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Summary: The importance of genetic factors in substance addiction has long been established. The rationale 
for this work is that understanding of the function of addiction genes and delineation of the key molecular 
pathways of these genes would enhance the development of novel therapeutic targets and biomarkers that 
could be used in the prevention and management of substance abuse. Over the past few years, there has 
been a substantial increase in the number of genetic studies conducted on addiction in China; these studies 
have primarily focused on heroin, alcohol, and nicotine dependence. Most studies of candidate genes have 
concentrated on the dopamine, opioid, and serotonin systems. A number of genes associated with substance 
abuse in Caucasians are also risk factors in Chinese, but several novel genes and genetic risk factors associated 
with substance abuse in Chinese subjects have also been identified. This paper reviews the genetic studies of 
substance abuse performed by Chinese researchers. Genotypes and alleles related to addictive behavior in 
Chinese individuals are discussed and the contributions of Chinese researchers to the international corpus of 
knowledge about the genetic understanding of substance abuse are described. 
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1. Introduction
Drug addiction is a chronic relapsing disorder, characterized 
by a compulsion to use drugs and the emergence of 
a negative emotional state after withdrawal.[1] The 
number of people with drug addiction in China has been 
increasing annually making it a serious public health 
problem.[2,3]

The brain reward system plays a key role in the 
development of drug addiction.[4] The common genetic 
influences underlying addiction are shared by different 
drugs. Compelling evidence indicates the critical role 
of the dopamine system, which is directly or indirectly 
activated by all abused drugs, in drug addiction.[5] In 
addition to dopamine, multiple neurotransmitter and 
enzyme systems have been shown to play a role in the 
reinforcing effects of drugs of abuse, including opioid 
peptides, γ-aminobutyric acid (GABA), glutamate, 
endocannabinoids, serotonin and metabolic enzymes.[6,7]

Genetic influences account for 30 to 70% of addiction 
vulnerability. These genetic influences are induced by 
multiple genes, each of which may make only a minor 
contribution to the variance of addiction risk.[8] Addiction 
is a complex condition that results from the combined 
interaction of several factors including environmental 
influences, drug-induced neurobiological changes, and 
personality traits. Genetic variations that affect these 
factors may work in concert to affect the vulnerability to 
addiction and the severity of addiction. Genetic factors 

influence different stages in the initiation and progression 
of substance addiction, including dependence, 
withdrawal and relapse.[9,10] Two main strategies have 
been used to identify genetic variations that influence 
addiction vulnerability and other addiction-related 
phenomena: the candidate gene approach and the 
genome-wide linkage approach.[11] Coupled with genetic 
epidemiological analyses, these studies have provided 
solid evidence about the importance of genetic factors 
in addiction. 

Genetic research on addiction in China has mainly 
focused on opiates, alcohol, nicotine and some of 
the newer drugs of abuse, which together make up 
the majority of substance abuse disorders in China. 
Opiates, especially heroin, are widely and traditionally 
abused in China.[12,13] According to the China 2013 
Narcotics Report, there are 1.27 million persons with 
opium addiction in the country, accounting for 60.6% 
of all drug addicts nationally.[2] The use of the newer 
drugs of abuse – mainly methamphetamine (METH), 
3,4-methylenedioxymethamphetamine (MDMA), and 
ketamine – has spread in China since 1997.[14] These 
more recent drugs of abuse are becoming popular 
recreational drugs;[15] they already account for 38% of all 
drug addicts (about 800,000 individuals) in the country[2] 
and, more concerning, for the majority of individuals 
who are starting to abuse drugs.[16] Additionally, alcohol 
consumption has increased considerably in China in the 
past three decades,[17,18] an increase that is occurring 



across all age groups, especially among young people 
in urban areas.[19] The social burden caused by diseases 
related to alcohol abuse is considerable in China.[20] 
Also, chronic smoking problems are particularly serious 
in China: the Chinese Center for Disease Control and 
Prevention reports that China has the largest population 
of smokers in the world (over 350 million) and that many 
non-smokers experience health problems caused by 
exposure to second hand smoke.[21,22]

This review focuses on genetic advances in 
substance abuse research conducted by Chinese 
researchers, summarizing their contributions to the 
understanding of drug dependence and to the evidence 
base that is required to improve the prevention and 
management of substance addiction in China. We 
identified potential studies for inclusion in this review 
by searching the Pubmed database using the terms 
“genetic” or “polymorphism” or “gene” with “addiction” 
or “dependence”. Identified articles were included in the 
review if they were conducted at Chinese institutions 
and if they were considered potentially important by 
the authors. We also identified additional studies by 
checking the reference lists of the identified articles and 
by consulting experts. 

