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Abstract
Objectives Radiomics is the extraction of quantitative data frommedical imaging, which has the potential to characterise tumour
phenotype. The radiomics approach has the capacity to construct predictive models for treatment response, essential for the
pursuit of personalised medicine. In this literature review, we summarise the current status and evaluate the scientific and
reporting quality of radiomics research in the prediction of treatment response in non-small-cell lung cancer (NSCLC).
Methods A comprehensive literature search was conducted using the PubMed database. A total of 178 articles were screened for
eligibility and 14 peer-reviewed articles were included. The radiomics quality score (RQS), a radiomics-specific quality metric
emulating the TRIPOD guidelines, was used to assess scientific and reporting quality.
Results Included studies reported several predictive markers including first-, second- and high-order features, such as kurtosis,
grey-level uniformity and wavelet HLL mean respectively, as well as PET-based metabolic parameters. Quality assessment
demonstrated a low median score of + 2.5 (range − 5 to + 9), mainly reflecting a lack of reproducibility and clinical evaluation.
There was extensive heterogeneity between studies due to differences in patient population, cancer stage, treatment modality,
follow-up timescales and radiomics workflow methodology.
Conclusions Radiomics research has not yet been translated into clinical use. Efforts towards standardisation and collaboration
are needed to identify reproducible radiomic predictors of response. Promising radiomic models must be externally validated and
their impact evaluated within the clinical pathway before they can be implemented as a clinical decision-making tool to facilitate
personalised treatment for patients with NSCLC.
Key Points
• The included studies reported several promising radiomic markers of treatment response in lung cancer; however, there was a
lack of reproducibility between studies.

•Quality assessment using the radiomics quality score (RQS) demonstrated a low median total score of + 2.5 (range− 5 to + 9).
• Future radiomics research should focus on implementation of standardised radiomics features and software, together with
external validation in a prospective setting.

Keywords Carcinoma, non-small-cell lung . Tomography, X-ray computed . Positron emission tomography computed
tomography . Biomarkers . Precisionmedicine
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MeSH Medical Subject Headings
NSCLC Non-small-cell lung cancer
OR Odds ratio
PET/CT Positron emission tomography/

computed tomography
RECIST Response evaluation criteria in solid tumours
ROI Region-of-interest
RQS Radiomics quality score
SUV Standardised uptake value
SUVmax Maximum standardised uptake value
TLG Total lesion glycolysis
TRIPOD Transparent reporting of a multivariable

prediction model for individual
prognosis or diagnosis

Introduction

Radiomics is the extraction of data from medical imaging
using mathematical algorithms for advanced image analysis
[1]. The concept underlying radiomics is that medical imaging
contains quantitative information, which is not discernible by
the human eye, and which may reflect the underlying patho-
physiology of the tissue. In cancer imaging, quantitative
radiomic features have the potential to characterise tumour
phenotype. An important aim of radiomics is to construct pre-
dictive models for treatment response, based on the tumour
phenotype characteristics derived from medical images. This
is essential for the pursuit of personalised medicine, in which
treatment is tailored based on the characteristics of individual
patients and their tumours.

Worldwide, lung cancer is the most common cancer and
the leading cause of cancer death. In 2018, 2.09million people
were diagnosed with lung cancer and there were 1.76 million
deaths from lung cancer [2]. Non-small-cell lung carcinoma
(NSCLC) is the most frequent type of lung cancer, accounting
for 87% of all lung cancer diagnoses [3]. Multiple treatment
modalities are used in NSCLC: surgery; radiotherapy, includ-
ing stereotactic ablative radiotherapy; and systemic therapy,
including cytotoxic chemotherapy, tyrosine kinase inhibitors
and immune checkpoint inhibitors [4]. Patients with NSCLC
have baseline computed tomography (CT) and/or
fluorodeoxyglucose positron emission tomography/
computed tomography (FDG PET/CT) imaging for diagnosis
and staging. Regular follow-up imaging is also performed to
evaluate treatment response and monitor for recurrence.

