of speed (time to
result) and sensitivity; as we attempt to make tests faster we often must compromise on sensitivity. Portability, an
essential characteristic of POC tests, is also a challenge. Nanotechnology, including novel sensors to detect low
concentrations of SARS-CoV-2 proteins, supported by artificial intelligence and integration within the internet for
wireless operation and connectivity has the potential to revolutionize POC diagnostics [97–99]. Another technology
which could contribute to near patient testing is digital PCR (dPCR). While its attributes are mainly related to
target quantification, dPCR increases the signal-to-noise ratio, making it highly sensitive and amenable to a rapid
time to result [100,101].
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Executive summary

• Laboratory tests for SARS-CoV-2 include those performed at or near the point-of-care (POC). In USA, most
SARS-CoV-2 tests have received emergency use authorization (EUA) from US FDA. SARS-CoV-2 POC tests designed
to detect acute infection include those that detect SARS-CoV-2 antigen or nucleic acid.

• At the time of writing, only three studies evaluated the impact of POC NAATs, and these studies demonstrated
positive impact including more rapid isolation of hospitalized patients and appropriate use of PPE. There have
been no published studies evaluating the impact of POC antigen tests.

• At-home SARS-CoV-2 tests are now available. These have the potential of increasing access to testing.
• POC SARS-CoV-2 tests are now widely used, and while their rapid time to result has positive impact, challenges

remain. These challenges include testing access in many parts of the world, adequate public health infrastructure
and accurate performance of many POC tests. New technologies have the potential of increasing the sensitivity of
POC tests that detect SARS-CoV-2 antigens.
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