2. Candidate gene studies
2.1 Dopamine system 
Dopamine is an important neurotransmitter in the brain 
that controls various functions. The dopamine system 
plays a key role in reward mechanisms. The variety of 
genes that encode dopamine receptors, dopamine 
transporters, and dopamine metabolic enzymes affect 
the heritability of drug addiction.[23] In the central nervous 
system, dopamine receptors are widely expressed and 
involved in the control of locomotion, cognition, emotion 
and the neuroendocrine system.[24] 

The important effects of genetic polymorphisms of 
dopamine receptors and of the dopamine transporter on 
substance abuse have long been established.[23,25] Some 
studies supported the hypothesis that genetic variants 
in dopamine systems increase the risk of addiction 
disorders by affecting different aspects of impulsivity 
or the capacity to inhibit the choice of a less rewarding 
signal.[23] Using Chinese samples, a number of Chinese 
studies have verified the results of studies conducted 
in other contries. The dopamine D2 receptor (DRD2) 
mRNA was found to be abundantly expressed in all 
dopaminergic terminal-enriched areas.[26] DRD2 TaqI A1 
allele carriers were shown to be prone to heroin abuse.
[27] Li and her team found that individuals who carry the 
DRD2 TaqI RFLP A1 allele showed significantly stronger 
cue-elicited craving.[28] Du and colleagues performed 
a meta-analysis and suggested a possible association 
between the dopamine transporter gene 1 (DAT) gene 
polymorphisms and alcoholism.[29] Ling and colleagues 
reported that polymorphisms of the DAT gene may 
play an important role in smoking onset and that there 
is a possible interactive effect between DAT and early 
smoking onset that contributes to the susceptibility to 

nicotine dependence.[30] Dopamine D4 receptor (DRD4) 
polymorphisms were shown to be related to heroin 
dependence,[31,32] and DRD4 exon III variable number 
of tandem repeat (VNTR) polymorphisms may play 
important roles in the development of opiate abuse.[33] 
Heroin addicts who carried the DRD4 VNTR long-type 
allele had stronger cue-elicited craving.[34] Catechol-
O-methyltransferase (COMT) played an essential role 
in dopamine inactivation. The rs4860 (Val158Met) 
functional single-nucleotide polymorphism (SNP) on the 
COMT gene resulting in a three- to four-fold increase 
in enzyme activity [35] has been extensively studied in 
psychiatric disorders, including drug dependence.[36] 
Chinese heroin addicts with the TT genotype of COMT 
rs737866 variants had higher novelty-seeking scores and 
an earlier age of onset of heroin use than addicts with 
the CT or CC genotype.[37] However, findings about the 
association between this SNP and the age of onset of 
heroin use remain controversial.[38-42]

Similar to the findings of genetic studies conducted in 
other countries, studies about the association between 
genetic variants of the dopamine system and substance 
abuse in Han Chinese populations with addiction have 
also been inconclusive. Some studies reported that 
neither the DRD2 nor DAT gene plays a significant role 
in alcoholism in Taiwanese populations.[43,44] Even after 
stratification by the relevant genotypes of alcohol 
dehydrogenase 2 (ADH2) and aldehyde dehydrogenase 
2 (ALDH2), no significant association was found between 
the genetic variants of DRD2 and alcoholism in a Han 
Chinese population.[45] Tsai and colleagues investigated 
the associations between DRD2 TaqI and DRD4 exon III 
VNTR polymorphisms and METH dependence in a male 
Han Chinese sample, but they did not find any significant 
results.[46] Similarly, no significant difference was found in 
the VNTR distribution of DAT1 between heroin abusers 
and healthy individuals in China.[27] The DAT was the main 
modulator of MAP/amphetamine-induced dopamine 
release and dopamine neurotoxicity, but when Liu and 
colleagues tested the association between a DAT gene 
polymorphism and clinical variations in METH abusers, 
no significant association was found.[47]

