Supplementary methods

Data acquisition

Baseline characteristics, including gestational age, birth weight, sex, multiple birth, Apgar scores, route of delivery, and the use of maternal prenatal glucocorticosteriods, were collected from electronic medical records (HiX version 6.1, Chipsoft, Amsterdam, Netherlands). Administered treatments, including surfactant, inotropes, caffeine, doxapram, dexamethasone, red blood cell transfusion, and inhaled nitric oxide; and comorbidities including sepsis, necrotizing enterocolitis, intraventricular hemorrhage, and patent ductus arteriosus during NICU admission were also collected from the electronic medical records. Small for gestational age was calculated according to Fenton and Kim [1]. The DIGIROP-Birth, an early estimating risk model for ROP treatment using birth characteristics, was calculated using the website that the investigators of the score provided (https://www.digirop.com/index.html) [2]. Data on ROP screenings were collected from the reports of the experienced ophthalmologists (SL, AT) who performed the screening. Data on the fraction of inspired oxygen (FiO₂) were collected from the electronic patient data management system (Picis Clinical Solutions, Inc., Wakefield, MA, USA) and HiX. Only changes in the FiO₂ settings were recorded before 2017, after this the FiO₂ was continuously recorded each minute. Continuously logged SpO₂ and heart rate (sampled at 1Hz) were automatically collected from bedside monitors (Draegerwerk AG & Co KGaA, Lübeck, Germany). Data were captured from admittance until 30 days after birth, before the first ROP screening took place.

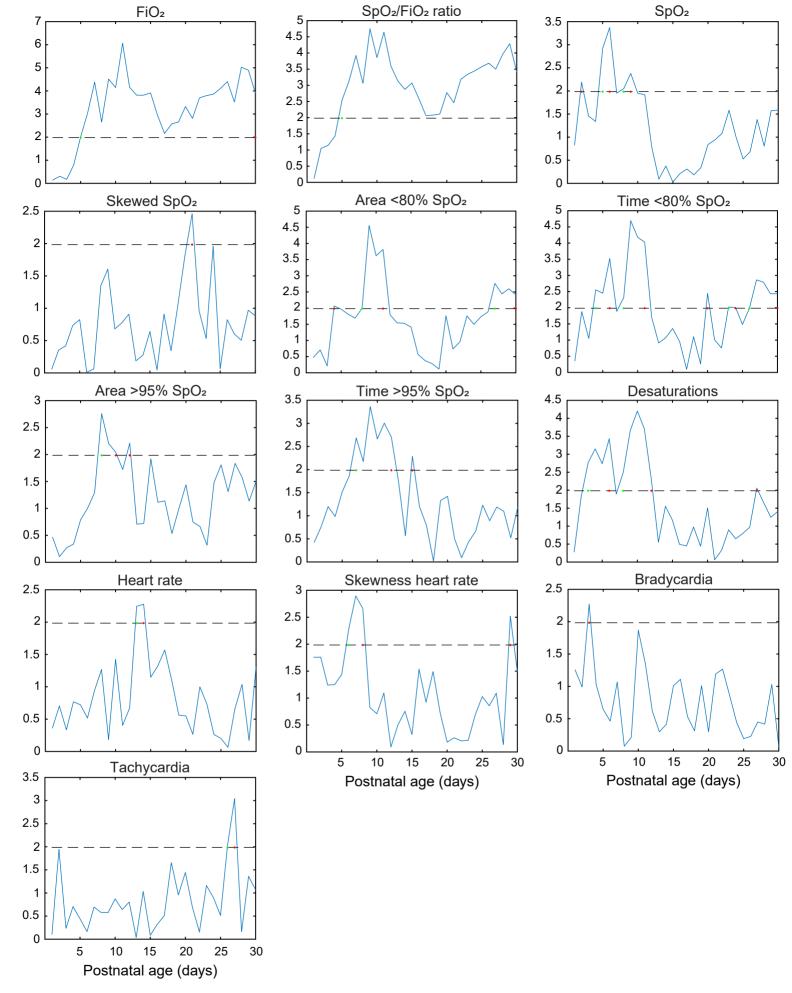
Statistical analysis

Non-parametric cluster analysis

Time periods with differences in each physiological feature between the laser and the non-laser group in the training data were identified using a non-parametric cluster analysis described by Maris and Oostenveld [3]. Briefly, differences were identified by calculating a t statistic at each day for each physiological feature as a measure of statistical difference between the two groups. Clusters were defined as contiguous sections of data with a t statistic above threshold set as 97.5 percentile of the t distribution; the start of a significant cluster was defined as the earliest time point with a t statistic above the threshold and the end of a cluster was defined as the time point with a t statistic below the threshold. Significant clusters were identified by comparison of the clusters attained from 1000 random permutations of the data indicating significant differences in the physiological data that occur for longer duration than would be expected by chance.

