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Abstract: In this study, BaCe0.9Er0.1O3−α was synthesized by a microemulsion method. Then,
a BaCe0.9Er0.1O3−α–K2SO4–BaSO4 composite electrolyte was obtained by compounding it with
a K2SO4–Li2SO4 solid solution. BaCe0.9Er0.1O3−α and BaCe0.9Er0.1O3−α–K2SO4–BaSO4 were
characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman
spectrometry. AC impedance spectroscopy was measured in a nitrogen atmosphere at
400–700 ◦C. The logσ~log (pO2 ) curves and fuel cell performances of BaCe0.9Er0.1O3−α and
BaCe0.9Er0.1O3−α–K2SO4–BaSO4 were tested at 700 ◦C. The maximum output power density of
BaCe0.9Er0.1O3−α–K2SO4–BaSO4 was 115.9 mW·cm−2 at 700 ◦C, which is ten times higher than that
of BaCe0.9Er0.1O3−α.
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1. Introduction

With the rapid development of the economy, energy problems are imminent. As one of the new
energy sources, fuel cells are of great significance. Solid oxide fuel cells (SOFCs) have the advantages
of high conversion efficiency, small size, no noise, reduced pollution, and so on [1–8]. However,
higher operating temperatures often lead to serious performance degradation, longer start-up times
and expensive interconnecting sealing materials, which are considered the main obstacles to SOFCs’
commercialization. Therefore, it is urgent to explore SOFCs operating at intermediate temperatures
(400–700 ◦C) and at high performance at the same time. Compared with oxygen ion-conductive SOFCs,
proton-conducting SOFCs can operate at lower temperatures. An exploration of electrolyte materials
with high protonic conductivities at 400–700 ◦C is of vital importance [9–14].

It is known that BaCeO3-based ceramics have good protonic conductivities at high temperatures
(700–1000 ◦C) [15–24]. Using an electrolyte film and a composite electrolyte are two main ways to apply
BaCeO3-based ceramics to intermediate-temperature SOFCs [25–33]. Tong and O’Hayre fabricated five
different types of H2/air fuel cells using BaCe0.7Zr0.1Y0.1Yb0.1O3−δ (BCZYYb), BaCe0.6Zr0.3Y0.1O3−δ

(BCZY63) and BaZr0.8Y0.2O3−δ (BZY20) as electrolytes [26]. Liu et al. reported that a 30 wt.%
In3+-doped barium cerate–70 wt.% Gd0.1Ce0.9O2−δ composite electrolyte had a high conductivity of
3.42 × 10−2 S·cm−1 in wet hydrogen at 700 ◦C [27]. The conductivities of barium cerate-ceria-type
composite electrolytes are similar to those of BaCeO3 doped with low-valent metal cations [27–29].
Park et al. investigated BaZr0.85Y0.15O3−δ (BZY)-carbonate composite electrolytes, which had good
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intermediate-temperature electrochemical properties [32]. The literature has mainly focused on
reporting carbonate [30–33] and chloride [34–36] composite electrolytes. Only a small number of
reports on cerium dioxide–sulfate composite electrolytes have been reported [37]. It is well known that
the stability of carbonate is weaker than that of sulfate. Until now, no literature has reported on the
barium cerate–sulphate composite electrolyte.

In this study, we synthesized BaCe0.9Er0.1O3-αby a microemulsion method. Then,
a BaCe0.9Er0.1O3−α–K2SO4–BaSO4 composite electrolyte was obtained by compounding it with a
K2SO4–Li2SO4 solid solution. The characterization and intermediate-temperature (400–700 ◦C)
electrochemical properties of BaCe0.9Er0.1O3−α and BaCe0.9Er0.1O3−α–K2SO4–BaSO4 were investigated.

2. Experimental

BaCe0.9Er0.1O3−α was prepared by a microemulsion method. Firstly, Er2O3 was completely
dissolved with concentrated nitric acid. Sixty milliliters of water was added to make Ba(CH3COO)2

and (NH4)2Ce(NO3)6 dissolve evenly. A mixture of cyclohexane, ethanol and polyvinyl alcohol (PVA)
was added to the solution and stirred until it was completely emulsified to form Microemulsion A.
Then, (NH4)2CO3, NH4OH, cyclohexane, ethanol and PVA were mixed evenly to form Microemulsion
B [38,39]. Microemulsion B was slowly added to Microemulsion A. In the process of dropping,
the number of white precipitates increased, and a large number of bubbles emerged at the same
time. The precipitation was filtered and dried under an infrared lamp to obtain the precursor powder.
Finally, the precursor was calcined in a high-temperature furnace at 1250 and 1550 ◦C for 6 h to obtain
BaCe0.9Er0.1O3−α.