Genetic variants can also affect the treatment outcome 
for nicotine dependence. Recently, Sun and colleagues 
found that Chinese smokers with the COMT Val/Val 
genotype had greater abstinence rates when treated 
with nicotine replacement therapy.[48] Furthermore, 
DRD2 variants have been found to be associated with the 
dose of methadone required in the treatment of Chinese 
individuals with heroin addiction.[49]

2.2 Endogenous opioid and cannabinoid systems
Opioid peptides activate G-protein-coupled μ-, δ- and 
κ-opioid receptors, which differ in affinities and response 
profiles. Opioid receptors are physiologically activated 
by the endogenous neuropeptides β-endorphin, leu-
enkephalin, met-enkephalin and dynorphin. These 
peptides are not limited to binding with a certain type of 
opioid receptor. Individuals with a genetic predisposition 
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to substance abuse may have defects in opioid peptide 
and receptor genes.[50] Opioid receptors not only mediate 
the pharmacological actions of opioids, but they also 
modulate the in vivo effects of other drugs of abuse.[51] 
The human mu-opioid receptor (MOR) represents the 
most important target of morphine, and the genetic 
variants of the MOR gene (OPRM1) have been extensively 
studied with regard to addiction.[52] 

Genetic polymorphisms in OPRM1 have been associated 
with heroin dependence in Chinese samples;[53] however, 
several studies with negative results have also been 
reported.[54,55] Addiction-related subjective responses 
at the time of first drug use and during drug-seeking 
behavior may be modulated by OPRM1 polymorphisms.
[56-58] Although many studies have investigated the 
association between the OPRM1 A118G polymorphism 
and alcohol dependence, no consensus has been 
reached.[59,60] Wang and colleagues performed an 
ethnicity-specific meta-analysis, which reported that the 
A118G polymorphism was significantly associated with 
the risk of alcohol dependence risk in Asians but not in 
Caucasians.[61]

Preprodynorphin is naturally derived from prodynor-
phin and is the primary endogenous ligand of the κ-opi-
oid receptor. Variants of the preprodynorphin gene have 
been studied with regard to opiate, cocaine, and alco-
hol addiction.[62] Three variants of the Preprodynorphin 
(PDYN) gene were found to be associated with heroin 
dependence in Chinese subjects.[63] Additionally, PDYN 
was significantly related to the risk of developing opioid 
dependence, however, this effect has only been found in 
females.[64]

Endogenous cannabinoid functionally interacts with 
opioid systems. The cannabinoid brain receptor type 
1 (CB1) and mu-opioid receptor type 1 (MOR1) co-
localize in the same presynaptic nerve terminals and 
signal through a common receptor-mediated G-protein 
pathway.[65] The cannabinoid receptor 1 (CNR1) gene 
is primarily expressed in the central nervous system.
[66] The endocannabinoid system has been repeatedly 
found to be associated with drug addiction. However, no 
association was found between repeat variations of the 
CNR1 gene and heroin abuse in a Chinese sample.[67] 

2.3 Serotonin system
Many studies have shown that the brain neurotransmitter 
serotonin (5-hydroxytryptamine [5-HT]) plays an 
important role in the regulation of reward-related 
processing.[68,69] Growing evidence also indicates 
deregulation of the serotonin system after long-term 
exposure to abused drugs.[70] Altered 5-HT transmission 
has been thought to increase susceptibility to a 
wide range of substance abuse disorders. [71] Genetic 
polymorphisms of 5-HT system genes collectively give 
rise to a unique genetic architecture that may contribute 
to individual risk of addiction, development of addiction, 
treatment effectiveness and potential for full recovery.[72] 

