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Abstract

The angiomotin (Amot)–Yes-associated protein 1 (Yap1) complex plays a major role in reg-

ulating the inhibition of cell contact, cellular polarity, and cell growth in many cell types. How-

ever, the function of Amot and the Hippo pathway transcription coactivator Yap1 in the

central nervous system remains unclear. We found that Amot is a critical mediator of den-

dritic morphogenesis in cultured hippocampal cells and Purkinje cells in the brain. Amot

function in developing neurons depends on interactions with Yap1, which is also indispens-

able for dendrite growth and arborization in vitro. The conditional deletion of Amot and Yap1

in neurons led to a decrease in the complexity of Purkinje cell dendritic trees, abnormal cere-

bellar morphology, and impairments in motor coordination. Our results indicate that the func-

tion of Amot and Yap1 in dendrite growth does not rely on interactions with TEA domain

(TEAD) transcription factors or the expression of Hippo pathway–dependent genes.

Instead, Amot and Yap1 regulate dendrite development by affecting the phosphorylation of

S6 kinase and its target S6 ribosomal protein.

Introduction

Neurons are highly polarized cells with specialized axonal and somatodendritic compartments.

The architecture of dendritic arbors where information from other neurons is received is cru-

cial for the integration and processing of signals [1,2]. Although characteristic dendritic pat-

terns are driven by both intrinsic mechanisms and external signals [3–5], the molecular

processes that underlie the formation of dendritic trees have been studied mostly in cultured

hippocampal neurons under conditions in which external signals are limited. Abnormalities in

dendritic arborization are associated with numerous neurological disorders, such as schizo-

phrenia, epilepsy, Alzheimer disease, and autism spectrum disorder [6–10]. Thus, a better
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understanding of the molecular processes that regulate dendritic tree patterning could facili-

tate the development of new treatment modalities for various neurological and psychiatric

conditions.

Angiomotin (Amot) protein and the closely related angiomotin-like 1 (Amotl1) and angio-

motin-like 2 (Amotl2) proteins constitute a family of scaffold proteins called angiomotins or

motins [11,12]. Amot is the most characterized member of the angiomotin family. This protein

was shown to regulate many physiological and pathological processes, including angiogenesis,

cell polarity, cell migration, and cancer cell progression [13–19]. However, one of the most

characterized functions of Amot and other motins is regulation of the Hippo signaling

pathway.

The Hippo signaling pathway controls cellular mechanotransduction, cell growth, and cell

differentiation [20–23]. A core component of this pathway is the cascade of kinases, mamma-

lian sterile 20-like kinase (Mst) and large tumor suppressor kinase (Lats), that regulate phos-

phorylation of the transcription coactivators Yes-associated protein 1 (Yap1) and Taz, two

major downstream effectors of the Hippo pathway [20,21,24–27]. Phosphorylation deactivates

Yap1 by inhibiting its translocation to the nucleus [20,21], where it interacts with TEA domain

(TEAD) transcription factors to induce the expression of Hippo pathway–dependent genes

[20,28,29]. Amot has been shown to directly and strongly interact with Yap1 [30]. The func-

tion of Amot in the regulation of Yap1 appears to be both tissue- and cell type–specific [16,30–

32]. For example, in MDCK epithelial cells and human embryonic kidney 293 (HEK-293)

cells, Amot inhibits Yap1-dependent transcription. In contrast, in hepatocarcinoma and breast

cancer cells, Amot induces the transcription of TEAD target genes [16,30–32]. Both Amot and

Yap1 have been shown to regulate the contact-mediated inhibition of cell proliferation and

control organ size and growth [17,21,22,30].

The function of Amot protein in neurons is poorly understood. A recent study reported

that Amot is localized to dendritic spines in cultured hippocampal neurons, where it controls

integrity of the postsynaptic density by regulating multi-PDZ domain protein 1 (MUPP1) and

postsynaptic density-95 (PSD-95) [33]. Schanzenbächer and colleagues [34] reported that

Amot is associated with neuronal homeostatic scaling and autism spectrum disorder. In the

present study, we report that Amot is enriched at synapses of mature neurons. At earlier devel-

opmental stages, however, Amot is localized to dendritic processes and is required for the

proper growth and development of dendritic arbors both in vitro and in vivo. We found that

Amot in neurons interacts with Yap1. Similar to Amot, Yap1 localizes to neurites in young

neurons and translocates to synapses in mature cells. We found that Yap1 is also critical for

dendritic tree growth and arborization. Our results suggest that the mechanism by which

Amot and Yap1 regulate dendrite development does not depend on the Yap1–TEAD interac-

tion or regulation of the expression of Hippo pathway–controlled genes. Instead, we demon-

strated that Amot and Yap1 maintain the proper formation of dendritic arbors by regulating

the phosphorylation of S6 ribosomal protein by S6 kinase (S6K).

Results

Amot expression and localization in neurons

Amot has been previously shown to be ubiquitously expressed in various rat brain structures

and localized to synapses in cultured mature neurons [33]. Our western blot analysis of brain

homogenates revealed high levels of Amot expression in different regions of the mouse brain

(Fig 1A). The full-length isoform of Amot (p130) was predominantly expressed in the brain,

but the shorter isoform (p80) that lacked the N0-terminal domain was also produced in lower

amounts. To study Amot localization in the brain, we immunohistochemically analyzed
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cryostat brain sections. These experiments revealed that Amot is concentrated at synapses in

the CA1 region of the hippocampus (Fig 1B) and Purkinje cells in the cerebellum (Fig 1C and

S1B Fig), where its immunoreactivity overlaps with anti-synaptophysin staining.

We next studied the detailed expression and localization of Amot in hippocampal neurons

that were cultured in vitro. The western blot analysis revealed that Amot expression gradually

increased during neuronal maturation (Fig 1D and 1E) and was particularly high at the time of

intensive dendritogenesis on days 4–7 in vitro (DIV4–7). The increase in expression was simi-

lar for both isoforms of Amot (p130 and p80). Our immunocytochemical analysis of cultured

rat hippocampal neurons on DIV7 showed that Amot at this developmental stage was mostly

Fig 1. Expression of angiomotin proteins in neurons. (A) Western blot analysis of Amot expression in different regions of the mouse brain.

“OB” = olfactory bulbs; “Mb” = midbrain; “Hipp” = hippocampus; “Th” = thalamus; “Cx” = cortex; “Cb” = cerebellum. (B, C) Amot localization

in neurons in cryostat sections of the P30 mouse brain. (B) CA1 region of the hippocampus stained for Amot (green), Syn (blue), and Map2 (red).

(C) Purkinje cell dendritic trees in the cerebellum stained for Amot (green), Syn (red), and calbindin (blue). (D) Model of hippocampal neuron

development in vitro. Development of the somatodendritic compartment (black) and axon (blue) is correlated with DIVs on the axis at the

bottom. (E) Amot expression increases at later stages of neuronal development. Neuronal extracts that were collected on the indicated DIVs were

analyzed by western blot. (F, G) Localization of Amot protein in cultured neurons. (F) Rat hippocampal neurons (DIV7) were immunolabeled for

Amot (green) and Map2 (red). (G) Amot localization in DIV21 cultured rat hippocampal neurons, showing Amot (green) and Syn (red). The

lower panels in B, C, and G show higher magnifications of the boxed areas in the upper panels. Scale bar = 10 μm in B, C, F, and G (upper panel)

and 5 μm in G (lower panel). Amot, angiomotin; DIV, day in vitro; Map2, microtubule-associated protein 2; P, postnatal day; Syn, synaptophysin.

https://doi.org/10.1371/journal.pbio.3000253.g001
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concentrated in dendrites and axons (Fig 1F). Similar localization to dendrites was observed in

DIV7 hippocampal neurons that overexpressed the green fluorescent protein (GFP)-tagged

version of Amot (S1 Fig), although, as reported previously, Amot–GFP fusion protein showed

a more scattered distribution [35]. At later stages of neuronal development (DIV21), Amot

relocalized to synaptic compartments, where it colocalized with synaptophysin puncta,

revealed by Airyscan microscopy (Fig 1G).

Amot regulates dendritic tree development in cultured hippocampal

neurons

Amot’s localization within dendritic and axonal compartments during neuronal maturation

and its higher expression at the time of neurite outgrowth suggest that it could regulate the

development of neuronal processes. To investigate this possibility, we performed RNA inter-

ference (RNAi)-mediated silencing of Amot expression in DIV7 cultured hippocampal neu-

rons. We cloned short-hairpin RNA (shRNA) plasmids and selected the one with the highest

knockdown efficiency in neurons, which was confirmed by quantitative real-time polymerase

chain reaction (qRT-PCR) and western blot (Fig 2A and 2B). To visualize the morphology of

individual neurons, we cotransfected cells with the shRNA and a plasmid that expressed

monomeric red fluorescent protein (mRFP) under the control of β-actin regulatory elements.

As expected, neurons that were transfected with Amot shRNA plasmid had severe defects in

dendritic tree arborization compared with control cells that were transfected with an empty

vector (Fig 2C). These cells had an approximately 75% shorter total dendrite length (TDL; sum

of all dendrite lengths) compared with control neurons (Fig 2D) and formed significantly less-

complex dendritic arbors, verified by Sholl analysis (Fig 2E). Sholl analysis is used to indicate

the number of dendrites that cross circles at various radial distances from the cell soma and

describes dendritic arbor complexity and the area of a dendritic field [36]. The observed phe-

notypes of neuron morphology were specific to Amot rather than an off-target effect of

shRNA overexpression because the phenotype could be reversed (i.e., rescued) by the ectopic

expression of a mouse Amot construct that lacked a nucleotide sequence that was targeted by

shRNA (Fig 2C, 2D and 2E). The overexpression of Amot alone had no significant effects on

dendritic tree development (Fig 2D and 2E).

To independently confirm the involvement of Amot in dendritic tree organization, we

examined the morphology of cultured hippocampal neurons that were obtained from condi-

tional Amot knockout mice (Amot fl/fl; see description in the section “Characterization of

Amot fl/fl;Syn-Cre mice”) that were cotransfected with a GFP-encoding plasmid to visualize

their morphology and either a Cre recombinase–expressing plasmid or control plasmid with-

out Cre (Fig 2F). Neurons that were transfected with the Cre plasmid (S2A Fig) had an approx-

imately 60% shorter TDL and simplified dendritic tree morphology, revealed by Sholl analysis

(Fig 2G and 2H). Amot-depleted neurons maintained polarized distribution of the dendritic

marker microtubule-associated protein 2 (Map2) (S3A Fig) and axon initial segment protein

ankyrin G (S3B Fig). The formation of axons in Cre-transfected neurons was also unaffected

(S3C Fig). To confirm the reduction of Amot expression, we performed western blot analysis

of extracts from Amot fl/fl cortical neurons that were nucleofected with a plasmid that encoded

Cre recombinase or a control vector. We found that Cre expression in Amot fl/fl neurons

reduced Amot protein levels (Fig 2I), although some residual expression was still detected,

likely because of the roughly 50% transfection efficiency in the nucleofection experiments. Cre

expression in cultured neurons that were obtained from wild-type mice did not exhibit a

decrease in Amot expression and had no effect on dendritic topology (S2B, S2C and S2D Fig).

Altogether, these results support the conclusion that Amot is required for proper dendritic

Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice
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Fig 2. Amot depletion in cultured hippocampal neurons affects dendritic tree organization. (A, B) Validation of Amot-knockdown

efficiency in neurons by qRT-PCR (n = 3/group; p = 0.0041) (A) and western blot (B). (C) Rat hippocampal neurons were transfected on DIV7

with an empty pLKO plasmid (control), a plasmid with Amot shRNA, and a plasmid with Amot shRNA and a plasmid that expressed mouse

Amot–GFP (Amot shRNA + Amot; rescue experiment). (D, E) Quantification of TDL (D) and Sholl analysis (E) of hippocampal neurons that

were transfected with plasmids as in (C) or transfected with Amot–GFP plasmid. Control: n = 60; Amot: n = 38; Amot shRNA: n = 60; Amot

shRNA + Amot: n = 58. To Control; p = 0.2678, p< 0.0001; to Amot shRNA; p< 0.0001. (F) Reduction of dendritic tree complexity in

hippocampal neurons from Amot fl/fl mice that were transfected with a Cre-expressing plasmid. (G, H) Quantification of TDL (G) and Sholl

analysis (H) of dendritic trees of neurons from (F). Control vector: n = 33; Cre plasmid: n = 40. p< 0.0001. (I) Cre expression in Amot fl/fl
hippocampal neurons led to the down-regulation of Amot expression, determined by western blot. (J) Domain architecture of Amot protein.