Pathologic or radiologic criteria can be used to assess treat-
ment response. Pathologic response is a ‘hard’ endpoint; how-
ever, it can only be evaluated in the 16% of patients with
NSCLC who undergo surgical resection [5]. Radiologic re-
sponse is therefore the mainstay of treatment response assess-
ment in NSCLC. Response Evaluation Criteria in Solid
Tumours (RECIST) provides an objective, standardised

method for reporting response to therapy based on unidimen-
sional evaluation of tumour size [6]. RECIST criteria are em-
bedded in the definition of oncology trial endpoints, such as
response rate and progression-free survival [7]. In clinical prac-
tice, the radiologic evaluation of treatment response largely
relies on tumour size, supplemented with a qualitative assess-
ment of other tumour characteristics such as homogeneity and
shape.

From a quantitative viewpoint, this approach is not only
basic but also ignorant of a substantial amount of information
within the medical image. The radiomics approach has the
potential to identify quantitative markers of treatment re-
sponse earlier in the course of treatment. This can enable treat-
ment to be adapted, intensified or altered earlier in the course
of disease in order to improve patient outcomes.

Although radiomics shows great promise, it has not yet
been translated into clinical practice [8]. In this literature re-
view, we summarise the current applications of radiomics in
the prediction of treatment response in NSCLC and evaluate
the scientific and reporting quality of studies in this field.
Other reviews in this field have focused on novel radiomic
techniques [9] and predicting prognosis [10]; however, our
focus is on the prediction of treatment response earlier in the
course of treatment, and, to our knowledge, this is the first
paper evaluating the quality of research in this field. We dis-
cuss the research challenges underlying the translational gap
in radiomics and postulate on future directions.

Materials and methods

Search strategy and study selection

A comprehensive literature search was conducted using the
PubMed database using a wide range of keywords and
Medical Subject Headings (MeSH) terms. Full details of the
search strategy are provided in Table 1.

We included all studies which evaluated quantitative fea-
tures extracted from baseline or early treatment CT or PET/
CT scans against treatment response in patients undergoing
treatment of any modality for NSCLC of any stage.We applied
the following exclusion criteria: (1) studies not assessing radio-
logic or pathologic response as an endpoint; (2) studies fo-
cussed purely onmethodological aspects of radiomics; (3) stud-
ies extracting quantitative features from imaging performed
after treatment, i.e. not predictive; (4) studies in phantom or
animal models; (5) articles without original data, such as re-
views and editorials. No study was excluded based on lan-
guage, geographical location or date of publication. A total of
178 titles/abstracts were screened, and 34 eligible studies were
retrieved as full text. Fourteen peer-reviewed articles published
from 2003 to 2018 were included in this review. Full details of
screening and eligibility assessment are provided in Fig. 1.
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Data extraction and analysis

The following data were extracted from each included study:
sample size, NSCLC stage, treatment, follow-up duration, im-
aging modality, quantitative feature(s), treatment response
endpoint and performance metrics.

The studies were systematically evaluated using the
radiomics quality score (RQS) [11]. The RQS is a
radiomics-specific quality assessment tool which emulates
the transparent reporting of a multivariable prediction model
for individual prognosis or diagnosis (TRIPOD) reporting
guidelines [12]. The RQS comprises 16 components and is
defined in full elsewhere [11].

In this review, each study was assigned a number of
points per RQS component and summed to give an over-
all score (range − 8 to + 36). Studies were scored on their
methodology pertaining to the treatment response end-
point, and not any other endpoints explored within the
study. Certain components of RQS were interpreted as
follows. Where mention was made of a standardised im-
aging protocol but image acquisition parameters were not

provided in the main text, supplementary information or
referenced paper, imaging was not reproducible and there-
fore, a score of 0 was assigned for ‘image protocol qual-
ity’. Where a single or very small number of quantitative
features were tested, the risk of overfitting was minimal
and therefore, a score of + 3 was given for ‘feature reduc-
tion or adjustment for multiple testing’. Where cross-
validation or nested cross-validation was performed using
only the training data, true validation without re-training
was missing and therefore, a score of − 5 was assigned for
‘validation’. Where potential utility was discussed without
any analysis of impact on health outcomes, clinical utility
was not demonstrated and therefore, a score of 0 was
awarded for ‘potential clinical utility’.