In this experiment, molten K2SO4–Li2SO4 (1:1 mole ratio) was prepared in a muffle oven at 750 ◦C
for 2 h [40]. Our previous studies indicated that the stability of 70 wt.% SrCe0.9Yb0.1O3−α–30 wt.%
(Na/K)Cl was lower, though its conductivities were higher than 80 wt.% SrCe0.9Yb0.1O3−α–20 wt.%
(Na/K)Cl [41]. Therefore, the BaCe0.9Er0.1O3−α powders were evenly mixed with molten K2SO4–Li2SO4

powders in a weight proportion of 80%:20%. After being sieved and pressed, the disks were put into
the muffle furnace heated at 750 ◦C for 2 h to obtain BaCe0.9Er0.1O3−α–K2SO4–BaSO4.

BaCe0.9Er0.1O3−α and BaCe0.9Er0.1O3−α–K2SO4–BaSO4 were characterized by an X-ray
diffractometer (XRD, X’pert Pro MPD, Holland’s company, Amsterdam, Netherlands), a confocal-micro
Raman spectrometer (invia, Renishaw, Gloucestershire, United Kingdom), and a scanning electron
microscope (SEM, S-4700, Hitachi, Tokyo, Japan). The Ba, Ce, Er, O, K and S elements in
BaCe0.9Er0.1O3−α–K2SO4–BaSO4 were measured by the energy-dispersive X-ray spectroscopy.

For intermediate-temperature electrochemical properties, BaCe0.9Er0.1O3−α and
BaCe0.9Er0.1O3−α–K2SO4–BaSO4 were polished to a thickness of 1.0 mm. Circles 8 mm in
diameter were drawn in the center of both sides of the discs with a pencil, and a 20%Pd–80%Ag paste
was coated on the circles (area: 0.5 cm2). AC impedance spectroscopy was measured in a nitrogen
atmosphere at 400–700 ◦C. The frequency ranged from 1 to 105 Hz, and the signal voltage was 0.05 V.
The logσ~log (pO2 ) curves of BaCe0.9Er0.1O3−α and BaCe0.9Er0.1O3−α–K2SO4–BaSO4 were tested by
adjusting different proportions of air, nitrogen, oxygen and hydrogen at room temperature (pH2O = 2.3
× 103

− 3.1 × 103 Pa). The two sides of BaCe0.9Er0.1O3−α and BaCe0.9Er0.1O3−α–K2SO4–BaSO4 were
in hydrogen and oxygen atmospheres, respectively, which constituted the following fuel cells: H2,
Pd–Ag | sample | Pd–Ag, O2. We then measured their I–V–P curves.

3. Results and Discussion

Figure 1 is the XRD spectra of BaCe0.9Er0.1O3−α (1250 and 1550 ◦C) and
BaCe0.9Er0.1O3−α–K2SO4–BaSO4. The diffraction peaks of BaCe0.9Er0.1O3−α (1250 and 1550 ◦C)
correspond to the standard diagram of BaCeO3 (JCPDS 85-2155). Neither of the two samples detected
Er2O3, which indicates that they had entered the lattice of perovskite phase. In BaCe0.9Er0.1O3−α

(1250 ◦C), in addition to the perovskite phase, there was a very small amount of the CeO2 phase,
indicating the initial calcination temperature should be raised to 1300 or 1350 ◦C [22]. The weak alkali
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salt Li2SO4 reacted with the strong base BaO to form BaSO4 when BaCe0.9Er0.1O3−α powders were
mixed with molten sulphate, as indicated by the equation: BaO + Li2SO4 = BaSO4 + Li2O. CeO2 may
be separated from the perovskite structure when sulphate and BaCe0.9Er0.1O3−α form a composite
electrolyte. This is why CeO2 also appears in BaCe0.9Er0.1O3−α–K2SO4–BaSO4.
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Figure 1. XRD patterns of BaCe0.9Er0.1Os3-α (1250 and 1550 °C) and BaCe0.9Er0.1O3−α–K2SO4–BaSO4. 
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(1550 °C) ceramic prepared by the microemulsion method. It can be seen that BaCe0.9Er0.1O3−α (1550 
°C) had a compact structure, complete grain growth, clear grain boundaries, and very few holes. The 
density of the BaCe0.9Er0.1O3−α (1550 °C) ceramic prepared by the microemulsion method was higher 
than that by the high-temperature solid-state method at the same sintering temperature. After adding 
sulphate, the boundaries between grains became not particularly distinct. There were different 
degrees of adhesion between grains [32,33]. This is due to the BaCe0.9Er0.1O3−α grains being wrapped 
in molten sulfate. 