In a recent study, Gao confirmed the significant 
association between heroin dependence and four SNPs 

of the 5-HT receptor (HTR) genes in a cohort of Han 
Chinese.[73] The serotonin transporter protein regulates 
serotonin concentrations in the synaptic cleft. Tan and 
colleagues provided evidence of an association between 
heroin dependence and a VNTR polymorphism at the 
serotonin transporter (5-HTT) gene.[57] Upstream of the 
5-HTT gene is a 5-HT transporter gene-linked polymorphic 
region (5-HTTLPR). Compared to the L allele, the S allele 
is associated with decreased transcription efficiency of 
the 5-HTT gene. Wang and colleagues verified that the 
5-HTTLPR polymorphism may be associated with alcohol 
dependence in a Chinese population, and that the L/L 
or L/S genotype may be a genetic factor responsible for 
decreased susceptibility to alcohol abuse.[74] The 5-HT 
system is also implicated in the pathogenesis of smoking 
behaviors.[75] Chu and colleagues validated such an effect 
of the 5-HTTLPR polymorphism on smoking behavior in 
Chinese males.[76]

2.4 Alcohol metabolic enzymes
Enzymes involved in ethanol metabolism have been 
considered major biological factors that influence drinking 
behavior and the development of alcohol dependence.[77] 
The genes with the most convincing evidence about their 
relationships to alcoholism are ADH and ALDH2, which 
encode two enzymes that catalyze consecutive steps in 
alcohol degradation. The human ADH genes, ADH1B and 
ADH1C were found to have alleles that produce enzymes 
that catalyze the oxidation of ethanol to acetaldehyde. 
Alcohol dehydrogenases that perform most of the 
alcohol metabolism are homodimeric enzymes, which 
contain α, β, and γ subunits, being encoded by ADH1, 
ADH2, and ADH3 respectively.[78] The genetic variants of 
these genes, which have different ethnic distributions, 
encode enzymes with different characteristics. The 
polymorphic distributions of the ADH and ALDH genes 
are quite different in the Han Chinese population 
compared to other populations.[79] Thus, studies of the 
Chinese population can provide a unique opportunity to 
clarify the influence of these genotypic differences on 
the phenotypic differences and underlying mechanisms 
of alcoholism.

Genetic differences in the enzymes that metabolize 
alcohol can substantially affect the risk of alcoholism. 
Enzymatic studies have shown that ADH1B*2/*2-
encoded enzymes exhibit a 30- to 40-fold greater Vmax 
for ethanol oxidation than the ADH1B*1/*1-encoded 
enzymes.[80,81] The ADH1B*2 allele, which is common 
in East Asians, is protective against alcoholism.[82,83] 
In Chinese patients being treated for alcoholism, the 
ADH2*2 and ADH3*1 alleles also showed a protective 
role.[84] The ALDH2 gene has two variant alleles: ALDH2*1 
and ALDH2*2. The ALDH2*2 allele is associated with a 
deficiency in ALDH2 activity, which decreases the risk of 
alcoholism.[85] However, ALDH2*2 and ADH1B*2 did not 
decrease the risk of high alcohol consumption in Han 
Chinese males with stroke.[86] Thomasson and colleagues 
found that Han Chinese males in Taiwan with alcoholism 
had significantly lower frequencies of the ADH1B*2, 
ADH1C*1 and ALDH2*2 alleles than non-alcoholics.[87] 
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Nonetheless, there are also studies in Chinese samples 
that do not confirm these findings.[88] And different 
minority groups within the Chinese population may have 
different genetic risk factors for alcoholism; for example, 
individuals in the Elunchun minority have much lower 
frequencies of ADH2*2 and ALDH2*2 alleles than other 
Chinese minorities.[89] 

Alcohol metabolic enzymes may interact with other 
risk factors for alcoholism (e.g. other genes, gender 
and environment).[90] Chinese studies found a possible 
interaction between the ADH1B, ALDH2, and DRD2 
genes in alcoholics with anxious-depressive symptoms.[91] 
The ALDH2*2 and ADH1B*2 alleles have cumulative dosage 
effects on alcoholism, and alcohol metabolism can be 
influenced by gender and alcohol-related-trait scores in 
different ways.[92,93] On the other hand, the protective 
effect of the ADH2*2 allele may occur independently of 
the ALDH2*2 allele.[94] 