Results

A summary of the imaging predictors of treatment response in
NSCLC is provided in Table 2.

Table 1 Keywords and MeSH terms used to search the PubMed database

Search Query Records found

#2 Search ((“Carcinoma, Non-Small-Cell Lung”[Mesh]) AND ((((computed tomography) OR ct)) AND
(((quantitative) OR texture) OR feature))) AND ((((response) OR outcome) OR prognosis) OR survival)
Sort by: [pubsolr12]

364

#8 Search ((“Carcinoma, Non-Small-Cell Lung”[Mesh]) AND ((((computed tomography) OR ct)) AND
(((quantitative) OR texture) OR feature))) AND ((((response) OR outcome) OR prognosis) OR survival)

201

#23 Search ((“Carcinoma, Non-Small-Cell Lung”[Mesh]) AND ((((computed tomography) OR ct)) AND
(((quantitative) OR texture) OR feature))) AND (response)

79

#24 Search “Carcinoma, Non-Small-Cell Lung”[Mesh] 48880

#27 Search “Tomography, X-Ray Computed”[Mesh] 409564

#30 Search “Positron-Emission Tomography”[Mesh] 55740

#33 Search “Positron Emission Tomography Computed Tomography”[Mesh] 6695

#34 Search ((“Tomography, X-Ray Computed”[Mesh]) OR “Positron-Emission Tomography”[Mesh])
OR “Positron Emission Tomography Computed Tomography”[Mesh]

441279

#35 Search (((quantitative) OR texture) OR feature) OR radiomic* 982225

#37 Search ((((((((disease response) OR treatment response) OR therapy response) OR tumor volume)
OR tumour volume) OR tumor size) OR tumour size) OR tumor shrinkage) OR tumour shrinkage

1422709

#38 Search ((disease) OR treatment) OR therapy 12737365

#39 Search ((((disease) OR treatment) OR therapy)) AND response 1217708

#40 Search (tumor) OR tumour 3786725

#41 Search (((size) OR volume) OR shrinkage) OR response 3770284

#42 Search (((tumor) OR tumour)) AND ((((size) OR volume) OR shrinkage) OR response) 634912

#43 Search ((((((disease) OR treatment) OR therapy)) AND response)) OR ((((tumor) OR tumour))
AND ((((size) OR volume) OR shrinkage) OR response))

1534582

#44 Search (((“Carcinoma, Non-Small-Cell Lung”[Mesh]) AND (((“Tomography, X-Ray Computed”[Mesh])
OR “Positron-Emission Tomography”[Mesh]) OR “Positron Emission Tomography Computed
Tomography”[Mesh])) AND ((((quantitative) OR texture) OR feature) OR radiomic*)) AND
(((((((disease) OR treatment) OR therapy)) AND response)) OR ((((tumor) OR tumour)) AND
((((size) OR volume) OR shrinkage) OR response)))

178

The search was performed in August 2019. Search #44 returned 178 results and was used in this review

MeSH, medical subject headings

1051Eur Radiol (2021) 31:1049–1058



Predicting pathologic response

Pathologic complete response is defined as the absence of
tumour cells in all specimens. It is an important prognostic
factor in locally advanced NSCLC and is associated with
greater overall survival and lower rates of local and distant
recurrence [27].

Three retrospective studies investigated whether CT-based
radiomic features predict pathologic response.

In patients with NSCLC treated with combination che-
moradiotherapy followed by surgical resection, wavelet
HLL mean, a high-order texture feature, was a moderate
predictor of pathologic complete response (AUC 0.63,
p = 0.01) [14].

A further study by the same group showed that lymph node
texture features better predicted pathologic complete response
than primary tumour texture features [13]. A model built from
ten primary tumour and ten lymph node radiomic features was
significantly better at predicting pathologic response than con-
ventional features (AUC 0.68, p < 0.05), whilst a combined
clinical and radiomic model was best at predicting gross re-
sidual disease (AUC 0.73, p < 0.05) [13].