 
Figure 2. The external (a,c) and cross-sectional (b,d) SEM photos of BaCe0.9Er0.1O3−α (1550 °C) and 
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Figure 1. XRD patterns of BaCe0.9Er0.1Os3-α (1250 and 1550 ◦C) and BaCe0.9Er0.1O3−α–K2SO4–BaSO4.

Figure 2a,b shows SEM photos of the external and cross-sectional surfaces of the BaCe0.9Er0.1O3−α

(1550 ◦C) ceramic prepared by the microemulsion method. It can be seen that BaCe0.9Er0.1O3−α

(1550 ◦C) had a compact structure, complete grain growth, clear grain boundaries, and very few holes.
The density of the BaCe0.9Er0.1O3−α (1550 ◦C) ceramic prepared by the microemulsion method was
higher than that by the high-temperature solid-state method at the same sintering temperature. After
adding sulphate, the boundaries between grains became not particularly distinct. There were different
degrees of adhesion between grains [32,33]. This is due to the BaCe0.9Er0.1O3−α grains being wrapped
in molten sulfate.
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The energy-dispersive X-ray spectroscopy result of BaCe0.9Er0.1O3−α–K2SO4–BaSO4 is shown in
Figure 3. The spectrum had major peaks assigned to the Ba, Ce, Er, O, K and S elements. The atomic
ratios of Ba/Ce, Ba/Er and S/K are 0.87, 9.21 and 1.54. The low content of the Ba element may be due
to the formation of BaSO4 by the reaction: BaO + Li2SO4 = BaSO4 + Li2O, resulting in segregation.
The elements mapping images indicated that the spatial distribution of sulphate was uniform.
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Figure 3. The energy-dispersive X-ray spectroscopy and elements mapping images in BaCe0.9Er0.1O3−α

–K2SO4–BaSO4.

Figure 4 shows the Raman spectra of BaCe0.9Er0.1O3−α (1550 ◦C) and
BaCe0.9Er0.1O3−α–K2SO4–BaSO4. In BaCe0.9Er0.1O3−α (1550 ◦C), Raman activity peaked around
653 and 723 cm−1, corresponding to the Oh vibrational mode and Ce–O vertical bending vibration
in the A1g mode, respectively. In BaCe0.9Er0.1O3−α–K2SO4–BaSO4, the Raman peaks near 353, 520,
987 and 1120 cm−1 were attributed to S–O bending, bending deformation, symmetrical stretching and
antisymmetric telescopic vibration, respectively [38,42–44].
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Figure 5 shows the conductivities of BaCe0.9Er0.1O3−α (1550 ◦C) and
BaCe0.9Er0.1O3−α–K2SO4–BaSO4 in nitrogen measured from 400 to 700 ◦C. It can be seen
from Figure 5 that the BaCe0.9Er0.1O3−α–K2SO4–BaSO4 had a beneficial effect on conductivity. With
the addition of sulphate, the conductivity was significantly improved. This is because the sulphate
distributed at the grain boundary and formed a continuous phase, so both the main phase and
the grain boundary phase could conduct ions. The highest conductivities of BaCe0.9Er0.1O3−α