2.5 Monoamine oxidase gene
Monoamine oxidase (MAO) has been known to catalyze 
the oxidative deamination of numerous biogenic 
amines, including the key neurotransmitters-dopamine, 
norepinephrine and serotonin. Two forms of MAO 
have been identified: monoamine oxidase A (MAOA) 
and B (MAOB).[95] An estimated 70% of neuronal MAOs 
are type A, which is expressed at the highest level in 
catecholaminergic neurons.[96,97] MAOA is localized in 
brain regions that have been implicated in addiction 
and in the behavioral response to novel stimuli.[98,99] 
Two MAOA polymorphisms, the EcoRV polymorphism 
at position 1460[100] and the VNTR polymorphism in the 
promoter region,[101] are particularly important because 
they affect enzyme activity and transcriptional activity, 
respectively. A modest increase in dopamine and a 
dramatic increase in aggressive traits were observed in 
MAOA knockout mice.[102,103]

Genetic variants in the MAO gene have been 
reported to be associated with the risk for substance 
abuse.[104,105] Chen and colleagues assessed the role of 
MAO gene polymorphisms in alcoholism in five ethnic 
groups in Taiwan. Significant associations between 
alcohol abuse and MAOA alleles were found among the 
Han Chinese, but not among the aboriginal groups.[106] 
Correlation studies suggested that the mitochondrial 
MAO/ALDH pathway may be the site of action of daidzin, 
which was shown to suppress alcohol intake in alcohol-
preferring laboratory animals.[107] Lee and colleagues 
hypothesized that the ALDH2 gene might interact with 
the MAOA gene in subjects with alcoholism. In a study of 
Han Chinese persons in Taiwan with alcohol dependence 
and either comorbid antisocial personality disorder or 
comorbid anxiety-depressive symptoms, they found that 
the VNTRs of MAOA may have modified the protective 
effect of the ALDH2 gene.[108,109] Jin and colleagues 
demonstrated the MAOA gene polymorphisms could 
affect the initiation of smoking in a Chinese sample; 
individuals with the 1460T/O and three-repeat VNTR 
genotypes had a significantly increased risk for nicotine 

dependence.[110] However, no significant relationship 
was found between the long repeat alleles of the MAOA 
promoter VNTR polymorphism and heroin addiction in 
Chinese males.[111]

2.6 Cytochrome P450 enzymes
Cytochrome P450 (CYP) comprises a superfamily of 
enzymes that play an important role in metabolizing 
clinical medications, abused drugs, toxins and endogenous 
molecules. Drug metabolism by genetically polymorphic 
enzymes can have significant clinical implications for 
therapeutic failure, disease susceptibility and abuse 
liability.[112] Many of the drug-metabolizing CYP enzymes 
belong to the CYP2 family, which is highly polymorphic. 
The CYP2 family may play a role in modulating central 
functional pathways that are involved in drug-reinforced 
behavior and neurotoxicity.[113] 

The CYP450 enzyme gene is a nicotine-metabolizing 
enzyme involved in neurotransmitter synthesis that plays 
an important role in nicotine dependence.[114] There 
is a review available on studies about the influence of 
CYP2A6 genetic polymorphisms on nicotine kinetics, 
smoking behaviors, and its differential effects on smoking 
initiation, conversion to dependence, the amount 
smoked during dependence, and cessation.[115] Liu and 
colleagues found reduced metabolic function of CYP2A6 
in Chinese smokers that was associated with fewer 
cigarettes smoked, a later initiation of smoking regularly, 
a shorter duration of smoking, and a lower likelihood 
of smoking cessation.[116] Tang and colleagues reported 
on the interaction between CYP2A6 polymorphism 
and MAOA in risk modulation of smoking behavior 
(i.e., smoking initiation and smoking persistence) in a 
Chinese male population.[117] Chinese scientists have 
also identified important associations between genetic 
polymorphism of the CYP450 enzyme gene with the 
concomitant diseases of substance abuse disorders and 
with the dosage and side effects of pharmacological 
treatments for substance abuse disorders.[49,118,119]

2.7 Noradrenergic system
The importance of catecholamines in the mediation of 
substance addiction was first recognized in the 1970s.
[120] Norepinephrine mediates morphine’s behavioral 
effects;[121] and noradrenergic pathways play a crucial 
role in the pathogenesis of a motivation-reward system in 
heroin addiction.[122,123] The norepinephrine transporter 
(NET) is responsible for the reuptake of norepinephrine 
into presynaptic neurons, and it is an important factor 
in the regulation of the noradrenergic system. NET 
gene expression can modulate timing and intensity 
of the analgesic effect of opiates.[124,125]. Yeh and 
colleagues confirmed the role of NET genetic variants 
in the development of heroin dependence among Han 
Chinese.[126] Studies from other countries have also 
reported that norepinephrine neurotransmission plays a 
critical role in the pathological processes associated with 
alcoholism;[127-129] but these findings were not confirmed 
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in a study in China by Huang and colleagues who found 
no association between polymorphisms of the NET gene 
and alcohol dependence or its clinical subtypes.[130] 