Chong et al (2014) performed amultivariate analysis in two
patient cohorts receiving combination chemoradiotherapy and
tyrosine kinase inhibitor therapy respectively, followed by

surgical resection. Pathologic response was independently
predicted by kurtosis in patients receiving combination che-
moradiotherapy (OR 1.107, p = 0.009), and by intensity var-
iability in patients receiving tyrosine kinase inhibitor therapy
(OR 1.093, p = 0.028) [15].

Aukema et al (2010) performed a prospective study in-
vestigating the relationship between PET-based quantita-
tive features and pathologic response in patients with
NSCLC receiving combination chemoradiotherapy follow-
ed by surgical resection. Early change in maximum
standardised uptake value (SUVmax) was an excellent pre-
dictor of pathologic complete response (κ-agreement 0.55,
p = 0.008) [16].

Predicting radiologic response

Radiologic evaluation with RECIST criteria is widely used as
a marker of treatment response in oncology trials. A recent
study of 23,259 patients with cancer (36% lung cancer) treated
with chemotherapy and/or targeted therapies demonstrated a
linear relationship between change in unidimensional tumour
size and overall survival [28]. Change in tumour volume is
another effective tool for evaluating radiologic response after
treatment, which has been shown to better correlate with

Fig. 1 Flow diagram of the study
selection process
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pathologic complete response than unidimensional RECIST
in patients with locally advanced NSCLC [29].

PET-based metabolic parameters were investigated by four
studies. In locally advanced or metastatic NSCLC treated with
tyrosine kinase inhibitors, baseline PETmetabolic parameters,
such as SUVmax and total lesion glycolysis (TLG), did not
correlate with RECIST response [18, 19]. However, a change
in SUVmax over serial PET imaging from baseline to 6 weeks
into treatment was predictive of RECIST response at 12weeks
(p = 0.007) [18]. Similar results were demonstrated in patients
receiving concurrent chemoradiotherapy. In this group, base-
line SUVmax was not a good predictor of RECIST response
(AUC 0.64) [22]. A prospective study demonstrated that
change in SUVmax and FDG net-influx constant (Ki) over
serial PET imaging from baseline to first cycle of chemother-
apy was an excellent predictor of RECIST response (AUC
0.91 and 0.92 respectively) [23].

Three studies investigated PET-based texture and het-
erogeneity parameters. In locally advanced or metastatic
NSCLC treated with tyrosine kinase inhibitor therapy,
features reflecting tumour heterogeneity at baseline PET/
CT imaging, such as first-order standard deviation, entro-
py and uniformity, were associated with RECIST re-
sponse (p < 0.01) [18]. In patients on concurrent chemo-
radiotherapy, baseline texture features such as contrast,
coarseness and busyness were predictive of RECIST re-
sponse (AUC 0.80, 0.82 and 0.72 respectively, p < 0.03)
[20]. Another study showed that contrast and coefficient
of variation of SUV at baseline (AUC 0.80 and 0.78 re-
spectively) as well as change in contrast and coefficient of
variation of SUV over serial PET imaging from baseline
to 4 weeks into treatment (AUC 0.86 and 0.80 respective-
ly) both predicted RECIST response at 12 weeks [17].

In locally advanced or metastatic NSCLC treated with first-
line platinum-based chemotherapy, grey-level uniformity at
baseline CTwas predictive of RECIST response in a subgroup
where the histology was adenocarcinoma (AUC 0.741,
p < 0.01) [21].

Ramella et al (2018) showed that seven radiomic features
extracted from pre-treatment CT images, in combination with
five conventional clinical features, predicted tumour volume
after completion of concurrent chemoradiotherapy (AUC
0.82) [24].

Other groups have built predictive models with the aim
of facilitating adaptive radiotherapy. A model built from
35 quantitative features extracted from pre-treatment CT
images was a good predictor of tumour volume after
6 weeks of radiotherapy (R 0.83) [26]. Zhang et al (2018)
showed that a model using pre-treatment CT features in
combination with mid-treatment CT for ‘mid-course cor-
rection’, and validated in an independent cohort, was also a
good predictor of post-radiotherapy tumour volume (AUC
0.85) [25].

