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Abstract

The yeast Saccharomyces cerevisiae shows a great variety of cellular responses to glucose via
several glucose-sensing and signaling pathways. Recent microarray analysis has revealed multiple
levels of genomic sensitivity to glucose and highlighted the power of genome-wide analysis to
detect cellular responses to minute environmental changes.
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Over the years, the yeast Saccharomyces cerevisiae has con-

solidated its position as an excellent model for the analysis of

signal transduction pathways and their control of metabolic

pathways, stress responses, growth and differentiation. In par-

ticular, the molecular mechanisms underlying the metabolic

responses to different nutrient conditions have been studied

extensively. With the elucidation of the complete yeast

genome and the introduction of genome-wide expression

analysis, the impact of distinct nutrient conditions on tran-

scriptional responses can be explored on a genome-wide scale.

Because of the powerful set of genetic and genomic tools that

are available, yeast is the perfect organism for combining

genome-wide studies of gene expression with the experimen-

tal elucidation of signaling networks; such studies have,

among other findings, detected changes in expression of many

genes of unknown function. Recent work has extended

genome-wide studies of nutrient regulation to include the

yeast response to very low concentrations of glucose [1]. 

Glucose signaling pathways regulating
transcription 
S. cerevisiae has a strong preference for glucose as its carbon

source. This is reflected in the preferential conversion of

glucose into ethanol, even under aerobic conditions, and in

the preferential utilization of glucose when cells are grown in

mixtures of glucose and other sugars. In addition, growth on

glucose is faster than on other carbon sources and a range of

glucose-dependent effects can be observed on properties

correlated with growth and stationary phase. During its evo-

lution, S. cerevisiae has gained sophisticated regulatory

mechanisms to sense fluctuating levels of glucose, and as a

result has many different glucose-sensing and signaling

pathways [2]. Three of these pathways are particularly well

understood. The first is the main glucose repression pathway

which controls, for example, respiration and the preferential

utilization of glucose [3]; the second is the Snf3/Rgt2

pathway, which controls the expression of glucose carriers

[4]; and the third is the Gpr1/Gpa2 pathway, which controls

the synthesis of cAMP and activity of the protein kinase A

(PKA) pathway [5] (Figure 1). In addition, many other

glucose-induced regulatory effects have been described for

which the glucose-sensing mechanism(s) and signaling

pathway(s) are unclear. Glucose sensing via these pathways

affects specific targets at the post-translational and/or tran-

scriptional level, and a variety of transcription factors have

been identified as targets of the glucose-signaling pathways

(summarized in Table 1). 