The Amot ID domain contains LPXY and PPXY motifs (red) that bind Yap1 and the AB (blue). (K) Quantification of TDL of Amot-

knockdown rat hippocampal neurons that were transfected with the indicated Amot constructs. Control cells were transfected with an empty

pLKO vector. Control: n = 107; Amot shRNA: n = 80; Amot shRNA + Amot: n = 100; Amot shRNA + Amot ID domain: n = 37; Amot shRNA

+ Amot ΔID domain: n = 45; Amot shRNA + Amot ΔAB: n = 59. To control; p< 0.0001; to Amot shRNA; p< 0.0001, p = 0.0064, p = 0.0015,

p< 0.0001; to Amot shRNA + Amot; p = 0.0047, p = 0.0033, p = 0.09695. Images were obtained from at least three independent cultures.

Statistical significance was analyzed using two-tailed and unpaired t tests (A, G), one-way analysis of variance followed by Tukey’s post hoc test

(D, K), and two-way analysis of variance followed by Bonferroni’s test (E, H). Numerical values that underlie the graphs are shown in S1 Data.

See S1 Table for detailed statistics for E and H. ��p< 0.01, ����p< 0.0001. Bars represent the mean ± SEM. Scale bars = 50 μm. AB, actin-
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arbor morphology in developing hippocampal neurons. The loss of Amot function in mature

neurons also compromised dendritic organization, but the defect appeared to be less pro-

nounced compared with developing cells (S2F Fig).

To identify the Amot protein region that is responsible for regulating dendritic topology,

we rescued the Amot-knockdown phenotype by ectopically expressing truncated Amot con-

structs. The N-terminal intrinsic disordered (ID) domain of Amot (Fig 2J) is known to directly

interact with F-actin through a 34-amino-acid sequence [35] and contains two PPXY motifs

that bind the Hippo pathway transcription coactivator Yap1 [30,31]. The transfection of

Amot-depleted neurons with constructs that encoded either the ID domain alone (Amot ID)

or Amot with ID domain deletion (Amot ΔID) led to the partial restoration of dendritic tree

arborization compared with the expression of full-length Amot (Fig 2K). This observation sug-

gests that the Amot ID domain plays an important role in regulating dendritic processes, but

other domains could also be involved. We next investigated whether the Amot-regulated orga-

nization of neuronal dendritic trees depends on the actin-binding site [35,37] that is centrally

located within the ID domain (Fig 2J). The expression of Amot mutant protein with a deleted

actin-binding region (Amot ΔAB) rescued the phenotype of Amot depletion to an extent that

was comparable to the expression of full-length Amot protein (Fig 2K). All of the Amot con-

structs that were used in the phenotype rescue experiments were expressed in neurons at simi-

lar levels (S4A Fig). Some of the expressed proteins had a more punctate distribution, whereas

others were more evenly distributed. However, all of the proteins were localized to dendritic

processes (S4D Fig). Nevertheless, we cannot exclude the possibility that the slight differences

in expression levels and alterations of localization of the Amot ΔID construct could contribute

to the modest rescue phenotype that was observed. These results suggest that the interaction

with actin does not play an important role in the Amot-dependent regulation of dendritic

trees.

Amot interaction with Yap1 is critical for dendrite morphogenesis

To study the importance of Yap1-binding motifs that are located in the Amot ID domain, we

expressed in Amot-knockdown neurons a mutant of Amot that exhibited impairments in

binding to Yap1 (Fig 3A). We confirmed that the Amot constructs that were used in the phe-

notype rescue experiments were expressed in neurons at similar levels (S4B Fig) and were

localized to dendrites (S4D Fig). The expression of Amot that was defective in Yap1 binding

(Amot ΔYap1) failed to rescue impairments in dendritic topology that were observed in

Amot-depleted neurons (Fig 3B and 3C), suggesting that the interplay between Amot and

Yap1 plays an important role in controlling dendritic tree formation. To further investigate

this possibility, we analyzed whether Amot depletion in neurons is correlated with alterations

of Yap1 expression or phosphorylation. As shown in Fig 3D, the total cellular level of Yap1

protein was similar in control and Amot-knockdown neurons. However, Yap1 phosphoryla-

tion at serine-127 (Ser127) substantially decreased in the absence of Amot (Fig 3D). Phosphor-

ylation at Ser127 has been shown to modulate Yap1 function [21,38]. To verify the interaction

between Amot and Yap1, we precipitated Yap1 from mouse brain extracts and found that

Amot coprecipitated with Yap1 but not with control beads (Fig 3E), suggesting an interaction

between these two proteins. This is consistent with previous studies that demonstrated a direct

and strong interaction between Amot and Yap1 in other cell types [30–32].

binding motif; Amot, angiomotin; CC, coiled-coil domain; DIV, day in vitro; GFP, green fluorescent protein; ID, intrinsic disordered; ns, not

significant; PR, proline-rich region; qRT-PCR, quantitative real-time polymerase chain reaction; SEM, standard error of the mean; shRNA,

short-hairpin RNA; TDL, total dendrite length; Yap1, Yes-associated protein 1.

https://doi.org/10.1371/journal.pbio.3000253.g002
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Fig 3. Amot interaction with Yap1 is required for proper growth of dendritic arbors. (A) Schematic illustration of Amot protein with mutated

Yap1-binding sites where PPXY motifs were modified into PPXA. (B) Rat hippocampal neurons that were transfected on DIV7 with the indicated

constructs. (C) Quantification of TDL of Amot-knockdown rat hippocampal neurons that were cotransfected with plasmids as in B. Control cells

were transfected with an empty pLKO vector. Control: n = 107; Amot shRNA: n = 80; Amot shRNA + Amot: n = 100; Amot shRNA + Amot

ΔYap1: n = 59. To control; p< 0.0001; to Amot shRNA p< 0.0001; p = 0.3853. Images were obtained from at least from three independent

cultures. (D) Yap1 phosphorylation at serine-127 was visibly reduced in Amot-depleted neurons, whereas the total cellular level of Yap1 was

Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice
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Although Yap1 has been previously shown to be expressed in progenitor cells in the brain,

where it regulates proliferation, migration, and differentiation under both physiological and

pathological conditions, the function of Yap1 has not yet been characterized in vertebrate neu-

rons [39–42]. Our western blot analysis revealed that Yap1 is widely expressed in different

brain structures, with the highest levels in the cerebellum (Fig 3F). To study the localization of

Yap1, we immunohistochemically analyzed cryostat sections of the mouse postnatal day (P)30

hippocampus (Fig 3G) and cerebellum (Fig 3H and S1C Fig). Yap1 immunoreactivity was

observed predominantly at synaptic compartments, where it colocalized with synaptophysin

puncta.

We next studied the expression and localization of Yap1 in hippocampal neurons that were

cultured in vitro. The western blot analysis revealed that Yap1 expression increased after DIV7

(Fig 3I). The immunocytochemical analysis of cultured rat hippocampal neurons on DIV8

showed that Yap1 at this developmental stage was mostly concentrated in dendrites and axons

(Fig 3J). At later stages of neuronal development (DIV21), Yap1 relocalized to synaptic com-

partments, where it colocalized with synaptophysin puncta, revealed by Airyscan microscopy

(Fig 3K). Thus, Yap1 localization resembles Amot at both the early and late stages of neuronal

development.

Yap1 regulates dendritic tree organization

Yap1 localized to dendrites in developing hippocampal neurons, and the ectopic expression of

Amot protein with mutated Yap1 binding sites failed to rescue the phenotypes that were

observed in Amot-depleted cells. Therefore, we hypothesized that Amot may organize den-

dritic trees through Yap1.

To determine whether Yap1 plays a role in dendritic tree arbor development, we knocked

down Yap1 expression in cultured rat hippocampal neurons by transfecting cells with shRNA,

which has the highest knockdown efficiency in neurons (Fig 4A), and examined their mor-

phology. Developing hippocampal neurons that were transfected with a plasmid that encoded

shRNA that targeted rat Yap1 exhibited significant impairments in dendritic arbors, reflected

by a 40% decrease in TDL and a shift in Sholl plots compared with control cells that were

transfected with an empty vector (Fig 4B, 4C and 4D). The negative effects of Yap1 knockdown

on dendritic arbors were almost fully reversed by the ectopic expression of human Yap1

cDNA, which lacks the nucleotide sequence targeted by used shRNA (Fig 4B, 4C and 4D).

Similarly, the loss of Yap1 function in mature neurons compromised dendritic organization,

but the defect appeared to be less pronounced compared with developing cells (S2F Fig).

One of the well-documented functions of Yap1 is the regulation of gene expression that is

controlled by the Hippo signaling pathway. This depends on the interaction between Yap1 and

unchanged. (E) Yap1 coprecipitated with Amot from mouse brain homogenates. Uncoated magnetic beads were used as the control. (F) Western

blot analysis of Yap1 expression in different regions of the mouse brain. “OB” = olfactory bulbs; “Mb” = midbrain; “Hipp” = hippocampus; “Th” =

thalamus; “Cx” = cortex; “Cb” = cerebellum. (G, H) Yap1 localization in the brain, showing cryostat sections of the P30 mouse hippocampus (G)

and cerebellum (H) that were stained for Yap1 (green) and Syn (red). Overlay images additionally showed nuclei, visualized with DAPI (blue in

G), and Purkinje cell dendritic processes, visualized with anti-calbindin antibody (blue in H). (I) Yap1 expression increased at later stages of

neuronal development. Neuronal extracts that were collected on the indicated DIVs were analyzed by western blot. (J) Yap1 localized to dendritic

processes in young cultured neurons. Rat hippocampal neurons (DIV8) were immunolabeled for Yap1 (green) and Map2 (red). (K) Yap1

localized to synapses in mature cultured neuronal cells. Rat hippocampal neurons (DIV21) were immunolabeled for Yap1 (green) and Syn (red).

The lower panels in G, H, and K show higher magnifications of the boxed areas in the upper panels. Scale bars = 50 μm in B; 10 μm in G, H, J, and

K (upper panel); and 5 μm in K (lower panel). Numerical values that underlie the graphs are shown in S1 Data. Statistical significance was

analyzed using one-way analysis of variance followed by Tukey’s post hoc test. ����p< 0.0001. Bars represent the mean ± SEM. AB, actin-binding

motif; CC, coiled-coil domain; DIV, day in vitro; ID, intrinsic disordered; IP, immunoprecipitation; Map2, microtubule-associated protein 2; ns,

not significant; P, postnatal day; PR, proline-rich region; SEM, standard error of the mean; shRNA, short-hairpin RNA; Syn, synaptophysin; TDL,

total dendrite length; Yap1, Yes-associated protein 1.

https://doi.org/10.1371/journal.pbio.3000253.g003
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Fig 4. Yap1 regulates dendritic tree complexity. (A) Efficacy of Yap1 shRNA in neurons, analyzed by western blot. (B) Rat hippocampal

neurons were transfected on DIV7 with the indicated constructs. An empty pLKO plasmid was used as the control. (C, D) Quantification of

TDL (C) and Sholl analysis (D) of hippocampal neurons that were transfected with plasmids as in B or cotransfected with Yap1 shRNA and

human Yap1-cDNA with a deleted TEAD-binding domain (Yap1 shRNA + Yap1 del60-89). Control: n = 40; Yap1 shRNA: n = 60; Yap1

shRNA + Yap1: n = 47; Yap1 shRNA + Yap1 del60-89: n = 51. To control; p< 0.0001; to Yap1 shRNA; p = 0.0011, p = 0.0264; to Yap1 shRNA

+ Yap1; p = 0.7244. (E) Reduction of dendritic tree complexity in hippocampal neurons from Yap1 fl/fl mice that were transfected with a Cre-

expressing plasmid. (F) Cre expression in Yap1 fl/fl hippocampal neurons led to the down-regulation of Yap1 expression, analyzed by western

blot. (G, H) Quantification of TDL (G) and Sholl analysis (H) of dendritic trees of hippocampal Yap1 fl/fl neurons that were transfected with

either a control vector (n = 53) or a Cre-expressing plasmid (n = 53). p< 0.0001. Images were obtained from at least from three independent

cultures. Statistical significance was analyzed using two-tailed unpaired t test (G), one-way analysis of variance followed by Tukey’s post hoc

test (C), and two-way analysis of variance followed by Bonferroni’s post hoc test (D, H). Numerical values that underlie the graphs are shown

in S1 Data. See S1 Table for detailed statistics for D and H. �p< 0.05, ��p< 0.01, ����p< 0.0001. Bars represent the mean ± SEM. Scale

bar = 50 μm. DIV, day in vitro; ns, not significant; SEM, standard error of the mean; shRNA, short-hairpin RNA; TDL, total dendrite length;

TEAD, TEA domain; Yap1, Yes-associated protein 1.

https://doi.org/10.1371/journal.pbio.3000253.g004
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TEAD transcription factors. Upon interactions with coactivators, TEAD transcription factors

bind to TEA sequences in regulatory elements of many genes, stimulating their transcription

[28,29]. To investigate whether the function of Yap1 in the organization of dendritic processes

involves interactions with TEAD, we attempted to rescue phenotypes that were observed in

Yap1 knockdown neurons by the ectopic expression of mutant Yap1 protein (Yap1 del60-89)

that lacked the TEAD-binding domain [43]. Expression of the Yap1 del60-89 mutant also res-

cued the defects in dendritic tree patterning to an extent that was comparable to wild-type

Yap1 (Fig 4C and 4D). In this experiment, both Yap1 constructs were expressed at similar lev-

els (S4C Fig) and had similar localization in neurons (S4E Fig).