2.8 Glutamatergic and GABAergic systems
Glutamate is one of the most abundant excitatory 
neurotransmitters in the brain.[131] Glutamate receptors, 
which are expressed in several regions of the brain 
including the mesocorticolimbic dopamine regions, play 
a key role in addiction.[132] Glutamic acid decarboxylase 
(GAD) is the rate-limiting enzyme in the conversion 
of glutamate to GABA.[133] A significant association of 
GAD1 with heroin dependence has been reported.[134] 
Li and colleagues examined the association between 
heroin dependence among Han Chinese and 15 SNPs 
of the GAD1 gene using the MassARRAY system; they 
found significant associations of some novel SNP and 
haplotypes with heroin dependence that had not 
previously been identified in non-Chinese subjects.[135]

Opiate reinforcement is mediated by the inhibition 
of GABA release, thus disinhibiting dopamine 
neurotransmission. Individuals with a dysfunctional 
GABAergic system may release higher amounts of 
dopamine.[136] GABA receptors play an important role 
in the actions of benzodiazepines, barbiturates, alcohol 
and morphine dependence.[137,138] In 2003, Lin and 
colleagues reported a female-specific contribution of 
the GABA(A) receptor subunit genes to non-psychotic 
methamphetamine use disorder.[139] Then Loh and 
colleagues reported that the prevalence of the rs211014 
SNP of the GABAAγ2 receptor subunit gene was 
significantly different between heroin-dependent and 
healthy Han Chinese.[140] Thus Chinese scientists have 
helped to delineate the functioning of this gene in 
addiction.

2.9 Circadian clock genes
Circadian clock genes are composed of a group of 
genes such as Per, Clock, Bmal1 and Cry.[141] Recently, 
many studies have shown that circadian clock genes 
are implicated in the origin or development of many 
diseases. Drug addiction has frequently been coupled 
with disruptions in diurnal rhythms.[142,143] Some studies 
have shown that circadian clock genes are implicated 
in the initiation or development of drug dependence.
[144,145] Chinese researchers have also attempted to assess 
the effects of circadian clock genes on substance abuse. 
Wang and colleagues[146] and Liu and colleagues[147] found 
that drug dependence is influenced by inhibition of the 
expression of mPer1 in mice. Furthermore, Zou and 
colleagues were the first to report that a 54-nucleotide 
repeat polymorphism of hPer3 is significantly associated 
with heroin dependence.[148] 

2.10 Brain-derived neurotrophic factor
Brain-derived neurotrophic factor (BDNF) plays an 
important role in the growth, survival and differentiation 

of developing neurons. It is a neurotrophic peptide that 
mediates synaptic plasticity, including drug-induced 
neuroadaptations.[149-151] Addictive drugs influence 
endogenous BDNF mRNA/protein expression in the 
mesocorticolimbic system.[152-154] Genetic polymorphisms 
in BDNF are associated with addiction, including opiate 
addiction – a finding that has been supported by a 
number of studies,[155-157] including studies among 
Chinese heroin addicts.[158] The rs6265 SNP results in 
a valine-to-methionine substitution in the BDNF pre-
domain coding region that has been reported to be 
associated with different psychiatric disorders, including 
substance abuse.[159] Chinese studies showed AA 
carriers of BDNF rs6265 had an earlier onset of heroin 
dependence and a clearer tendency toward a family 
history of heroin dependence than GG carriers.[160,161] 
Moreover, this SNP was significantly related to alcohol 
dependence-related depression and to the effectiveness 
of sertraline treatment for alcohol dependence-related 
depression.[162]