Machine learning analysis

The model training and statistical analysis were conducted using the 'fitcensemble' function in MATLAB (R2021a). Missing data were assumed to be completely at random and a model approach was chosen that is modifiable to account for missing data. The classification models were created with the random undersampling boosting (RUSBoost) algorithm to take into account class imbalance due to the relatively low incidence of ROP requiring laser treatment [4]. The RUSBoost algorithm is found to outperform other methods when training a classifier on unbalanced datasets [4]. The algorithm undersamples the class containing the most infants by taking only the number of observations of the class with the fewest infants (RatioToSmallest [1,1]).


References

1. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. *BMC Pediatr* 2013;13:59.

2. Pivodic A, Hard AL, Lofqvist C, Smith LEH, Wu C, Brunder MC, et al. Individual Risk Prediction for Sight-Threatening Retinopathy of Prematurity Using Birth Characteristics. *JAMA Ophthalmol* 2020;138(1):21-9.

3. Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. *J Neurosci Methods* 2007;164(1):177-90.

4. Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. RUSBoost: A Hybrid Approach to Alleviating Class Imbalance. *IEEE* 2010;40(1):185-97.

Supplemental Figure 1. Graphs presenting the t statistic between the group with and without laser treatment of the fraction of inspired oxygen (FiO₂), oxygen saturation (SpO₂)/FiO₂ ratio, SpO₂, skewness of the SpO₂, area <80% SpO₂ curve, time percentage <80% SpO₂, area >95% SpO₂ curve, time percentage <80% SpO₂, area >95% SpO₂ curve, time percentage of desaturations, heart rate, skewness of the heart rate, and incidence of bradycardia and tachycardia in the first 30 postnatal days. The dotted line marks the threshold set as 97.5 percentile of the t distribution.

Supplemental Table 1. Calculation of the derived features from the oxygen saturation, heart rate and fraction of inspired oxygen as source data.

Source data	Feature	Calculation
SpO_2	Skewness SpO ₂	Using 'skewness' function R package 'e1071'
SpO ₂	Incidence of desaturations	Episodes of desaturation were identified as periods
		during which SpO ₂ levels decreased below 80% for
		at least 10 seconds.
SpO_2	Area under the 80% SpO ₂ curve	Multiplying the difference between the SpO ₂ limit of
		80% and the measured SpO ₂ by the time spent below
		the SpO ₂ limit of 80% .
SpO ₂ , FiO ₂	Area above the 95% SpO ₂ curve	Multiplying the difference between the SpO ₂ limit of
		95% and the measured SpO_2 by the time spent above
		the SpO ₂ limit of 95%. SpO ₂ values $>$ 95% were not
		taken into account when FiO_2 was $\leq 21\%$.
SpO_2	Percentage of time below 80% SpO ₂	Dividing the number of measurements below the
		SpO ₂ limit of 80% by the available number of
		measurements per day.
SpO ₂ , FiO ₂	Percentage of time above 95% SpO ₂	Dividing the number of measurements above the
		SpO ₂ limit of 95% by the available number of
		measurements per day. SpO ₂ values $>95\%$ were not
		taken into account when FiO_2 was $\leq 21\%$.
SpO ₂ , FiO ₂	SpO ₂ /FiO ₂ ratio	Calculated per second where both SpO ₂ and FiO ₂
		measurements were available.
Heart rate	Incidence of bradycardia	Episodes of bradycardia were defined as periods
		during which the heart rate decreased below 100
		beats per minute for at least 15 seconds.
Heart rate	Incidence of tachycardia	Episodes of tachycardia were defined as periods
		during which the heart rate was greater than 200
		beats per minute for at least 15 seconds.
Heart rate	Skewness heart rate	Using 'skewness' function R package 'e1071'

	Training set (N=100)	Test set (N=106)	P-value*	
ROP requiring laser	15 (15%)	15 (14%)	1.00	
(yes)				
Gestational age (weeks)	26.4 (25.3-27.6)	26.4 (25.6-27.3)	0.88	
Birth weight (grams)	830 (700-973)	830 (686-989)	0.90	
SGA (yes)	19 (19%)	18 (17%)	0.84	
Male (yes)	69 (69%)	49 (46%)	< 0.01	
Multiple birth (yes)	24 (24%)	21 (20%)	0.58	
Mortality (yes)	4 (4%)	7 (7%)	0.54	
Apgar				
1 min	5 (3-7)	5 (4-7)	0.29	
5 min	8 (7-8)	8 (7-9)	0.68	
Section (yes)	61 (61%)	68 (64%)	0.75	
Prenatal				
glucocorticoids (yes)	87 (87%)	93 (88%)	1.00	
Doses (n)	2 (1-2)	2 (2-2)	0.23	
Treatments (yes)				
Surfactant	79 (79%)	83 (78%)	1.00	
Inotropes	35 (35%)	30 (28%)	0.38	
Caffeine	99 (99%)	106 (100%)	0.49	
Doxapram	49 (49%)	47 (44%)	0.60	
Dexamethasone	34 (34%)	35 (33%)	1.00	
RBC transfusion	84 (84%)	79 (75%)	0.13	
iNO therapy	15 (15%)	15 (14%)	1.00	
Duration of NICU	68 (53-94)	59 (47-80)	0.04	
admission				
Comorbidities (yes)				
NEC	13 (13%)	16 (15%)	0.82	
Sepsis	68 (68%)	68 (64%)	0.66	
IVH	19 (19%)	28 (26%)	0.27	
PDA	46 (46%)	43 (41%)	0.52	

Supplemental Table 2. Baseline characteristics from the training and test set.