To independently confirm the role of Yap1 in dendritic tree growth, we examined the mor-

phology of cultured hippocampal neurons that were obtained from Yap1 conditional knockout

mice (Yap1 fl/fl; see description in the section “Yap1 is required for cerebellar organization

and Purkinje cell dendritogenesis”) and transfected with either a plasmid that expressed Cre

recombinase or a control plasmid without Cre. We found that Cre expression in Yap1 fl/fl neu-

rons decreased Yap1 expression, reduced TDL by approximately 40%, and simplified dendritic

tree morphology, revealed by Sholl analysis (Fig 4E, 4F, 4G and 4H). Yap1-depleted neurons,

however, maintained polarized distribution of the dendritic marker Map2 (S5A Fig) and axon

initial segment protein ankyrin G (S5B Fig). The formation of axons in Cre-transfected neu-

rons was also unaffected (S5C Fig). In control neurons that were obtained from wild-type

mice, Cre expression did not affect Yap1 protein levels or dendritic tree organization (S2C,

S2D and S2E Fig).

Altogether, our results suggest that Yap1 is expressed in neurons, where it regulates den-

dritic tree arborization in a way that appears to be independent of interactions with TEAD

transcription factors.

Characterization of Amot fl/fl;Syn-Cre mice

To investigate the role of Amot in the organization of neuronal cells in vivo, Amot fl/fl mice, in

which exon 2 of Amot was flanked by LoxP sites (Fig 5A), were crossed with transgenic mice

that expressed Cre recombinase under Synapsin 1 regulatory elements (Syn-Cre mice), leading

to Cre expression that was restricted to neuronal cells. To confirm the activity and specificity

of recombination in Syn-Cre mice, we crossed them with a STOP-tdTomato (STOP-Tom)

reporter strain that contained the STOP-of-transcription sequence that was surrounded by

LoxP sites and inserted between the CAG promoter and tdTomato coding sequence. STOP-
Tom;Syn-Cre double-transgenic mice exhibited strong tdTomato expression in the brain, with

the highest fluorescence in the CA3 and dentate gyrus subregions of the hippocampus, mid-

brain, and cerebellum Purkinje cells but very low expression in the CA1 subregion of the hip-

pocampus and cerebral cortex (S6A Fig). To verify that Amot exon 2 was deleted by Cre

recombinase in Amot fl/fl;Syn-Cre mice, we performed genotyping reactions with genomic

DNA that was obtained from the tail and brain. As shown in S6B Fig, the electrophoresis of

genotyping reactions revealed a 450-bp PCR fragment that corresponded to the deleted Amot
sequence for DNA that was obtained from the brain of homozygous mice that expressed Cre

(S6B Fig). The western blot analysis of cerebellar and hippocampal homogenates from homo-

zygous mice with the Syn-Cre transgene additionally confirmed lower levels of Amot protein

(Fig 5B and S6C Fig).

Amot fl/fl;Syn-Cre mice were born at the expected mendelian ratio and exhibited no signs

of lethality. At birth, the pups of homozygous mice that expressed Cre were significantly

smaller and had a lower birth weight compared with their littermate controls of the same sex

(S6D, S6E and S6F Fig). These weight differences were apparent until approximately P70.
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Fig 5. Neuronal deletion of Amot affects cerebellar morphology. (A) Strategy for the generation of Amot conditional knockout mice,

showing the Amot flox allele (upper diagram) and recombined allele after Cre-mediated excision (lower diagram). (B) Lower Amot expression

in the cerebellum of Amot fl/fl;Syn-Cre P30 mice, analyzed by western blot. (C) Amot fl/fl;Syn-Cre mice exhibited a smaller cerebellum

compared with control Amot fl/fl littermates. (D) Quantitative analysis of cerebellar weight in Amot fl/fl (n = 9) and sex-matched Amot fl/fl;
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Afterward, Amot fl/fl;Syn-Cre mice grew to the same size and weight as Amot fl/fl mice, which

were similar to wild-type animals (S6F Fig).

Neuronal deletion of Amot affects cerebellar morphology and the

development of dendritic trees of Purkinje cells

We then analyzed the effects of Amot deletion in neurons on brain morphology. We made

cryostat sections of brains that were collected from juvenile (P12) and early-adult (P30) ani-

mals. Amot fl/fl;Syn-Cre mice did not exhibit apparent defects in size or gross morphology of

the brain (S7A Fig and Fig 5C). However, the cerebellum appeared to be smaller (Fig 5C) and

had a lower weight (Fig 5D) when compared with the cerebellum of littermate controls on

P30. The difference in cerebellar weight was also observed in older animals (P150; S7B Fig).

Because of this observation and because Syn-Cre activity was more homogeneously distributed

in the cerebellum and incomplete in the hippocampus (S6A Fig), we focused our subsequent

experiments on the cerebellum. Immunohistochemical studies of sagittal cryosections of the

cerebellum revealed that the cerebellar foliation pattern, number of lobes, and number of Pur-

kinje cells were unaffected in the absence of Amot (Fig 5E and 5F and S7C Fig). However, fur-

ther analysis showed that the molecular layer thickness in lobe III down the preculminate

fissure significantly decreased in Amot mutant mice compared with control animals (Fig 5G

and 5H). The thickness of the molecular layer along the other fissures also decreased, but the

differences did not reach statistical significance (S7D Fig). The thickness of the granular and

Purkinje cell layers was not significantly affected by Amot deletion (Fig 5I and 5J and S7E and

S7F Fig). The distribution of granular cells in the molecular layer in Amot fl/fl;Syn-Cre and

control mice was also similar (Fig 5K and 5L).

To enable visualization of the morphology of individual Amot−/− Purkinje cells, we intrace-

rebrally injected newborn Amot fl/fl;STOP-Tom pups and control STOP-Tom pups with low-

titer serotype 8 adeno-associated virus (AAV8) that expressed Cre under the neuron-specific

synapsin 1 promoter (AAV8-Syn-Cre; Fig 6A). AAV8 has been previously shown to have high

tropism to Purkinje cells, allowing the cell type–specific expression of Cre and deletion of

Amot in Purkinje cells [44]. Three weeks after viral injection, the animals were humanely

killed, and the morphology of Purkinje cell dendritic trees was analyzed using high-magnifica-

tion images of 100-μm sagittal sections of the cerebellum (Fig 6A and 6B). We measured the

dendritic tree height and width, length of primary and secondary branches, dendritic field

area, and the number of dendrite branching points of Purkinje cells. To eliminate potential

bias, all of the measurements were performed in a blinded manner and confirmed by two inde-

pendent researchers. Amot−/− Purkinje cells exhibited significant reductions of all of these

measurements compared with control cells, indicating impairments in the dendritic

Syn-Cre (n = 6) mice on P30. p = 0.0411. The measurements were normalized to the whole-brain weight. (E) Sagittal cerebellar sections of

Amot fl/fl and Amot fl/fl;Syn-Cre P30 mice that were immunolabeled for calbindin (green) to visualize Purkinje cells and the molecular layer

and NeuN (red) to visualize the granule cell layer. Numbers indicate individual lobes. (F) Quantification of Purkinje cell number in sagittal

sections of Amot fl/fl mice (n = 3 mice and at least three sections per mouse) and Amot fl/fl;Syn-Cre mice (n = 4 mice and at least three sections

per mouse). p = 0.5405. (G) Decrease in molecular layer thickness in Amot fl/fl;Syn-Cre mice, visualized by anti-calbindin antibody; lobe III

down the preculminate fissure. (H-J) Thickness of the molecular (H), granular (I), and Purkinje (J) cell layers in the cerebellum of Amot fl/fl
mice (n = 3 mice and at least three sections per mouse) and Amot fl/fl;Syn-Cre mice (n = 5 mice and at least three sections per mouse) on P30

measured in lobe III down the preculminate fissure. p = 0.0135, p = 0.4169, and p = 0.4615. (K, L) Granule cell distribution (K) and

quantification (L) in the molecular layer of the cerebellum in P30 Amot fl/fl mice (n = 3 mice and at least three sections per mouse) and Amot
fl/fl;Syn-Cre mice (n = 5 mice and at least three sections per mouse), shown as a percentage of NeuN-positive cells per 20,000 μm2. p = 0.7333.

Numerical values that underlie the graphs are shown in S1 Data. Statistical significance was analyzed using two-tailed unpaired t test. �p< 0.05.

Bars represent the mean ± SD. Scale bars = 5 mm in C, 1,000 μm in E and 20 μm in G and K. Amot, angiomotin; ns, not significant; P,

postnatal day; SD, standard deviation.

https://doi.org/10.1371/journal.pbio.3000253.g005
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Fig 6. Amot deletion in neurons impairs dendritic tree morphology of Purkinje cells. (A) Tomato expression in single Purkinje cells in

STOP-Tom reporter mice as a result of Cre activity upon virus injection. The upper panel shows a schematic illustration of the experimental

procedure. P0 STOP-Tom pups were injected with AAV8-Syn-Cre virus and humanely killed on P21. (B) Images of the dendritic tree

morphology of Purkinje cells in STOP-Tom and Amot fl/fl;STOP-Tom mice that were infected with AAV8-Syn-Cre. (C-G) Quantitative analysis

of dendritic tree area (C), height (D), and width (E); primary and secondary dendrite lengths (F); and number of dendritic branching points (G)

of Purkinje cells from STOP-Tom (n� 45 cells and 4 mice in C–F; n = 35 cells and 4 mice in G) and Amot fl/fl;STOP-Tom (n� 43 cells and 4
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arborization of Purkinje cells in vivo (Fig 6B, 6C, 6D, 6E, 6F and 6G). Amot ablation specifi-

cally impaired the complexity of dendritic tree morphology but not the distribution of synaptic

markers within the molecular layer, including vesicular γ-aminobutyric acid transporter

(VGAT), vesicular glutamate transporter 1 (VGLUT1), and VGLUT2 (Fig 6H, 6I, 6J, 6K, 6L

and 6M). This is consistent with a previous study that reported that Amot knockdown in cul-

tured hippocampal neurons did not affect the number of synapses [33].

Yap1 is required for cerebellar organization and Purkinje cell

dendritogenesis

To investigate the function of Yap1 in vivo, we crossed Yap1 fl/fl mice, in which exons 1 and 2

of Yap1 were flanked by LoxP sites (Fig 7A), with Syn-Cre transgenic mice. To verify exon

excision, we genotyped genomic DNA that were obtained from the tail and brain. As shown in

S8A Fig, the electrophoresis of the genotyping reactions revealed a 697-bp PCR fragment that

corresponded to the deleted Yap1 sequence for DNA that was obtained from the brain of Yap1
fl/fl;Syn-Cre (S8A Fig). The western blot analysis of cerebellar homogenates from homozygous

mice that expressed Cre additionally confirmed lower levels of Yap1 protein (Fig 7B). Yap1 fl/
fl;Syn-Cre mice were born according to the mendelian ratio and exhibited no signs of lethality.

Homozygous mice that expressed Cre, however, were significantly smaller and had a lower

weight compared with their littermate controls of the same sex (S8B and S8C Fig). Similar to

Amot mutants, Yap1 fl/fl;Syn-Cre mice appeared to have a lower cerebellar size (Fig 7C) and

cerebellar weight (Fig 7D) compared with littermate controls on P30. The difference in cere-

bellar weight was also apparent in older animals (P150; S8D Fig). Structural studies of sagittal

cryosections of the cerebellum revealed no general abnormalities in cerebellar architecture or

the number of Purkinje cells in Yap1 mutants (Fig 7E and 7F and S8E Fig). Similar to Amot,

Yap1 deletion significantly reduced the molecular layer thickness specifically in lobe III down

the preculminate fissure (Fig 7G and 7H and S8F Fig). The thickness of the granular and Pur-

kinje cell layers was not significantly affected in Yap1 mutant mice (Fig 7I and 7J and S8G and

S8H Fig). In contrast to Amot, Yap1 deletion increased the number of granular cells in the cer-

ebellar molecular layer (Fig 7K and 7L).

Finally, we investigated whether Yap1 also plays a role in the organization of dendritic trees

of Purkinje cells. We injected newborn Yap1 fl/fl;STOP-Tom mouse pups and control STOP--
Tom mouse pups with the AAV8-Syn-Cre virus and analyzed the dendritic trees of Purkinje

cells. To eliminate potential bias, all of the measurements were performed in a blinded manner

and confirmed by two independent researchers. Yap1−/− Purkinje cells exhibited a significant

reduction of dendritic field area, dendritic tree width, the length of primary and secondary

branches, and the number of dendrite branching points compared with control cells (Fig 8A,

8B, 8C, 8D and 8F). We did not detect significant differences in dendritic tree height (Fig 8E).