2.11 Other candidate genes
Chinese studies have also identified other novel genetic 
variants for substance abuse. Dopamine β-hydroxylase 
(DBH)−1021TT carriers among Chinese heroin abusers 
were shown to have a longer addiction time and higher 
dosage of injected heroin.[163] Two novel copy number 
variants (CNVs) located downstream of the transforming 
growth factor β-1 binding protein 1 (LTBP1) gene and 
actin-filament binding protein frabin (FGD4) gene were 
associated with alcohol consumption.[164] Wei and 
collegues found that polymorphisms in the regulatory 
region of nuclear-related receptor 1 (Nurr1) gene were 
involved in the pathogenesis of alcohol dependence.[165] 
Their team also genotyped 384 SNPs within 45 candidate 
genes related to nicotine dependence in a Han Chinese 
sample by employing the Golden Gate genotyping assay, 
and confirmed the previous findings that DRD2, DRD3, 
DDC, CHRNB3, GABBR2 and CHRNA4 genetic variants 
were associated with nicotine dependence. Furthermore, 
their team was the first to report a significant association 
between nicotine dependence and genetic variants in 
DRD5, MAP3K4 and NPY1R.[166] 

Genetic variants can also affect other aspects of 
substance addiction, including the development of 
related diseases, the prevalence of specific behavioral 
defects, the risk of poly-substance addiction, and the 
changes in brain function and structure that occur with 
substance addiction.[167-170] Genetic studies about these 
relationships have focused on several specific areas: 
(a) Addiction related diseases. Amyloid precursor 

protein-binding protein, family B, member 1 
(APBB1) is involved in the modulation of β-amyloid 
secretion and associated with Alzheimer’s disease 
pathogenesis.[171,172] APBB1 is also associated with 
nicotine dependence, a finding that was confirmed 
by a family-based genetic study in a sample of 
2037 participants by Chen and colleagues.[173] 
This relationship between nicotine addiction and 
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neurocognitive conditions has also been supported 
by studies which show that tobacco smoking is 
inversely correlated with Alzheimer’s disease and 
Parkinson’s disease.[174,175] The majority of heroin 
abusers use injection as the primary route of 
administration[176] and injection drug users comprise 
the largest risk group for the transmission of 
hepatitis C virus (HCV)[177] (a condition that is highly 
prevalent in China). Peng and colleagues assessed 
genetic variations of HCV infection and found a 
higher prevalence of the 6a and 3b genotypes of 
HCV among heroin users than among individuals 
with HCV infection who do not abuse substances.
[178] 

(b) Addiction behaviors. It is known that subjec-
tive craving contributes to the continuation of drug 
use in active abusers and to the occurrence of relapse 
in detoxified abusers.[179] Jin and colleagues found 
the DRD2 TaqI RFLP A1 allele and the DRD4 VNTR 
polymorphism long type allele are associated with 
significantly stronger cue-elicited heroin craving in 
heroin dependence.[28,34] 

(c) Poly-substance addiction. Alcohol and tobacco 
use are linked because they share several genetic 
risk factors.[180] Zhang and colleagues performed 
a bivariate genetic analysis of current tobacco 
smoking and alcohol drinking in China and 
confirmed common genetic vulnerability to tobacco 
and alcohol use in male twins.[181] 

(d) Addiction-related changes in the brain. Unpublished 
work from our own lab has found that individuals 
with heroin addiction who have the ZNF804A 
rs1344706 genetic polymorphism (which has been 
linked to psychiatric disorders) are more likely 
to show changes in behavior and in gray matter 
volume, suggesting that this polymorphism can 
exacerbate the effects of heroin. 

3. Genome-wide association studies 
In this exciting era of gene discovery, a revolution of 
genetic technology has caused a shift from single-locus 
studies to genome-wide searches. The completion of 
the Human Genome Project in 2003 made it possible 
to conduct genome-wide association studies (GWASs).
[182] The GWAS approach uses highly dense SNP markers 
to explore disease-linked genes by comparing patient 
samples with healthy controls. The GWAS approach is 
a powerful tool for identifying susceptibility alleles of 
complex diseases.[183] 