The first of the three well-characterized pathways, the main

glucose repression pathway (Figure 1a) has been studied

extensively for many years and is responsible for the repres-

sion - when glucose is available - of genes involved in respi-

ration, gluconeogenesis and the metabolism of alternative



carbon sources [3,6]. A central glucose-responsive repressor

complex, made up of the Mig1, Ssn6 and Tup1 proteins,

represses the transcription of gluconeogenic genes, respira-

tory genes and genes encoding enzymes involved in the uti-

lization of galactose and maltose (Table 1). In the presence of

glucose, the repressor complex is inhibited by a complex

comprised of the protein kinase Snf1, the associated regula-

tory � subunits Sip1, Sip2 or Gal83, and the activating

subunit Snf4 [7,8]. The Snf1 kinase was recently shown to be

activated through phosphorylation of a conserved threonine

residue in its activation loop by the Pak1, Tos3 and Elm1

kinases [9,10]. Down-regulation of Snf1 in low-glucose con-

ditions is catalyzed by protein phosphatase type 1 (PP1),

encoded by GLC7, which acts in a complex with the regula-

tory subunit Reg1/Hex2 [11]. Although several glucose

effects on the Snf1 complex have been identified, the precise

nature of the glucose-sensing mechanism involved in

glucose repression still remains unclear. Glucose phosphory-

lation by Hxk2 is required for glucose repression, but

whether this links to Snf1 function and/or to direct involve-

ment of Hxk2 in transcriptional regulation in the nucleus

remains to be elucidated [12].
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Figure 1
A simplified schematic representation of the three well-characterized glucose-response pathways in S. cerevisiae. (a) The main glucose repression
pathway. In response to high glucose concentrations, the complex containing the Snf1 kinase inhibits the Mig1 repressor-containing complex and thus
represses genes involved in respiration, gluconeogenesis and the metabolism of alternative carbon sources, such as galactose (GAL genes) and maltose
(MAL genes). Protein phosphatase type 1 (PP1) acts in a complex with Reg1 to down-regulate Snf1 in low-glucose conditions. Glucose phosphorylation by
Hxk2 is required for this pathway, but the step at which it acts is not known. (b) The Snf3/Rgt2 glucose-sensing pathway. In the absence of glucose, Rgt1
acts in a complex with Std1 and Mth1 as a transcriptional repressor of the HXT1-HXT4 genes. When glucose is present, the transcription factor Rgt1 is
inactivated through SCF-Grr1-mediated inactivation and degradation of Mth1 and Std1, and hyperphosphorylation by an unknown kinase, resulting in
dissociation of Rgt1 from the HXT promoters. Snf3 triggers the induction of HXT1-HXT4 in response to low glucose concentrations. High glucose
concentrations further enhance HXT1 expression through Rgt2 in a process that involves conversion of Rgt1 into a transcriptional activator. (c) The
Gpr1/Gpa2 glucose-sensing pathway. High glucose concentrations activate cAMP synthesis by the adenylate cyclase Cyr1 (which is dependent on Ras)
through the Gpr1/Gpa2 G-protein-coupled receptor system in a glucose-phosphorylation-dependent manner. The resulting activation of protein kinase A
(PKA) affects a wide variety of target genes involved in, for example, carbon metabolism and stress resistance. Some of these effects are mediated by the
Msn2 and Msn4 transcription factors. STRE, stress-response element. See text for further details.
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The second of the well-studied glucose-response pathways,

the Snf3/Rgt2 glucose-sensing pathway (Figure 1b), is

involved in controlling the expression of glucose transporter

genes [4]. High glucose concentrations induce the HXT1

gene through Rgt2, while low glucose concentrations induce

the HXT1-HXT4 genes through Snf3. S. cerevisiae has seven

functional glucose transporter genes (HXT1-HXT7) that are

well characterized and many more for which the nature and

physiological role is rather unclear [4,13]; the expression of

many of these genes depends on the concentration of glucose

in the medium. The Snf3 and Rgt2 proteins are glucose-

carrier homologs but are apparently unable to carry out

active glucose transport; instead, Snf3 and Rgt2 specifically

mediate regulation of the active glucose carriers by low and

high glucose concentrations, respectively [14,15]. In the

absence of glucose, Mth1 and Std1 stabilize the Rgt1-Ssn6-

Tup1 repressor-corepressor complex. When glucose is

present, the transcription factor Rgt1 is inactivated through

SCF-Grr1-mediated inactivation and degradation of Mth1

and Std1, and hyperphosphorylation by an unknown kinase,

resulting in dissociation of Rgt1 from the HXT promoters

[16,17]. Remarkably, whereas Rgt1 represses HXT gene

expression in the absence of glucose, at high glucose concen-

trations Rgt1 is converted to an activator that is required for

maximal expression of the low-affinity glucose transporter

HXT1 (Table 1) [18]. The HXT2, HXT4, HXT6 and SNF3

genes are repressed by Mig1 via the main glucose-repression

pathway when glucose is abundant [13].

When cells that have been growing on nonfermentable

carbon sources have glucose added to the medium, the third

well-studied pathway, the Gpr1/Gpa2 glucose-sensing

pathway (Figure 1c), is involved in the rapid increase in

cAMP levels that is mediated by the adenylate cyclase Cyr1;

the activity of Cyr1 in yeast depends on the Ras proteins.

Activation of the Gpr1/Gpa2 pathway requires both extracel-

lular glucose detection by the Gpr1-Gpa2 G-protein-coupled

receptor system and intracellular glucose phosphorylation

by one of the sugar kinases Hxk1, Hxk2 or Glk1 [2]. Subse-

quent activation of PKA affects the transcriptional regulation

of genes involved in sugar metabolism, stress resistance and

growth [5]. PKA mediates the repression of stress-resistance

genes through the inactivation of the transcription factors

Msn2 and Msn4. When activated, Msn2 and Msn4 are

translocated from the cytoplasm to the nucleus [19], where

they act through stress response elements (STREs) in the

promoters of responsive genes (Table 1) [20]. The related

post-diauxic shift element (Table 1) is affected in a similar

way by the Gis1 transcription factor, which acts downstream

in the Gpr1/Gpa2-PKA pathway [21].

Apart from these three well-characterized glucose-sensing

pathways, other glucose-induced regulatory phenomena

have been identified for which the signaling pathway(s)

remain unclear. Examples include the glucose-induced

upshift of ribosomal protein genes and CLN3 expression;

ribosomal gene expression seems to involve, to some extent,

the PKA pathway [22], while induction of the CLN3 gene

requires the Azf1 transcription factor (Table 1) [23], but does

not require active growth, is not blocked by mutations in the

Ras/cAMP pathway or in the RGT2, SNF3, HXK2 or MIG1

genes and apparently depends on active glucose metabolism.