Thus, Yap1, similar to Amot, plays an important role in regulating the dendritic arborization

of Purkinje cells in vivo. The defect in dendritic tree organization was not associated with

mice in C–F; n = 39 cells and 4 mice in G) brains that were infected with AAV8-Syn-Cre. p< 0.0001, p< 0.0001, p = 0.0012, p< 0.0001, and

p = 0.0007. (H-M) Distribution of inhibitory and excitatory synapses in the cerebellum in Amot fl/fl and Amot fl/fl;Syn-Cre P30 mice. Cerebellar

sagittal sections were immunostained for VGAT (H), VGLUT1 (L), and VGLUT2 (M). Anti-calbindin antibody was used to visualize Purkinje

cells. (I-K) Quantification of VGAT (I), VGLUT1 (J), and VGLUT2 (K) puncta per 1,000 μm2 in Amot fl/fl mice (n = 3 mice and at least three

sections per mouse) and Amot fl/fl;Syn-Cre mice (n = 4 mice and at least three sections per mouse). p = 0.4891, p = 0.9017, and p = 0.0970.

Numerical values that underlie the graphs are shown in S1 Data. Statistical significance was analyzed using two-tailed unpaired t tests.
��p< 0.01, ���p< 0.001, ����p< 0.0001. Bars represent the mean ± SD. Scale bars = 200 μm in A, 50 μm in B and 20 μm in H, L, M. Amot,

angiomotin; ns, not significant; P, postnatal day; SD, standard deviation; STOP-Tom, STOP-tdTomato; VGAT, vesicular γ-aminobutyric acid

transporter; VGLUT, vesicular glutamate transporter.

https://doi.org/10.1371/journal.pbio.3000253.g006
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Fig 7. Yap1 deletion in neurons affects cerebellar morphology. (A) Strategy for generating Yap1 conditional knockout mice, showing the

Yap1 flox allele (upper diagram) and recombined allele after Cre-mediated excision (lower diagram). (B) Lower Yap1 expression in the

cerebellum of Yap1 fl/fl;Syn-Cre P30 mice analyzed by western blot. (C) Yap1 fl/fl;Syn-Cre mice exhibited a smaller cerebellum compared

with control sex-matched littermates (Yap1 fl/fl). (D) Quantitative analysis of cerebellar weight in Yap1 fl/fl (n = 10) and Yap1 fl/fl;Syn-Cre
(n = 4) P30 mice. p = 0.0178. Measurements were normalized to whole-brain weight. (E) Sagittal cerebellar sections of Yap1 fl/fl and Yap1 fl/
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significant changes in the distribution of inhibitory (VGAT) or excitatory (VGLUT1 and

VGLUT2) synaptic markers within the molecular layer (Fig 8G, 8H, 8I, 8J, 8K and 8L).

Impairment in motor coordination in mice with neuronal deletion of Amot

or Yap1

To evaluate whether the defects in cerebellar morphology affected animal mobility, we per-

formed open-field experiments. Amot and Yap1 mutant mice did not differ significantly from

control animals in the amount of time spent immobile or distance traveled (Fig 9A, 9B, 9C

and 9D and S9G and S9I Fig). In the next set of behavioral experiments, we studied motor

coordination that depends on the proper function of the cerebellum. In the first experiment,

we placed animals on an accelerating rod and measured the latency to fall (Fig 9E). To mini-

mize differences in body size and weight in younger mice (S6F and S8C Fig), we performed

the tests on P150 animals. At this age, both mutants had lower cerebellar weight (S7B and S8D

Fig), similar to P30 mice. The latency to fall from a rotating rod in Amot fl/fl;Syn-Cre and Yap1
fl/fl;Syn-Cre mice was significantly shorter compared with control animals of the same age and

sex (Fig 9F and 9G and S9A and S9B Fig). The differences in motor coordination were appar-

ent on the training day and during 4 consecutive days of the test. To study potential gait defi-

cits, we performed a CatWalk experiment, which is an automated analysis of footprints of

mice that run across a 130-cm runway (Fig 9H). The mutant mice did not exhibit apparent

changes in the base of support (BOS; i.e., the distance between two forepaws or hind paws)

(S9C and S9D Fig). Yap1 fl/fl;Syn-Cre mice, however, exhibited significant increases in forepaw

and hind paw stride measurements, indicating the distance between footsteps of the same paw

(S9F Fig). The mean stride length in Amot mutant mice was not significantly affected (S9E

Fig). The analysis of step-cycle dynamics revealed that both Amot and Yap1 mutant mice

exhibited a significant reduction of the hind paw duty cycle, indicating that the ratio between

stance duration and the complete step-cycle duration was smaller compared with control ani-

mals (Fig 9I and 9J). Yap1 mutant mice also exhibited a decrease in the duty cycle of the fore-

paws, but this decrease did not reach statistical significance (Fig 9J). Lastly, we analyzed the

performance of mice in the foot-fault test, in which the animals were allowed to walk on a

metal rod runway, and the number of footslips from the rods and run time were analyzed

based on video recordings (Fig 9K). The performance of Amot and Yap1 mutant mice was sig-

nificantly worse than control mice. The mutant animals made more footslips and required

more time to reach the end of the runway (Fig 9L, 9M, 9N and 9O).

To exclude the potential impact of vestibular system dysfunction on the observed impair-

ments in motor coordination, we performed a more detailed analysis of behavior in the open

field. Inner-ear dysfunctions are associated with animal circling behavior [45]. Neither Amot

nor Yap1 mutant animals exhibited an increase in the frequency of rotations compared with

fl;Syn-Cre P30 mice immunolabeled for calbindin (green) to visualize Purkinje cells and the molecular layer and NeuN (red) to visualize the

granule cell layer. Numbers indicate individual lobes. (F) Quantification of Purkinje cells in sagittal sections of Yap1 fl/fl mice (n = 4 mice

and at least three sections per mouse) and Yap1 fl/fl;Syn-Cre mice (n = 4 mice and at least three sections per mouse). p = 0.1782. (G)

Decrease in cerebellar molecular layer thickness in Yap1 fl/fl;Syn-Cre mice visualized with calbindin; lobe III down the preculminate fissure

at P30. (H-J) Thickness of the molecular (H), granular (I), and Purkinje (J) cell layers in the cerebellum of Yap1 fl/fl (n = 4 mice and at least

three sections per mouse) and Yap1 fl/fl;Syn-Cre (n = 4 mice and at least three sections per mouse) P30 mice measured in lobe III down the

preculminate fissure. p = 0.0128, p = 0.4679, and p = 0.1885. (K, L) Granule cell distribution (K) and quantification (L) in the molecular layer

in P30 Yap1 fl/fl mice (n = 4 mice and at least three sections per mouse) and Yap1 fl/fl;Syn-Cre mice (n = 4 mice and at least three sections

per mouse) in the cerebellum, shown as a percentage of NeuN-positive cells per 20,000 μm2. p = 0.0010. Numerical values that underlie the

graphs are shown in S1 Data. Statistical significance was analyzed using two-tailed unpaired t test. �p< 0.05, ��p< 0.01. Bars represent the

mean ± SD. Scale bar = 5 mm in C, 1,000 μm in E, and 20 μm in G and K. ns, not significant; P, postnatal day; SD, standard deviation; Yap1,

Yes-associated protein 1.

https://doi.org/10.1371/journal.pbio.3000253.g007
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Fig 8. Impairments in dendritic tree morphology of Purkinje cells in Yap1 mutant mice. (A) Dendritic trees of Purkinje cells from

STOP-Tom (control) and Yap1 fl/fl;STOP-Tom mice that were infected with AAV8-Syn-Cre. (B-F) Quantitative analysis of dendritic tree

area (B) and width (C), primary and secondary dendrite length (D) and height (E), and the number of dendritic branching points (F) of

Purkinje cells from STOP-Tom (n� 28 cells and 5 mice in B-E; n = 33 cells and 5 mice in F) and Yap1 fl/fl;STOP-Tom (n� 68 cells and 8

mice in B-E; n = 48 cells and 6 mice in F) brains infected with AAV8-Syn-Cre. p< 0.0001, p = 0.0003, p< 0.0001, p = 0.2194, p< 0.0001.
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controls (S9G, S9H, S9I and S9J Fig). These results suggest that the observed behavioral abnor-

malities were caused by cerebellar impairments.

Abnormal S6 ribosomal protein phosphorylation in Amot- and

Yap1-deficient neurons

In many cell types, the Amot interaction with Yap1 regulates its cotranscriptional activity,

resulting in alterations of Hippo pathway–dependent gene expression [18,20,29,32]. To exam-

ine whether Amot depletion in neurons affects Yap1-dependent gene expression, we per-

formed qRT-PCR analysis of expression levels of cysteine-rich 61 (Cyr61), connective tissue

growth factor (CTGF), ankyrin repeat domain 1 (Ankrd1), cytochrome P450 family 19 subfam-

ily A member 1 (Cyp19a1), and amphiregulin (Areg). All of these genes are regulated by the

Hippo pathway. Amot depletion both in vitro and in vivo did not affect the expression of any

of these genes (S10 Fig). This is consistent with our observation that the binding of Yap1 to

transcription factors of the TEAD family, which is required for the expression of the Hippo

pathway–controlled genes, is not required for dendritic organization (Fig 4C and 4D). Collec-

tively, these results suggest that Yap1 and Amot play a role in dendritogenesis that is indepen-

dent of interactions with TEAD and TEAD-controlled gene expression.

Recent studies suggested cross talk between angiomotins–Yap1 and the mammalian/mech-

anistic target of rapamycin (mTOR) signaling pathway [46,47]. Tumaneng and colleagues [47]

reported that Yap1 modulates S6K activity, which is a major downstream component of the

mTOR pathway that is responsible for the phosphorylation of S6 ribosomal protein. S6K has

been reported to regulate dendritic tree organization in neurons [48]. To examine whether

Amot and Yap1 influence S6 phosphorylation in neurons, we analyzed the level of S6 phos-

phorylation at Ser235 and Ser236 that are modified by S6K. The western blot analysis showed

that the phosphorylation of S6 at Ser235 and Ser236 in cerebellar homogenates from Amot fl/
fl;Syn-Cre and Yap1 fl/fl;Syn-Cre mice was visibly reduced compared with homogenates from

age- and sex-matched control animals (Fig 10A and 10B and S11A and S11B Fig). The levels of

total S6 protein remained unchanged (Fig 10A and 10B and S11A and S11B Fig). We observed

a similar reduction of S6 phosphorylation in the western blot and immunocytochemistry

experiments with cultured neurons that were depleted of Amot and Yap1 (Fig 10C, 10D and

10E and S11C and S11D Fig). Thus, the lack of Amot or Yap1 in neurons was correlated with

the reduction of S6 ribosomal protein phosphorylation.

S6K activity is regulated by mTOR-dependent phosphorylation at threonine-389 (Thr389)

[49–51]. The levels of phosphorylated S6K significantly decreased in cerebellar homogenates

from Amot and Yap1 mutant mice (Fig 10F and 10G). To determine whether the increase in

S6 phosphorylation that was induced by S6K (S11E Fig and [52]) could compensate for the

defects that were associated with Amot/Yap depletion, we transfected Amot- and Yap1-knock-

down neurons with plasmids that expressed a constitutively active mutant of S6K (S6K C.A.)

or kinase-dead (inactive) mutant of S6K (S6K K.D.) of S6K. The overexpression of S6K C.A. in

Amot-knockdown neurons rescued the morphological defects in dendritic organization to a

(G-L) Distribution of inhibitory and excitatory synapses in the cerebellum in Yap1 fl/fl and Yap1 fl/fl;Syn-Cre P30 mice. Cerebellar sagittal

sections were immunostained for VGAT (G), VGLUT1 (K), and VGLUT2 (L). Anti-calbindin antibody was used to visualize Purkinje cells.

(H-J) Quantification of VGAT (H), VGLUT1 (I), and VGLUT2 (J) puncta per 1,000 μm2 in Yap1 fl/fl mice (n = 4 mice and at least three

sections per mouse) and Yap1 fl/fl;Syn-Cre mice (n = 4 mice and at least three sections per mouse). p = 0.0727, p = 0.6267, and p = 0.3417.