The majority of the GWAS of addiction performed 
to date have focused on alcohol dependence or 
smoking behavior.[184-186] Deng and colleagues utilized 
the GWAS method and found that the ankyrin repeat 
domain 7 gene (ANKRD7) has the strongest statistical 
association with alcohol use disorder in an initial sample 
of unrelated Caucasian subjects. They then replicated 
these results in an independent Caucasian sample 
and another unrelated Chinese Han sample.[187] Li has 

done the first genome wide linkage scan of nicotine 
dependence in an African American sample, and found 
a major susceptibility loci for nicotine dependence on 
chromosome 10.[188] 

4. Animal studies
Experimental genetic techniques, primarily conducted 
in genetically modified animals, are an important source 
of new knowledge about the interrelationship of genetic 
factors and behavioral outcomes in substance abuse. 
The molecular genetic technique of gene targeting to 
create mice with specific gene knockout mutations in the 
central nervous system has been employed to gain insight 
into the molecular and cellular basis of substance abuse.
[189] For example, the differential expression of specific 
subunits of nicotinic AChR (obtained from knockout 
studies) has provided an explanation for their differential 
nicotine effects.[190] In China, Li and colleagues[191] 
reported that dopamine D3 receptor knockout mice had 
pronounced hypoalgesia, decreased morphine-induced 
tolerance, and attenuated withdrawal symptoms; this 
helped to clarify the interaction between morphine-
induced antinociceptive tolerance and D3 receptors.  

Irrespective of the presence or absence of genes 
that may increase or decrease vulnerability to addiction, 
studies have shown that altering the expression of 
numerous genes can also affect substance abuse.[192] 
MicroRNAs (miRNAs) are small, noncoding RNA molecules 
that regulate gene expression by binding to complementary 
sequences in the 3’ untranslated regions of target mRNA 
transcripts which usually results in translation inhibition 
and/or mRNA cleavage.[193] Recent studies have suggested 
that alterations in miRNA levels are linked to the 
mechanisms of substance abuse. For example, Huang 
and Li demonstrated that miRNAs mediated the effects 
of nicotine on gene expression.[194] Prolonged exposure to 
morphine causes an increase in miR-23b levels in striatal 
neuronal cells, which are involved in the regulation of 
vulnerability to cocaine addiction.[195,196] And Guo and 
colleagues found that differential expression of miRNA 
is related to the behavioral phenotype that is expressed 
when ethanol is withdrawn after chronic use.[197]

5. Summary and future directions
Ethnic differences can affect both the distribution of 
genotypes related to addiction and the behavioral 
responses to addiction.[198,199] Therefore, studies 
performed in the Chinese population provide a unique 
opportunity to look at the influence of these genotypic 
differences on phenotypic differences and, thus, to 
develop a more comprehensive understanding of the 
underlying mechanisms related to substance abuse. We 
have reviewed studies in China – primarily those using 
classic case-control designs – that examined the genetic 
basis of substance abuse, including studies about opiates, 
alcohol, nicotine and some more recently adopted drugs 
of abuse. The genetic research done by Chinese scientists 
has involved nearly every aspect of addiction, and some 
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novel gene loci have been identified in Chinese addicts. 
Nevertheless, studies from China have not, as yet, fully 
employed the newer genetic techniques that are being 
used in cutting-edge research in high-income countries. 

Future genetic research needs to stratify results for 
Chinese subjects by minority, gender, place of birth and 
so forth. Longitudinal studies tracking the influences of 
parental psychopathology and other early childhood 
adverse events on substance abuse and the interaction 
between these exposures and genetic risk factors are 
required. The potential value of genetic polymorphisms 
as biomarkers to help in the individualization of pharma-
cological treatments for drug addiction and in the 
monitoring of the effectiveness of these treatments 
needs to be assessed further. Subsequent studies should 
also assess the utility of these biomarkers for identifying 
individuals at high risk of substance abuse, individuals 
who could then become the targets for intensified 
prevention efforts.

The inter-individual variability of substance addiction 
is polygenetic; it cannot be explained by the effect 
of a single gene or by the effect of a small number of 
genes. Addiction vulnerability and development is the 
end product of a complex interaction between gene 
and environment. Thus future efforts to decrease 
the rapidly increasing health burden associated with 
substance abuse in China and elsewhere must creatively 
integrate genetic and behavioral findings to generate a 
comprehensive understanding of these disorders, which 
can then be translated into feasible interventions that 
can be rigorously tested in the real world.
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