The Yak1 kinase is also regulated by an unknown glucose-

sensing pathway [24]; when glucose is exhausted, Yak1 accu-

mulates in the nucleus and phosphorylates Pop2, a subunit

of the Ccr4-Not complex that regulates the transcription of

many genes involved in control of growth, metabolism and

proper entry into stationary phase. 
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Table 1

DNA sequences bound by glucose-regulated transcription factors

Transcription factor Binding site* Main function References

Cat8 YCCRTYSRNCCG Activator of gluconeogenic genes [27]

Sip4 YCCRTYSRNCCG Activator of gluconeogenic genes [28]

Mig1/Mig2 T(C/G)(C/T)GGGG Repressors of SUC, MAL and GAL genes [29]

Gcr1 CTTCC Activator of glycolytic genes [30]

Rgt1 CGGANNA Regulator of HXT gene expression [31]

Nrg1/Nrg2 Not determined Repressors of SUC, GAL and FLO11 genes, interact with Snf1 [32-34]

Azf1 AAGAAAAA Induction of CLN3 gene expression [23]

Msn2/Msn4 CCCCT Induction of STRE-regulated genes [20]

Gis1 T(T/A)AGGGAT Activator of post-diauxic shift (PDS) genes [21]

Pop2-Ccr4-Not Not determined Global transcriptional regulator of growth-, metabolism- and stationary [35]
phase related proteins 

*Within DNA sequences, Y denotes a pyrimidine and R a purine. Abbreviation: STRE, stress-response element. 



In addition to these complex transcriptional regulation path-

ways, glucose also controls mRNA stability, translation rate,

protein turnover and enzyme activity by a range of different

mechanisms. Most of these signaling pathways and mecha-

nisms have been studied using classical methods, taking one

or a few genes at a time, and glucose signaling in yeast was

already recognised as being ‘very complex’ before the advent

of genomic approaches. 

Genome-wide analysis of responses to glucose 
The introduction of genome-wide gene-expression analysis

has extended the scope of glucose regulation to much larger

parts of the genome than were previously implicated [25].

The recent work by the group of Al Brown [1] has added

another dimension to glucose regulation by revealing differ-

ent levels of genomic sensitivity to glucose in yeast. They have

shown that very low (0.01%), low (0.1%) and high (1.0%)

glucose concentrations elicit strikingly different responses in

the genome-wide expression pattern. They confirmed the

extreme sensitivity of yeast to glucose by showing that genes

involved in carbon metabolism are strongly upregulated in

the presence of only 0.01% glucose. In addition, the strong

differential expression profiles of the different hexose trans-

porter genes (HXT1-HXT7) was evident from the transcript-

profiling data [1]. Remarkably, the expression of not only

gluconeogenic genes, but also genes involved in the glyoxy-

late and tricarboxylic acid cycles, is very sensitive to these

minute amounts of glucose. This shows that even at very low

concentrations of glucose, yeast cells start to adapt to fermen-

tative growth, although respiration is still active. 

Glucose-controlled mRNA stability 
Another novel aspect of the recent work from the Brown group

is the influence of different glucose signals on ribosome bio-

genesis [1]. On the one hand, the microarray data confirmed

that ribosomal gene expression is induced in response to

high, but not low, glucose signals. On the other hand, mRNA

stability assays revealed that glucose, even at concentrations

as low as 0.01%, transiently stabilizes the mRNAs for riboso-

mal proteins. Ribosomal protein biosynthesis requires a major

investment of cellular resources because ribosomal protein

mRNAs are abundantly present in fast-growing cells and yet

have short half-lives. The stabilization of the mRNAs for

ribosomal proteins by a low-glucose signal, therefore,

appears to be an ‘economical’ means by which to maintain

proliferative capacity in a nutrient-limiting regime without

synthesis of new ribosomal proteins. Typically for glucose

regulation, this temporary stabilization of ribosomal protein

mRNAs is not controlled by just one signaling pathway;

rather, the mRNAs for different ribosomal subunits appear

to be regulated by distinct glucose-signaling mechanisms.

The genes involved in gluconeogenesis are strongly

repressed at glucose concentrations as low as 0.01%. This

response to very low glucose concentrations is mediated by

two regulatory phenomena: transcriptional repression and

accelerated mRNA degradation [26]. Yin et al. [26] also

showed that the degradation of gluconeogenic mRNA is

dependent on the high-affinity glucose sensor Snf3, the

phosphorylation of internalized sugars by hexokinases, the

protein phosphatase-1 subunit Reg1 and the serine/threo-

nine protein kinase Ume5.

In conclusion, genome-wide transcription analyses will

broaden our understanding of the global response of a yeast

cell to fluctuating nutrient levels. The glucose response in

yeast is an excellent illustration of the complexity of tran-

scriptional regulation by nutrients. Because of this complex-

ity, microarray experiments will be very useful in identifying

groups of genes regulated through the different signaling

pathways. In addition, this technique will be indispensable

for identifying the scope of transcriptional regulation and

the extent of overlap between the different signaling path-

ways, in particular as a function of nutrient concentration.

The remarkable sensitivity of the yeast transcriptome to very

low glucose concentrations has revealed a new field of appli-

cation for microarrays: identification of cellular responses to

minute changes in the environmental conditions. Microarray

analysis appears to provide unprecedented power to identify

even the smallest cellular responses. 
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