Numerical values that underlie the graphs are shown in S1 Data. Statistical significance was analyzed using two-tailed unpaired t tests.
���p< 0.001, ����p< 0.0001. Bars represent the mean ± SD. Scale bars = 50 μm in A and 50 μm in G, K, and L. ns, not significant; P,

postnatal day; SD, standard deviation; STOP-Tom, STOP-tdTomato; VGAT, vesicular γ-aminobutyric acid transporter; VGLUT, vesicular

glutamate transporter; YAP1, Yes-associated protein 1.

https://doi.org/10.1371/journal.pbio.3000253.g008
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Fig 9. Impairment in locomotor coordination in Amot fl/fl;Syn-Cre and Yap1 fl/fl;Syn-Cre mice. (A, B) General mobility in Amot fl/fl;Syn-Cre
mice (n = 9) and control age- and sex-matched Amot fl/fl mice (n = 9) in the open field, showing the (A) time spent immobile (p = 0.6602) and (B)

total distance traveled (p = 0.2787). (C, D) General mobility in Yap1 fl/fl;Syn-Cre mice (n = 6) and control age- and sex-matched Yap1 fl/fl mice

(n = 8) in the open field, showing the (C) time spent immobile (p = 0.5806) and (D) total distance traveled (p = 0.2298). (E) Image from the

rotarod experiment. (F) Locomotor coordination in Amot fl/fl mice (n = 10) and Amot fl/fl;Syn-Cre mice (n = 6) on P150, showing the latency to

fall from the rotarod. p = 0.0092, p = 0.0022, p = 0.0051, p = 0.0422, and p = 0.0483. (G) Locomotor coordination in Yap1 fl/fl mice (n = 4) and

Yap1 fl/fl;Syn-Cre mice (n = 6) on P150, showing the latency to fall from the rotarod. p = 0.3018, p = 0.1009, p = 0.0150, p = 0.0005, and p = 0.0416.

(H) CatWalk gait analysis. The footprints of the right paws are shown in red, and the footprints of the left paws are shown in green. (I) Duty cycle
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similar extent as full-length Amot, whereas overexpression of the S6K K.D. mutant failed to

rescue the dendritic tree morphology of Amot-depleted neurons (Fig 10H). Similarly, the over-

expression of S6K C.A. but not S6K K.D. restored neuronal morphology in Yap1 knockdown

cells (Fig 10I). As a control, we transfected wild-type neurons with either S6K C.A. or S6K K.

D. However, as reported previously [52], the overexpression of kinase mutants on the wild-

type background did not significantly affect the organization of dendritic trees (Fig 10J). Col-

lectively, these findings show that proper S6K activity is important for the organization of den-

dritic trees and is consistent with previous reports that S6K knockdown significantly affects

dendrites in neurons [48]. Our observations suggest that Amot–Yap1 and S6K–S6 function in

the same pathway that regulates dendritic trees and that S6K and S6 are downstream of Amot–

Yap1 (Fig 10K).

Discussion

The present study found that Amot distribution changes during neuronal development. At

early stages of development, Amot is localized to dendrites, whereas it is concentrated at syn-

apses in mature neurons. Several of our observations demonstrate that Amot plays an impor-

tant role in dendritic tree organization. The knockdown or knockout of Amot in developing

and mature cultured hippocampal neurons led to impairments in dendritic morphology. Con-

ditional knockout animals with Amot deletion in neurons exhibited a significant reduction of

the complexity of dendritic trees of Purkinje cells in vivo. We also demonstrated that Amot

controls dendritic trees through interactions with its binding partner, Yap1. Similar to Amot,

Yap1 was localized to dendritic processes in immature neurons and was relocalized to synapses

in fully developed cells. Yap1 coprecipitated with Amot from brain extracts, and the ectopic

expression of Amot with mutated Yap1-binding sites failed to rescue phenotypes that were

observed in Amot-depleted neurons. The knockdown or knockout of Yap1 led to dendritic

phenotypes that were compared to those in the absence of Amot. Similar to Amot, Yap1 condi-

tional knockout animals exhibited a reduction of the complexity of dendritic trees of Purkinje

cells.

Previous studies investigated the involvement of Amot in dendritic spine maturation [33].

In the present study, we found that the loss of Amot also led to impairments in dendritic tree

organization, suggesting that Amot may control distinct neuronal processes. The function of

Amot in dendritic spine maturation appears to depend on Lats kinase, which phosphorylates

Amot within the ID domain. The ID domain has been shown to be required for targeting

Amot to postsynaptic machinery, where Amot interacts with Mupp1 and PSD-95 through the

C-terminal PDZ-binding motif. The PDZ-binding motif plays an important role in actin turn-

over in dendritic spines. However, the function of the actin-binding site of Amot in synapse

organization has not been investigated. The role of Amot in dendritic tree organization also

depends on the ID domain, specifically on Yap1-binding motifs that within the ID domain.

The mutation of actin-binding sites in Amot did not significantly affect its role in dendritogen-

esis. Although the function of Amot in dendritic spine maturation and the regulation of den-

dritic tree complexity appears to involve different molecular mechanisms, they both

in Amot fl/fl;Syn-Cre mice (n = 5) and Amot fl/fl (n = 11) control littermates. p = 0.9463 and p = 0.0401. (J) Duty cycle in Yap1 fl/fl;Syn-Cre (n = 6)

and Yap1 fl/fl (n = 4) mice. p = 0.0538 and p = 0.0024. (K) Image from the foot-fault experiment. (L, M) Foot-fault analysis of Amot fl/fl (n = 7) and

Amot fl/fl;Syn-Cre (n = 5) mice. (L) Time traveled. p = 0.0441. (M) Number of foot slips. p< 0.0001. (N, O) Foot-fault analysis of Yap1 fl/fl (n = 4)

and Yap1 fl/fl;Syn-Cre (n = 6) mice. (N) Time traveled. p = 0.0271. (O) Number of foot slips. p = 0.0430. Numerical values that underlie the graphs

are shown in S1 Data. Statistical significance was analyzed using two-tailed unpaired t test. �p< 0.05, ��p< 0.01, ���p< 0.001. Bars represent the

mean ± SD in A, B, C, D, I, J, K, M, N, and O and mean ± SEM in F and G. Amot, angiomotin; BOS, base of support; FP, forepaws; HP, hind paws;

ns, not significant; P, postnatal day; SD, standard deviation; SEM, standard error of the mean; Yap1, Yes-associated protein 1.

https://doi.org/10.1371/journal.pbio.3000253.g009
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Fig 10. Mechanism underlying Amot- and Yap1-mediated dendritogenesis. (A, B) Reduction of phosphorylation of S6 ribosomal protein in

cerebellar homogenates from Amot fl/fl;Syn-Cre (A) and Yap1 fl/fl;Syn-Cre (B) P30 mice, analyzed by western blot (see also S11A and S11B Fig for

additional blots and quantification). (C, D) Reduction of phosphorylation of S6 ribosomal protein levels in lysates from Amot-knockdown

neurons (C) and Yap1-knockdown neurons (D), analyzed by western blot (see also S11C Fig for additional blots and quantification). (E) Decrease

in phosphorylation of S6 ribosomal protein levels in cultured rat hippocampal neurons on DIV7 transfected with constructs that encoded Amot
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underscore the critical role of the Amot ID domain in neurons. One interesting line of investi-

gation would be to examine whether Yap1 is also involved in synapse organization because it

is localized to synapses in mature neurons, similar to Amot.

The reduction of dendritic trees of Purkinje cells in Amot and Yap1 mutant mice was asso-

ciated with a reduction of the thickness of the molecular layer, where dendrites of Purkinje

cells are located. Both mutant mice also exhibited a decrease in cerebellar weight and exhibited

impairments in locomotor coordination. The overexpression of Yap1 in neurons restored the

thickness of the cerebellar molecular layer and locomotor coordination deficits in a mouse

model of ataxia [53]. In the present study, the reduction of the thickness of the molecular layer

in Amot and Yap1 mutants was the most pronounced in the lobes down the preculminate fis-

sure, which has been proposed to contain leg and foot representations [54,55]. We additionally

found that the number of granule cells within the molecular layer in the cerebella in Yap1

mutant mice was significantly affected, a phenotype that was not observed in the Amot

mutant. This could indicate that Yap1 may have additional functions (e.g., granule cell migra-

tion). This possibility requires further investigation. Such changes in Yap1 fl/fl;Syn-Cre mice

could explain their stronger phenotype in the footprint pattern gait analysis. An increase in

stride length has been previously observed in mice with alterations of granular cell distribution

[56].

The observed phenotypes in mice could be even more pronounced if broader Cre-mediated

deletion could be achieved. Huang and colleagues [41] reported that Yap1 fl/fl mice that

expressed Cre under the control of nestin regulatory elements (i.e., expression in progenitors

of neural and glial cell lineages) had a substantially smaller brain size, but these authors inter-

preted this result as a consequence of the loss of Yap1 function solely in glial cells. Our localiza-

tion and functional experiments, including RNAi-mediated silencing and neuron-specific

deletion, suggest that Yap1 is expressed and functions in neurons. This is consistent with pre-

vious reports by Okazawa and colleagues [39,40].

The most well-characterized function of Yap1 is that it is a transcriptional coactivator

downstream of the Hippo signaling pathway. Upon binding to transcription factors of the

TEAD family, Yap1 stimulates the expression of Hippo pathway–dependent genes (e.g., CTGF
and Cyr61). In the present study, however, the ectopic expression of Yap1 with a deleted

TEAD-binding region appeared to be able to restore dendrite organization upon Yap1 knock-

down (Fig 4C and 4D). Moreover, the deletion of Amot in neurons did not significantly affect

the expression of several TEAD target genes (CTGF, Cyr61, Ankrd1, Cyp19a1, and Areg; S10

Fig). This would suggest that Amot controls dendritic tree complexity independently of a

Hippo pathway–controlled gene expression.

shRNA or Yap1 shRNA, analyzed by immunocytochemistry (see also S11D for quantification). The neurons were cotransfected with a plasmid

that expressed mRFP (red) to visualize transfected cells (arrows in the left panel) and immunostained with anti-phospho-S6 antibody (green).

Scale bar = 10 μm. (F, G) Reduction of phosphorylation of p70 S6K at Thr389 in cerebellar homogenates from Amot fl/fl;Syn-Cre (F) and Yap fl/fl;
Syn-Cre (G) P30 mice, analyzed by western blot. (H-J) The ectopic expression of S6K rescued morphological phenotypes in Amot- or

Yap1-knockdown neurons. (H) Quantification of TDL of Amot-knockdown rat hippocampal neurons that were transfected with the indicated

constructs. Control: n = 66; Amot shRNA: n = 80; Amot shRNA + Amot: n = 48; Amot shRNA + S6K C.A.: n = 78; Amot shRNA + S6K K.D.:

n = 38). To control p< 0.0001; to Amot shRNA p< 0.0001, p< 0.0001, p = 0.9995. (I) Quantification of TDL of Yap1-knockdown rat

hippocampal neurons that were transfected with the indicated constructs. Control: n = 66; Yap1 shRNA: n = 92; Yap1 shRNA + Yap1: n = 46;

Yap1 shRNA + S6K C.A.: n = 75; Yap1 shRNA + S6K K.D.: n = 46. To control p< 0.0001; to Yap1 shRNA p< 0.0001, p< 0.0001, p = 0.9933. (J)

Quantification of TDL of rat hippocampal neurons that were transfected with the indicated plasmids. Control: n = 66; S6K C.A.: n = 37; S6K K.D.:

n = 38. p = 0.5395, p = 0.9516. The analysis was performed for neurons from at least three independent cultures. (K) Model of a pathway in which

Amot interacts with Yap1 and regulates dendritic tree morphology through the regulation of S6 phosphorylation by S6K. Numerical values that

underlie the graphs are shown in S1 Data. Statistical significance was analyzed using one-way analysis of variance followed by Tukey’s post hoc

test. ����p< 0.0001. Bars represent the mean ± SEM. Amot, angiomotin; DIV, day in vitro; mRFP, monomeric RFP; ns, not significant; P,

postnatal day; RFP, red fluorescent protein; S6K, S6 kinase; S6K C.A., constitutively active mutant of S6K; S6K K.D., kinase-dead mutant of S6K;

SEM, standard error of the mean; shRNA, short-hairpin RNA; TDL, total dendrite length; Thr, threonine; Yap1, Yes-associated protein 1.

https://doi.org/10.1371/journal.pbio.3000253.g010
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The present results suggest that the Amot- and Yap1-dependent regulation of dendritic

morphology involves S6 ribosomal protein. The depletion of Amot or Yap1 in cultured neu-

rons or their conditional deletion in mice led to a reduction of S6K phosphorylation and its

downstream target S6 ribosomal protein. Moreover, ectopic expression of S6K C.A. rescued

the Amot and Yap1 phenotype of dendrite organization.

The exact mechanism by which Amot and Yap1 impinge on S6K activity is unclear. S6K is

regulated by mTOR complex 1 (mTORC1), which phosphorylates S6K at position Thr389

[49,51], leading to its activation. Both S6K and mTORC1 are known to regulate dendritic

arbor development [48,52,57,58]. The modification of S6K at Thr389 was strongly inhibited in

the Amot and Yap1 mutants (Fig 10F and 10G). Accumulating evidence suggests cross talk

between angiomotins, Yap1, and mTOR signaling in nonneuronal cells [46,47,59,60]. Amotl2

protein is closely related to Amot and has been shown to interact with mTORC2 [46]. This

could affect mTORC1 through Akt, tuberous sclerosis complex 1/2, and Rictor [61–63].