(1550 ◦C) and BaCe0.9Er0.1O3−α–K2SO4–BaSO4 achieved were 9.4 × 10−3 and 1.8 × 10−1 S·cm−1

at 700 ◦C. Under the same conditions, the conductivity of BaCe0.9Er0.1O3−α–K2SO4–BaSO4

was higher than that of BaCe0.7In0.3O3−δ–Gd0.1Ce0.9O2−δ [27] and comparable to values of
BaCe0.83Y0.17O3−δ–Sm0.15Ce0.85O2−δ [29]. This indicated that the sulphate was conducive to the
conduction of ion defects through the interface region in the BaCe0.9Er0.1O3−α–K2SO4–BaSO4

composite electrolyte. The conductivity of BaCe0.9Er0.1O3−α was equivalent to that of
BaCe0.7In0.15Ta0.05Y0.1O3−δ [22] and BaCe0.5Zr0.3Y0.2−xYbxO3−δ in wet H2 (~3% H2O) [18].
This may be related to its high density, as shown in Figure 3.
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The conduction characteristics of BaCe0.9Er0.1O3−α and BaCe0.9Er0.1O3−α–K2SO4–BaSO4 were
tested by adjusting different proportions of gases. As seen in Figure 6, the conductivities of the samples
in a reductive atmosphere are very close to those in an oxidizing atmosphere. The logσ~log (pO2 )
curves of BaCe0.9Er0.1O3−α and BaCe0.9Er0.1O3−α–K2SO4–BaSO4 were almost horizontal straight lines.
When the temperature exceeded the melting point of sulphate salts, the mobility of various ions (Ba2+,
Li+, K+, H+) was greatly enhanced, which led to a low activation energy for ion transport in the
interface regions. The proton was the smallest cation, and the mobility of protons was greater than
other ions (Li+, K+), resulting in an increased conductivity. Therefore, ion conduction appeared to
become dominant [34].
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Figure 6. The logσ~log (pO2 ) curves of BaCe0.9Er0.1O3-α and BaCe0.9Er0.1O3−α–K2SO4–BaSO4 at 700 ◦C.

Hydrogen/oxygen fuel cells were assembled with BaCe0.9Er0.1O3−α and
BaCe0.9Er0.1O3−α–K2SO4–BaSO4 as supporting electrolytes and Pd–Ag as electrodes.
The current–voltage characteristic curves are shown in Figure 7. The resistance directed
from current–voltage characteristic curve of BaCe0.9Er0.1O3−α–K2SO4–BaSO4 (2.76 Ω) was lower
than that of the value (5.54 Ω) from AC impedance at 700 ◦C, implying that the protonic conduction
was dominant under the fuel cell condition [45]. The maximum power density of BaCe0.9Er0.1O3−α

was 10.9 mW·cm−2 at 700 ◦C. Because the fuel cell was supported by the electrolyte and the
electrolyte was thicker (1.0 mm), the current and power density were relatively low. When the
voltage was 0.6 V, the maximum output power density of BaCe0.9Er0.1O3−α–K2SO4–BaSO4 was
115.9 mW·cm−2 at 700 ◦C, which is ten times higher than that of BaCe0.9Er0.1O3−α. The results show
that BaCe0.9Er0.1O3−α–K2SO4–BaSO4 is an excellent electrolyte material for medium-temperature
fuel cells.
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Figure 7. Hydrogen/oxygen fuel cells assembled with BaCe0.9Er0.1O3-α and
BaCe0.9Er0.1O3−α–K2SO4–BaSO4 as supporting electrolytes at 700 ◦C.
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4. Conclusions

In this study, a BaCe0.9Er0.1O3−α–K2SO4–BaSO4 composite electrolyte was obtained by
compounding it with a K2SO4–Li2SO4 solid solution. The XRD diffraction peaks of BaCe0.9Er0.1O3−α

(1550 ◦C) corresponded to the standard diagram of BaCeO3, which indicated that Er2O3 had entered the
lattice of perovskite phase. SEM photos showed the BaCe0.9Er0.1O3−α grains were wrapped in molten
sulfate. The highest conductivities of BaCe0.9Er0.1O3−α (1550 ◦C) and BaCe0.9Er0.1O3−α–K2SO4–BaSO4

were 9.4 × 10−3 and 1.8 × 10−1 S·cm−1 at 700 ◦C, respectively. The logσ~log (p pO2 ) curves
of BaCe0.9Er0.1O3−α and BaCe0.9Er0.1O3−α–K2SO4–BaSO4 are almost horizontal straight lines,
which indicated that ionic conductivity was dominant. The maximum output power density of
BaCe0.9Er0.1O3−α–K2SO4–BaSO4 was 115.9 mW·cm−2 at 700 ◦C, which is ten times higher than that of
BaCe0.9Er0.1O3−α.
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