Data from the training and test set are presented as median (IQR) and n (%). SGA: small for gestational age, RBC: red blood cell, iNO: inhaled nitric oxide, NEC: necrotizing enterocolitis, IVH: intraventricular hemorrhage, PDA: patent ductus arteriosus.

**P*-value from the Wilcoxon rank sum test, X^2 test, and Fisher's exact test evaluated between the training and test set.

Supplemental Table 3. Performance scores of the decision tree classification models, obtained in the training set.

Features*	Balanced accuracy	Sensitivity	Specificity	MCC	P-value**		
					Acc	Sens	Spec
		Day 1-	30				
SpO ₂ /FiO ₂ ratio	0.76 (0.66-0.83)	0.67 (0.57-0.75)	0.85 (0.76-0.91)	0.44	0.03 ^a	0.63ª	0.03ª
Incidence of	0.67 (0.58-0.76)	0.53 (0.44-0.63)	0.81 (0.72-0.88)	0.29	0.33ª	0.69ª	0.19 ^a
desaturations	· · · · · ·	,	· · · · · ·				
Area <80% SpO ₂ curve	0.60 (0.50-0.69)	0.53 (0.44-0.63)	0.66 (0.56-0.74)	0.14	0.21ª	0.69 ^a	0.24 ^a
Percentage of time <80% SpO ₂	0.68 (0.59-0.77)	0.60 (0.50-0.69)	0.76 (0.67-0.84)	0.29	0.70ª	1.00 ^a	0.68ª
Percentage of time >95% SpO ₂	0.55 (0.45-0.64)	0.47 (0.37-0.56)	0.64 (0.54-0.72)	0.08	0.07ª	0.45ª	0.10 ^a
FiO ₂	0.68 (0.59-0.77)	0.53 (0.44-0.63)	0.84 (0.75-0.90)	0.32	0.13 ^a	0.63ª	0.06ª
Skewness heart rate	0.54 (0.44-0.64)	0.40 (0.31-0.50)	0.68 (0.59-0.77)	0.06	0.15 ^a	0.13 ^a	0.34ª
		Day 5-	15				
All physiological data	0.75 (0.66-0.83)	0.67 (0.57-0.75)	0.84 (0.75-0.90)	0.42	0.02ª	0.50ª	0.04ª
SpO ₂ /FiO ₂ ratio	0.66 (0.56-0.74)	0.47 (0.37-0.56)	0.85 (0.76-0.91)	0.28	0.15 ^a	0.38ª	0.04 ^a
Incidence of desaturations	0.60 (0.50-0.69)	0.47 (0.37-0.56)	0.73 (0.63-0.81)	0.15	0.52ª	0.38ª	0.81ª
Area <80% SpO ₂ curve	0.68 (0.58-0.76)	0.60 (0.50-0.69)	0.75 (0.66-0.83)	0.28	0.86ª	0.40ª	0.85ª
Percentage of time <80% SpO ₂	0.71 (0.61-0.79)	0.60 (0.50-0.69)	0.81 (0.72-0.88)	0.34	0.23ª	1.00 ^a	0.21ª
Percentage of time >95% SpO ₂	0.63 (0.53-0.71)	0.53 (0.44-0.63)	0.72 (0.62-0.80)	0.19	0.60ª	0.75ª	0.68ª
FiO ₂	0.67 (0.57-0.75)	0.47 (0.37-0.56)	0.87 (0.79-0.92)	0.31	0.03 ^a	0.38 ^a	<0.01 ^a
Skewness heart rate	0.58 (0.48-0.67)	0.53 (0.44-0.63)	0.62 (0.53-0.71)	0.11	0.08ª	0.63ª	0.10 ^a
	1	Day 5-15,	25-30				
Significant physiological data	0.70 (0.60-0.78)	0.53 (0.44-0.63)	0.86 (0.78-0.92)	0.35	0.77 ^b	0.25 ^b	0.75 ^b

The model performance is reported as the balanced accuracy, sensitivity, specificity, and Matthew's correlations coefficient (MCC) with the 95% CI for the balanced accuracy, sensitivity, and specificity.

*Physiological data included data on SpO₂, skewness SpO₂, incidence of desaturations, area under the 80% SpO₂ curve, area above the 95% SpO₂ curve, percentage of time below 80% SpO₂, percentage of time above 95% SpO₂, FiO₂, SpO₂/FiO₂ ratio, heart rate, incidence of bradycardia, incidence of tachycardia, skewness heart rate.

** P-value calculated by the McNemar's test.

^aCompared to model 1

^bCompared to model 3