Another mechanism by which Yap1 can affect S6K activity could involve the regulation of

transforming growth factor-β (TGF-β)/Smad signaling. Yap1 interacts with Smad7 and inhib-

its TGF-β receptor activity [64], which in turn regulates protein phosphatase 2 A (PP2A) that

subsequently dephosphorylates and inhibits S6K [65]. Yap1 has also been shown to interact

with Smad1 and regulate its transcriptional activity and stability in various cell types, including

astrocytes [41,66–68].

A link between Amot, Yap1, and S6K signaling in the context of dendritic morphogenesis

should be investigated in detail in future studies. This could also shed light on signaling pro-

cesses that are related to cancer cell biology, cell migration, and proliferation.

Materials and methods

Ethics statement

All of the experimental procedures were approved by the First Warsaw Local Ethics Commit-

tee for Animal Experimentation (approval no. 633/2018, 270/2017, and 369/2017). The experi-

ments were conducted in accordance with Act on the Protection of Animals Used for

Scientific or Educational Purposes (2015). The animals were humanely killed by using isoflur-

ane or decapitation. Mouse newborns were anesthetized by incubation on ice prior to virus

injection.

DNA constructs and antibodies

The β-actin-GFP plasmid (enhanced GFP [eGFP] under the control of β-actin regulatory ele-

ments) was described previously [48]. β-actin-mRFP plasmid (mRFP under the control of β-

actin regulatory elements) was a gift from Jakub Włodarczyk (Nencki Institute of Experimen-

tal Biology, Warsaw, Poland) [69]. Amotp130-delAB was donated by Dannel McCollum (Uni-

versity of Massachusetts Medical School, Worcester, MA, United States) [35]. The following

plasmids were obtained from Addgene (Cambridge, MA, USA): pLKO.1 (catalog no. 10878)

[70], pEGFP-C3-hYAP1 (catalog no. 17843) [71], pLX304-YAP1_60–89 (catalog no. 59144)

[43], HA-AMOT p130 Y242/287A (Amot ΔYap1, catalog no. 32822) [30], and pRK7-HA-

S6K1-KR (S6K K.D., catalog no. 8985) [72]. The pRK5-p70S6KT389E (S6K C.A.) plasmid was

described previously [52]. pCMV-Flag-Amot was a gift from Chunling Yi (Georgetown Uni-

versity Medical Center, Washington, DC, USA) [31]. The Yap1 and Amot constructs were

PCR-amplified and cloned into the β-actin-GFP vector to generate GFP fusion proteins. The

pFU-Cherry-TA(3×)-iCre plasmid was a gift from Julie Lefebvre (The Hospital for Sick Chil-

dren, University of Toronto, Toronto, ON, Canada). The shRNA sequences 50-GGTGGAGA
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CTGAAATCCAACG-30 (Amot shRNA) and 50-GAAACAGCAGGAGTTATTTCG-30 (Yap1

shRNA) were cloned into the pLKO.1 vector.

The following antibodies were used: anti-α tubulin (Abcam, Cambridge, MA, USA; catalog

no. ab18251), anti-Yap1 (Sigma-Aldrich, St. Louis, MO, USA; catalog no. WH0010413M1),

anti-Amot (Aviva, San Diego, CA, USA; catalog no. ARP34661_P050), anti-Amot (Santa Cruz

Biotechnology, Dallas, TX, USA; catalog no. sc-515262), anti-Map2 (Sigma, St. Louis, MO,

USA; catalog no. M1406), anti-Yap1 (Developmental Studies Hybridoma Bank, Iowa City,

IA, USA; catalog no. 8J19), anti-phospho-Yap1 (GeneTex, Irvine, CA, USA; catalog no.

GTX61793), anti-S6 ribosomal protein (Cell Signaling Technology, Leiden, the Netherlands;

catalog no. 2217), anti-phospho-S6 ribosomal protein (Ser235/236; Cell Signaling Technology,

Leiden, the Netherlands; catalog no. 4853), anti-synaptophysin 1 (Synaptic Systems, Goettin-

gen, Germany; catalog no. 101004), anti-calbindin (Synaptic Systems, Goettingen, Germany;

catalog no. 214006), anti-p70 S6K (Cell Signaling Technology, Leiden, the Netherlands; catalog

no. 9202), anti-phospho-p70 S6K (Thr389; Cell Signaling Technology, Leiden, the Nether-

lands; catalog no. 9206), anti-ankyrin G (NeuroMab, University of California, CA, USA; cata-

log no. 75–146), anti-NeuN (Abcam, Cambridge, MA, USA; catalog no. ab177487), and anti-

VGAT, anti-VGLUT1, and anti-VGLUT2 (Synaptic Systems, Goettingen, Germany; catalog

no. 131002, 135302, and 135402, respectively).

Anti-Amot antibody was a gift from Lars Holmgren (Karolinska Institutet, Stockholm,

Sweden) [37]. Horseradish peroxidase–conjugated anti-mouse immunoglobulin G (IgG) and

anti-rabbit IgG were obtained from Cell Signaling (Danvers, MA, USA; catalog no. 7076 and

7074, respectively). Alexa-Fluor-488-, Alexa-Fluor-568-, and Alexa-Fluor-647-conjugated sec-

ondary antibodies were obtained from Thermo Fisher Scientific (Waltham, MA, USA; catalog

no. A-11034, A-11004, A-11041, and A-21450). DAPI was purchased from AppliChem

(Darmstadt, Germany; catalog no. A4099).

Cell culture and transfection

Primary hippocampal and cortical neuronal cultures were prepared from Wistar rat and

C57BL/6 mouse brains that were collected on embryonic day 18 (E18). The cultures were per-

formed according to the procedure of Banker and Goslin [73]. Neurons were dissociated with

trypsin and cultured in Neurobasal medium (Thermo Fisher Scientific, Waltham, MA, USA;

catalog no. 21103049) supplemented with 2% B27 (Thermo Fisher Scientific, Waltham, MA,

USA; catalog no. 17504044), L-glutamine, and glutamic acid and plated on surfaces coated

with poly-D-lysine (Sigma-Aldrich, St. Louis, MO, USA; catalog no. P2636) and laminin (Invi-

trogen, Grand Island, NY, USA; catalog no. 23017–015). Primary hippocampal neurons were

transfected with Lipofectamine 2000 (Thermo Fisher Scientific, Waltham, MA, USA; catalog

no. 11668–030) on DIV7 as described previously [74]. For the morphological analysis, neurons

were transfected with a plasmid that expressed mRFP to visualize cell morphology and a GFP

plasmid (if needed) to maintain the plasmid ratio. The cells were fixed and imaged 3 d after

transfection. Amaxa nucleofection was performed with an Amaxa Nucleofector II Device

(Lonza Cologne AG, Cologne, Germany; catalog no. AAD-1001S) using the Amaxa Rat Neu-

ron Nucleofector Kit (Lonza Cologne AG, Cologne, Germany; catalog no. VPG-1003) accord-

ing to the manufacturer’s protocol.

HEK-293 cells (American Type Culture Collection [ATCC], Manassas, VA, USA; catalog

no. CRL-1573) were cultured in Dulbecco’s modified Eagle medium (DMEM) that contained

10% fetal bovine serum supplemented with L-glutamine and penicillin-streptomycin. Tran-

sient transfections of HEK-293 cells were performed with Lipofectamine 2000 according to the

manufacturer’s instructions.
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RNA isolation and qRT-PCR

RNA was isolated using TRIsure reagent (Bioline, Taunton, MA, USA; catalog no. BIO-

38033), and cDNA was synthesized using a High-Capacity cDNA Reverse Transcription Kit

(Thermo Fisher Scientific, Waltham, MA, USA; catalog no. 4368814) according to the manu-

facturer’s instructions. qRT-PCR was performed using the Step One Plus Real-Time PCR sys-

tem (Thermo Fisher Scientific, Waltham, MA, USA) and SYBR Green PCR Master Mix

(Thermo Fisher Scientific, Waltham, MA, USA; catalog no. 4309155). The manufacturer’s pro-

grams were used for data acquisition, and the results were analyzed using the comparative Ct
method for relative quantification. The housekeeping gene glyceraldehyde-3-phosphate dehy-

drogenase (Gapdh) was used to standardize the samples. The following primers were used:

Gapdh (50-GGCCTTCCGTGTTCCTAC-30 and 50-TGTCATCATACTTGGCAGGTT-30),

Amot (50-CAGTCATTAGCCACTCTCCTAAC-30 and 50-GTCTTAATCCTTCCTTCCATG

TC-30), CTGF (50-GCGCCTGTTCTAAGACCTGT-30 and 50-TGCACTTTTTGCCCTTCTTA

ATGT-30), Cyr61 (50-TGAAGAGGCTTCCTGTCTTTGG-30 and 50-AGGACGTAGTCTGA

ACGATGC-30), mouse Cyp19a1 (50-CTTTCAGCCTTTTGGCTTTG-30 and 50-ATTTCCAC

AAGGTGCCTGTC-30), mouse Ankrd1 (50-GCTTAGAAGGACACTTGGCGATC-30 and

50-GACATCTGCGTTTCCTCCACGA-30), mouse Areg (50-GGTCTTAGGCTCAGGCCAT

TA-30 and 50-CGCTTATGGTGGAAACCTCTC-30), rat Cyp19a1 (50-CATTTGGACAGGC

TGGGTGA-30 and 50-GAACTTTCGTCCAGGGGGAT-30), rat Ankrd1 (50-AGGGGTTCAG

CCACAAGAGG-30 and 50-TTTGCCCGTTACCAGCTCCT-30), and rat Areg (50-TGGTGA

CCTGCCATTGTCAT-30 and 50-ATGGCTGCTAACGCGATCTT-30).

SDS-PAGE and western blot

Cultured cells or brain tissues were lysed with radioimmunoprecipitation assay (RIPA) buffer

(50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 2% Igepal CA-630 [NP-40], 0.25% sodium deoxy-

cholate, 1 mM NaF, and 1 mM DTT supplemented with Mini Protease Inhibitor cocktail

[Roche, Indianapolis, IN, USA; catalog no. 11873580001]). Proteins were separated by sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellu-

lose membranes (PALL, Port Washington, NY, USA; catalog no. 66485) or polyvinylidene

difluoride membranes (Bio-Rad, Hercules, CA, USA; catalog no. 1620174) using the Trans-

Blot Turbo system (Bio-Rad, Hercules, CA, USA; catalog no. 1704270). After blocking with 5%

milk in Tris-buffered saline with Tween (TBST), primary antibodies were added to the block-

ing buffer. The membranes were then washed with TBST and incubated with the appropriate

horseradish peroxidase–conjugated secondary antibodies. The intensities of protein bands

from the western blots were quantified using the Ingenius Bio Imaging system (Syngene, Fred-

erick, MD, USA) and Gene Tools software. The signal intensities from phosphorylated and

total proteins were normalized to respective tubulin levels, and the phosphorylated/total pro-

tein ratio was calculated.

Coimmunoprecipitation

Mouse brain tissue was homogenized in ice-cold lysis buffer (50 mM Tris-HCL [pH 8], 150

mM NaCl, 0.5% Igepal CA-630 [NP-40], 10% glycerol, 1 mM DTT, 1 mM NaF, and Mini Pro-

tease Inhibitor cocktail [Roche, Indianapolis, IN, USA; catalog no. 11873580001]). The lysate

was then passed three times through a 25-gauge needle with a syringe, rotated at 4˚C for 15

min, and centrifuged for 30 min at 18,000g at 4˚C. After centrifugation, the supernatant was

incubated overnight with Dyneabeads Protein G (Thermo Fisher Scientific, Waltham, MA,

USA; catalog no. 10004D) coated with anti-Yap1 antibody (Sigma-Aldrich, St. Louis, MO,

USA; catalog no. WH0010413M1). Beads with attached proteins were washed four times with
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lysis buffer, resuspended in 2× sample buffer, and boiled for 10 min. For western blot, samples

were subjected to SDS-PAGE.

Immunocytochemistry and immunohistochemistry

Hippocampal neurons were grown on glass coverslips, fixed with 4% paraformaldehyde

(PFA), and blocked with blocking buffer (2% bovine serum albumin [BSA], 2% normal goat

serum, and 0.5% Triton X-100 in PBS). The primary and secondary antibodies were applied in

blocking buffer.

For brain immunohistochemistry, the mice were transcardially perfused with ice-cold PBS,

followed by perfusion with 4% PFA in PBS. The brains were removed, postfixed in 4% PFA

overnight at 4˚C, and cryoprotected in 30% sucrose. Coronal brain slices (40 μm) were

obtained with a cryostat (Leica 1950 Ag Protect; Leica, Wetzlar, Germany) and collected in

antifreeze solution (30% ethylene glycol, 15% sucrose, and 0.05% sodium azide in PBS). After

incubation in blocking buffer (10% BSA and 0.3% Triton X in PBS), primary antibodies that

were diluted in blocking buffer were applied. Fluorophore-conjugated secondary antibodies

were diluted in 0.3% Triton X in PBS.

Mouse strains and husbandry

All of the mice were on a C57BL/6 genetic background and bred in a specific pathogen–free

(SPF) animal facility at the Nencki Institute of Experimental Biology. Amot fl/fl;Syn-Cre and

Yap1 fl/fl,Syn-Cre mice were generated by crossing Amot fl/fl [31] and Yap1 fl/fl mice [75],

respectively, with Syn-CRE transgenic mice (B6.Cg-Tg[Syn1-cre]671Jxm/J). Syn-CRE and

Yap1 fl/fl mice (Yap1tm1.1Dupa/J) were obtained from Jackson Laboratory (Bar Harbor, ME,

USA; catalog no. 003966 and 027929, respectively). For single Purkinje cell analysis, Amot fl/fl
and Yap fl/fl mice were crossed with the STOP-Tom reporter strain [76]. All of the experimen-

tal procedures were approved by the First Warsaw Local Ethics Committee for Animal Experi-

mentation, and the experiments were conducted in accordance with all applicable laws and

regulations. The following primers were used for genotyping: Amot (5’-GATGGATGCTATG

AGAAGGTG-30 and 50-GTAAGGATTACAGAGTCTGGG-30; wild type, approximately 400

bp; flox, approximately 500 bp; conditional knockout, no fragments), Amot (50-ATAGCTAG

TGAGCAGTAGCAG-30 and 50-GTAAGGATTACAGAGTCTGGG-30; wild type, approxi-

mately 1 kbp; flox, approximately 1.2 kbp; conditional knockout, approximately 400 bp), and

Yap1 (50-CCATTTGTCCTCATCTCTTACTAAC-30 and 50-GATTGGGCACTGTCAATTAA

TGGGCTT-30 and 50-CAGTCTGTAACAACCAGTCAGGGATAC-30; wild type, approxi-

mately 498 bp; flox, approximately 597 bp; conditional knockout, approximately 697 bp).

Viral infection

Newborn pups (P0) were intracerebrally injected with 1.7 × 109 viral genomes (VGs) of

AAV8-Syn-Cre (SignaGen Laboratories, Rockville, MD, USA; catalog no. SL100883) as

described previously [44]. Three weeks after viral infection, the animals were intracardially

perfused with 4% PFA as described above, and brains were harvested and sectioned into 100-

μm coronal slices.

Behavioral tests

For the open-field test, each mouse was monitored in a round Plexiglas box (64-cm diameter)

that was enclosed by 30-cm-high walls using an overhead video tracking system that was con-

nected to EthoVision (Noldus Information Technology, Wageningen, the Netherlands). The
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animals were taken to the behavioral examination room 1 h before the measurements. Each

animal was placed in the middle of the arena, and its movements were recorded for 10 conse-

cutive minutes. The arena was cleaned after each animal with a 70% ethanol solution and

dried. The videos were collected in digital format and analyzed using a video tracking system

(EthoVision, Noldus, Wageningen, the Netherlands) to extract the behavioral data, including

motor measurements (distance traveled and time spent immobile).

To assess motor coordination, a computer-interfaced rotarod that accelerated from 4 to 40

rotations per minute over 240 s was used (TSE, Bad Homburg, Germany). The diameter of the

rod was 30 mm. The animals were taken to the behavioral examination room 1 h before the

measurements on consecutive days to allow habituation. Habituation began 1 d before the

experiment. The animals were allowed to stand on the rotarod for 10–20 s before it began to

rotate. The mice were tested in three trials per day, with a 20-min intertrial interval, over 3

consecutive days. The time that each mouse maintained its balance on the rotating rod was

measured as the latency to fall.

Gait analysis was performed using CatWalk 7.1 (Noldus Information Technology, Wagen-

ingen, the Netherlands), a video-based, digital gait analysis system. Briefly, mice traversed a

130-cm-long glass plate that was parallel to the floor with a fluorescent tube that was connected

alongside one of the longer edges. Light from an encased fluorescent bulb was internally

reflected within the glass walkway and scattered when the plantar surface of the paw contacted

the walkway floor, thereby producing paw prints. The paw prints were recorded by a high-

speed camera that was mounted below the walkway and processed using CatWalk 7.1 acquisi-

tion software. The test was performed in a darkened room. Three uninterrupted runs were col-

lected for each animal that had been habituated to the experimental conditions and pretrained

to run along runway the day before recording. The paw print designations and data analysis

were performed by an experimenter who as blinded to the animal genotypes.

The foot-fault test was performed on parallel stainless steel bars (50-cm length, 12-mm

diameter) that were placed 15 mm apart. Each mouse was placed at the beginning of a platform

and allowed to freely move toward a self-made mouse shelter that was localized at the end of a

50-cm-long runway. Three runs were recorded for each animal, and the total number of foot-

slips and time to traverse the runway were measured for each run.

Confocal microscopy, image analysis, and quantification

Fluorescence microscopy was performed at the Confocal Microscopy Facility, Nencki Insti-

tute, using a spinning disc confocal microscope (Zeiss, Jena, Germany) equipped with PLN

APO 10×/0.45, C APO 40×/1.20, and PLN APO 63×/1.40 objectives or Zeiss LSM800 Airyscan

(Zeiss, Jena, Germany) equipped with a PLN APO 63×/1.40 objective and Airyscan Detector

(32× GaAsP detectors). Images were collected using ZEN software (Zeiss, Jena, Germany) and

analyzed using ImageJ software [77].

The morphometric analysis and quantification of dendritic tree complexity were performed

using ImageJ software with the Neuronal Tracer plug-in to calculate the TDL and Sholl plug-

in for the Sholl analysis. Briefly, each image was processed with the Neuronal Tracer plug-in,

and a mask of all dendrites on a confocal image was drawn manually. To avoid background

that could be present in the original pictures, the mask was saved as a separate image and used

in the automated Sholl analysis. Dendrites and axons were primarily distinguished by morpho-

logical criteria as previously described [78]. “Short” neurites with decreasing diameter, split-

ting with narrow angles (usually <90˚) were considered dendrites, and “long” neurites with a

relatively constant diameter splitting with variable angles (often�90˚) were considered axons.

The additional criterion for discrimination between dendrites and axons was the presence of
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dendritic filopodia and dendritic spines. The accuracy of morphology-based classification was

additionally confirmed by immunofluorescent staining for Map2 (marker of dendrites) and

ankyrin G (marker of axon initial segment). For the Purkinje cell analysis, confocal Z-stacks

were collected, and orthogonal projections were generated. Purkinje cell dendritic arbor area,

width, height, and length were manually traced using ImageJ software. Primary dendrites of

Purkinje cells were defined as branches that emerged from the soma. Secondary dendrites

were defined as branches that emerged from primary dendrites with a diameter not smaller

than half of the primary dendrite from which they protruded. To eliminate potential bias, all of

the measurements were performed in a blinded manner and confirmed by two independent

researchers.

Statistical analysis

Quantitative data are expressed as the mean ± SEM or SD. The statistical methods (two-tailed

and unpaired t tests, one-way analysis of variance followed by Tukey’s post hoc test, and two-

way analysis of variance followed by Bonferroni’s post hoc test) and p-values are defined in the

figure legends. All of the observations and analyses were performed based on at least three

independent experiments. The quantitative analyses of Purkinje cell morphology, rotarod test

data, and cerebellar weight data were performed in a blinded manner and confirmed by two

independent researchers. Animals were assigned to experimental groups based on their geno-

types. The statistical analyses were performed using GraphPad Prism 7 and Microsoft Excel

software.

Supporting information

S1 Fig. Localization of Amot–GFP in cultured neurons and specificity of anti-Amot and

anti-Yap1 antibodies (related to Figs 1 and 3 in main text). (A) Rat DIV10 hippocampal

neurons that expressed Amot–GFP. (B) Cerebellar cross-sections of control Amot fl/fl and

Amot fl/fl;Syn-Cre mice stained for Amot (red; the same image acquisition settings) and calbin-

din (green). (C) Cerebellar cross-sections of control Yap1 fl/fl and Yap1 fl/fl;Syn-Cre mice

stained for Yap1 (red; the same image acquisition settings) and calbindin (green). Scale

bar = 10 μm in A and 20 μm in B and C. Amot, angiomotin; DIV, day in vitro; GFP, green

fluorescent protein; Yap1, Yes-associated protein 1.

(TIF)

S2 Fig. Cre expression in cultured neurons does not affect dendritic growth or Amot or

Yap1 expression levels (related to Figs 2 and 4 in main text). (A) Expression and nuclear

localization of Cre in cultured neurons. Representative images of Amot fl/fl mouse hippocam-

pal neurons that were cotransfected with a plasmid that expressed Cre–RFP and a vector with

GFP that was used to visualize neuronal morphology. (B) Western blot analysis of Amot

expression levels in wild-type mouse cortical neurons that were nucleofected with a control or

Cre-expressing plasmid. (C) Representative images of cultured wild-type mouse hippocampal

neurons that were transfected with a plasmid that encoded Cre recombinase or a control vec-

tor. Scale bars = 100 μm. (D) Quantification of TDL of wild-type mouse hippocampal neurons

that were transfected with plasmids that encoded Cre recombinase (n = 46) or a control vector

(n = 39). The values are shown as percentage of Control. p = 0.7519. The cells were additionally

transfected with a GFP vector to visualize neuronal morphology. Quantification was per-

formed for samples that were obtained from at least three independent cultures. (E) Western

blot analysis of Yap1 expression levels in wild-type mouse cortical neurons that were nucleo-

fected with a control or Cre-expressing plasmid. (F) Quantification of TDL of mature rat
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hippocampal neurons that were depleted of Amot and Yap1. The cells were additionally trans-

fected with a GFP vector to visualize neuronal morphology. The cells were transfected with the

indicated plasmids on DIV14 and fixed 4 d later. Control: n = 69; Amot shRNA: n = 60; Yap1

shRNA: n = 37. To Control p< 0.0001, p = 0.0005. Quantification was performed on samples

that were obtained from at least three independent cultures. Scale bars = 50 μm. Numerical

values that underlie the graph are shown in S1 Data. Statistical significance was analyzed using

two-tailed unpaired t tests (D) and one-way analysis of variance followed by Tukey’s post hoc

test (F). ���p< 0.001, ����p< 0.0001. Bars represent the mean ± SEM. Amot, angiomotin;

DIV, day in vitro; GFP, green fluorescent protein; ns, not significant; RFP, red fluorescent pro-

tein; SEM, standard error of the mean; TDL, total dendrite length; Yap1, Yes-associated pro-

tein 1.

(TIF)

S3 Fig. Amot deletion in cultured neurons does not affect neuronal polarization (related

to Fig 2 in main text). (A, B) Representative images of Amot fl/fl mouse hippocampal neurons

that were cotransfected with a plasmid that expressed Cre–RFP or a control vector that were

immunolabeled for Map2 (A) or ankyrin G (B). (C) Amot fl/fl hippocampal neurons that were

cotransfected with a plasmid that expressed Cre–RFP (n = 33) or a control vector (n = 40),

classified according to the number of axons: no axon, single axon, or multiple axons. The cells

were cotransfected with a vector that expressed GFP to visualize neuronal morphology. Quan-

tification was performed from at least three independent cultures. Numerical values that

underlie the graph are shown in S1 Data. Scale bars = 50 μm. Amot, angiomotin; GFP, green

fluorescent protein; Map2, microtubule-associated protein 2; RFP, red fluorescent protein.

(TIF)

S4 Fig. Expression levels and localization of Amot and Yap1 constructs in cultured hippo-

campal neurons (related to Figs 2–4 in main text). (A-C) Extracts from rat neurons that

were cotransfected with plasmids that expressed the indicated constructs were analyzed by

western blot using anti-GFP antibody. (D, E) Rat DIV10 hippocampal neurons that expressed

the indicated Amot and Yap1 constructs. Scale bars = 10 μm. See Results section for further

details. Amot, angiomotin; DIV, day in vitro; GFP, green fluorescent protein; Yap1, Yes-asso-

ciated protein 1.

(TIF)

S5 Fig. Yap1 deletion in cultured neurons does not affect neuronal polarization (related to

Fig 4 in main text). (A, B) Representative images of Yap1 fl/fl mouse hippocampal neurons

that were cotransfected with a plasmid that expressed Cre–RFP or a control vector and immu-

nolabeled for Map2 (A) or ankyrin G (B). (C) Yap1 fl/fl hippocampal neurons that were

cotransfected with a plasmid that expressed Cre–RFP (n = 53) or a control vector (n = 53),

classified according to the number of axons: no axon, single axon, or multiple axons. The cells

were cotransfected with a vector that expressed GFP to visualize neuronal morphology. Quan-

tification was performed from at least three independent cultures. Numerical values that

underlie the graph are shown in S1 Data. Scale bars = 50 μm. GFP, green fluorescent protein;

Map2, microtubule-associated protein 2; RFP, red fluorescent protein; Yap1, Yes-associated

protein 1.

(TIF)

S6 Fig. Characterization of mice with neuronal deletion of Amot (related to Fig 5 in main

text). (A) Cross-sections of brains from STOP-Tom;Syn-Cre P30 mice showed high Cre activ-

ity in the cerebellum (lower panel) and hippocampus (upper panel). DAPI (gray) was used to

visualize brain structures. Scale bars = 1 mm. The insets show higher-magnification images of
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the hippocampus (upper panel, scale bar = 500 μm) and Purkinje cells (lower panel, scale

bar = 50 μm). (B) Confirmation of Amot exon2 excision in the brain of Amot fl/fl;Syn-Cre
mice, assessed by PCR analysis of genomic DNA that was obtained from the tail or brain. (C)

Reduction of Amot expression in the hippocampus of Amot fl/fl;Syn-Cre P30 mice, analyzed

by western blot. (D, E) Images of Amot fl/fl;Syn-Cre and Amot fl/fl control littermates at the

neonatal stage (D) or on P30 (E). Scale bars = 1 cm in C and D. (F) Weight analysis of Amot fl/
fl and Amot fl/fl;Syn-Cre mice (n = 8, 9, 7, 3, 4, and 4, and n = 6, 4, 9, 6, 6, and 7, respectively)

on the indicated days of development. The values are shown as a percentage of control Amot
fl/fl mouse weights at the corresponding age. p< 0.0001, p< 0.0001, p< 0.0001, p = 0.0048,

p = 0.0561, and p = 0.7799. Numerical values that underlie the graphs are shown in S1 Data.

Statistical significance was analyzed using two-tailed unpaired t test. ��p< 0.01, ����p<
0.0001. Bars represent the mean ± standard deviation (SD). Amot, angiomotin; fl/fl, Amot
homozygote mice; ns, not significant; P, postnatal day; SD, standard deviation; WT, wild-type

control; WT/fl, Amot heterozygote mice.

(TIF)

S7 Fig. Alteration of cerebellar morphology in Amot fl/fl;Syn-Cre mice (related to Fig 5 in

main text). (A) Coronal sections of Amot fl/fl and Amot fl/fl;Syn-Cre brains on P12 and P30

that were stained with DAPI. Scale bars = 1 mm. (B) Quantitative analysis of cerebellar weight

of Amot fl/fl (n = 7) and Amot fl/fl;Syn-Cre (n = 3) P150 mice normalized to the whole-brain

weight. p< 0.0001. (C) Quantification of Purkinje cells in individual lobes of the cerebellum

of Amot fl/fl (n = 3 mice and at least three sections per mouse) and Amot fl/fl;Syn-Cre (n = 5

mice and at least three sections per mouse) P30 mice. Numbers indicate the lobes. p = 0.3669,

p = 0.2006, p = 0.4707, p = 0.5413, p = 0.6975, p = 0.1447, p = 0.4154, p = 0.5165. (D-F) Thick-

ness of the molecular (D), granular (E), and Purkinje (F) cell layers in the cerebellum of Amot
fl/fl (n = 3 mice and at least three sections per mouse) and Amot fl/fl;Syn-Cre (n = 5 mice and

at least three sections per mouse) P30 mice measured at the preculminate, primary, and sec-

ondary fissures. p = 0.0135, p = 0.6818, and p = 0.0859 in D; p = 0.4169, p = 0.9693, and

p = 0.4702 in E; p = 0.4615, p = 0.3473, and p = 0.5603 in F. Numerical values that underlie the

graphs are shown in S1 Data. Statistical significance was analyzed using two-tailed unpaired t
test. �p< 0.05, ����p< 0.0001. Bars represent the mean ± SD. ns, not significant; P, postnatal

day; SD, standard deviation.

(TIF)

S8 Fig. Characterization of mice with neuronal deletion of Yap1 (related to Fig 7 in main

text). (A) Confirmation of Yap1 exon1–2 excision in the brain of Yap1 fl/fl;Syn-Cre mice,

assessed by PCR analysis of genomic DNA that were obtained from the tail or brain. (B) Yap1
fl/fl;Syn-Cre P30 mice appeared to be smaller than Yap1 fl/fl control littermates. (C) Weight

analysis of Yap1 fl/fl (n = 20) and Yap1 fl/fl;Syn-Cre (n = 9) P30 mice. p = 0.0036. (D) Quantita-

tive analysis of cerebellar weight of Yap1 fl/fl (n = 7) and Yap1 fl/fl;Syn-Cre (n = 9) P150 mice

normalized to the whole-brain weight. p = 0.0023. (E) Quantification of Purkinje cells in indi-

vidual lobes of Yap1 fl/fl (n = 4 mice and at least three sections per mouse) and Yap1 fl/fl;Syn-
Cre (n = 4 mice and at least three sections per mouse) P30 mice. Numbers indicate the lobes.

p = 0.9206, p = 0.6583, p = 0.4626, p = 0.0574, p = 0.1038, p = 0.1003, p = 0.8263, p = 0.2776.

(F-H) Thickness of the molecular (F), granular (G) and Purkinje (H) cell layers in the cerebel-

lum of Yap1 fl/fl (n = 4 mice and at least three sections per mouse) and Yap1 fl/fl;Syn-Cre
(n = 4 mice and at least three sections per mouse) P30 mice measured at the preculminate, pri-

mary, and secondary fissures. p = 0.0128, p = 0.2086, and p = 0.7616 in F; p = 0.4679, p =

0.5387, and p = 0.6736 in G; p = 0.1885, p = 0.3746, and p = 0.6526 in H. Numerical values that

underlie the graphs are shown in S1 Data. Statistical significance was analyzed using two-tailed
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unpaired t test. �p< 0.05, ��p< 0.01. Bars represent the mean ± SD. fl/fl, Yap1 homozygote

mice; ns, not significant; P, postnatal day; SD, standard deviation; WT, wild-type control; WT/
fl, Yap1 heterozygote mice; Yap1, Yes-associated protein 1.

(TIF)

S9 Fig. Behavioral analysis of Amot and Yap1 mutants (related to Fig 9 in main text). (A)

Locomotor coordination in Amot fl/fl (n = 5) and Amot fl/fl;Syn-Cre (n = 5) P100 mice,

reflected by the latency to fall from the rotarod. p = 0.0988, p = 0.0029, and p = 0.0137. (B)

Locomotor coordination in Yap1 fl/fl (n = 5) and Yap1 fl/fl;Syn-Cre (n = 5) P80 mice, reflected

by the latency to fall from the rotarod. p = 0.2611, p = 0.0270, and p = 0.0138. (C) CatWalk gait

analysis of BOS in Amot mutant mice (Amot fl/fl: n = 11; Amot fl/fl;Syn-Cre: n = 5; p = 0.2418

and p = 0.2081) and (D) CatWalk gait analysis of BOS in Yap1 mutant mice (Yap1 fl/fl: n = 4;

Yap1 fl/fl;Syn-Cre, n = 6; p = 0.2571 and p = 0.2243). (E) CatWalk gait analysis of stride length

in Amot mutant mice (Amot fl/fl: n = 11; Amot fl/fl;Syn-Cre: n = 5; p = 0.0922 and p = 0.2643).

(F) CatWalk gait analysis of stride length in Yap1 mutant mice (Yap1 fl/fl: n = 4; Yap1 fl/fl;Syn-
Cre: n = 6; p = 0.0013 and p = 0.0030). (G-J) Open-field analysis of Amot (G, H) and Yap1 (I,

J) mutant mice (Amot fl/fl;Syn-Cre: n = 9; Amot fl/fl: n = 9; Yap1 fl/fl;Syn-Cre: n = 6; Yap1 fl/fl:
n = 8). p = 0.3930 in H and p = 0.4220 in J. Numerical values that underlie the graphs are

shown in S1 Data. Statistical significance was analyzed using two-tailed unpaired t tests.
�p< 0.05, ��p< 0.01. Bars represent the mean ± SD. Amot, angiomotin; BOS, base of support;

FP, forepaws; HP, hind paws; ns, not significant; P, postnatal day; SD, standard deviation;

Yap1, Yes-associated protein 1.

(TIF)

S10 Fig. Amot loss of function does not alter hippocampal pathway–dependent gene

expression in neurons (related to Fig 10 in main text). (A-J) qRT-PCR analysis of Cyr61 (A,

F), CTGF (B, G), Ankrd1 (C, H), Cyp19a1 (D, I), and Areg (E, J) expression in rat cortical neu-

rons (A-E) with Amot knockdown (n = 3/group) and cerebellar homogenates (F-J) of Amot

knockouts (n = 6 in F and G; n = 4 in H, I and J) or control P30 mice (n = 4 in F and G; n = 6

in H, I and J). p = 0.0599, p = 0.3478, p = 0.1014, p = 0.4786, p = 0.8153, p = 0.057, p = 0.9804,

p = 0.6133, p = 0.7081, p = 0.6600. Numerical values that underlie the graphs are shown in S1

Data. Statistical significance was analyzed using two-tailed unpaired t tests. Bars represent the

mean ± SEM. Amot, angiomotin; Ankrd1, ankyrin repeat domain 1; Areg, amphiregulin;

CTGF, connective tissue growth factor; Cyp19a1, cytochrome P450 family 19 subfamily A

member 1; Cyr61, cysteine-rich 61; ns, not significant; P, postnatal day; qRT-PCR, quantitative

real-time polymerase chain reaction; SEM, standard error of the mean.

(TIF)

S11 Fig. S6 protein phosphorylation in the absence of Amot and Yap1 (related to Fig 10 in

main text). (A-C) Western blot analysis and quantification of S6 phosphorylation at Ser235/

236 in cerebellum homogenates of Amot fl/fl and Amot fl/fl;Syn-Cre mice (A) and Yap1 fl/fl
and Yap1 fl/fl;Syn-Cre mice (B) and in rat cortical neurons that were nucleofected with Amot

shRNA, Yap1 shRNA, or control plasmid (C). p< 0.0001, p = 0.0002, p = 0.0155, p = 0.0147.

Tubulin is shown as a loading control. The signal was normalized to the control. (D) Quantifi-

cation of phosphorylated S6 (Ser235/236) fluorescence intensity in cultured hippocampal neu-

rons that were transfected with control plasmid (n = 63), Amot shRNA (n = 42), and Yap1

shRNA (n = 41). p = 0.0005 and p< 0.0001. (E) Ectopic expression of S6K C.A. but not S6K K.

D. led to an increase in S6 phosphorylation at Ser235/236 in HEK-293 cells. Numerical values

that underlie the graphs are shown in S1 Data. Statistical significance was analyzed using

two-tailed unpaired t tests. �p< 0.05, ���p< 0.001, and ����p< 0.001. Bars represent the
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mean ± SD. Amot, angiomotin; HEK-293, human embryonic kidney 293; NT, not transfected;

S6K C.A., constitutively active S6 kinase; S6K K.D., kinase-dead (inactive) mutant S6 kinase;

SD, standard deviation; Ser, serine; shRNA, short-hairpin RNA; Yap1, Yes-associated pro-

tein 1.

(TIF)

S1 Table. Statistical significance of Sholl analysis plots (related to Figs 2 and 4 in main

text). Sholl analysis was performed for hippocampal neurons that were transfected with the

indicated plasmids at distances 10–200 μm from the cell body. Significance for particular radii

was assessed using two-way analysis of variance followed by Bonferroni’s post hoc test. The p-

values are indicated in the table.

(XLSX)

S1 Data. All individual numerical values that underlie the summary data that are shown in

Figs 2A, 2D, 2E, 2G, 2H, 2K, 3C, 4C, 4D, 4G, 4H, 5D, 5F, 5H, 5I, 5J, 5L, 6C, 6D, 6E, 6F, 6G,

6I, 6J, 6K, 7D, 7F, 7H, 7I, 7J, 7L, 8B, 8C, 8D, 8E, 8F, 8H, 8I, 8J, 9A, 9B, 9C, 9D, 9F, 9G, 9I,

9J, 9L, 9M, 9N, 9O, 10H, 10I, 10J, S2D, S2F, S3C, S5C, S6F, S7B, S7C, S7D, S7E, S7F, S8C,

S8D, S8E, S8F, S8G, S8H, S9A, S9B, S9C, S9D, S9E, S9F, S9H, S9J, S10A, S10B, S10C,

S10D, S10E, S10F, S10G, S10H, S10I, S10J, S11A, S11B, S11C and S11D.

(XLSX)
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