Scientific and reporting quality

Themedian total score for the fourteen included studies was +
2.5 (range − 5 to + 9) on a scale where the maximum available
score is + 36. Adherence to the RQS evaluation criteria and
reporting guidelines is summarised in Table 3.

There were three prospective studies (21%) and eleven
retrospective studies.

Of the fourteen studies, ten (71%) reported well-
documented image acquisition protocols, although none used
publicly available protocols. Multiple segmentations by two
readers or automatic segmentation were performed in six stud-
ies (42%). Three studies (21%) tested feature robustness to
temporal variability using test-retest datasets. However, fea-
ture robustness to inter-scanner variation with phantom imag-
ing was not performed by any study.

Ten studies (71%) adopted feature reduction or adjustment
for multiple testing as appropriate, using a variety of statistical
methods such as leave-one-out cross-validation and random
forest classification. Four studies (29%) performed a multivar-
iable analysis with non-radiomic features. Two studies (14%)
performed a cutoff analysis using a pre-specified threshold.
Ten studies (71%) reported discriminatory statistics, e.g.
AUC; however, only three used a resampling method. A sin-
gle study reported calibration statistics. Validation was miss-
ing in thirteen studies (93%) and only a single study per-
formed validation with a single dataset from another institute.
Three studies (21%) made their code or data publicly avail-
able; however, no study made their scans or region-of-interest
segmentations open-source.

Eleven studies (79%) discussed biological correlates of the
radiomic features described. Two studies (14%) compare the
extent to which their proposed predictive factors are superior
to the current ‘gold standard’ method of tumour staging. No
study performed a clinical utility analysis or a cost-
effectiveness analysis.

Discussion

In this review, the results of fourteen studies investigating CT
and PET/CT radiomic predictors of treatment response in
NSCLC have been summarised. The scientific and reporting
quality of these studies has been evaluated.

The included studies reported a variety of predictive
markers, from histogram-based properties such as kurtosis
[15] to second-order textural features such as grey-level uni-
formity [21] to high-order features such as wavelet HLLmean
[14] to features that describe changes in the PET-based net-
influx rate constant (Ki) [23].

The same radiomic feature was rarely identified as being
predictive of treatment response in NSCLC by more than one
study. This is partly explained by the extensive heterogeneity
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between individual studies. The studies were carried out in
different patient populations with different cancer stages being
managed at different institutions with different timescales for
follow-up imaging. Image acquisition and reconstruction pro-
tocols vary across institutions, introducing changes in quanti-
tative imaging features that are not due to underlying biolog-
ical reasons. The studies investigated disease response to sev-
eral treatment modalities, including conventional radiothera-
py, cytotoxic chemotherapy, concurrent chemoradiotherapy
and tyrosine kinase inhibitors. Given their different mecha-
nisms of action, it is biologically plausible that the radiomic
markers of response are different for each modality. Chong
et al (2014) studied patients with stage IIIANSCLC at a single
institution and identified different radiomic predictors of path-
ological response in those treated with chemotherapy and
those treated with tyrosine kinase inhibitors [15]. To our
knowledge, the radiomic predictors of pathologic or radiolog-
ic response in NSCLC treated with immunotherapy has not be
studied.

Study quality was variable, with the fourteen included stud-
ies scoring between − 5 and + 9 on the RQS metric, where the
maximum possible score was + 36. The relatively low scientific
and reporting quality of the included studies may have in-
creased the likelihood of a false-positive association between
radiomic features and treatment response being reported.

Only three studies were prospective, with the benefit of
standardised cancer stage, treatment and follow-up [16, 22,
23]. Whilst many studies clearly reported their imaging pro-
tocols, few studies employed test-retest imaging, phantom im-
aging and multiple segmentation to assess feature robustness.
Only features with high repeatability and high reproducibility
can reliably reflect underlying tissue biology and therefore be
used as predictors of treatment response. Two included studies
reported that coarseness and contrast are good predictors of
RECIST response with AUCs ≥ 0.80 [17, 20]; however, these
two higher order features have been shown to be among the
least reproducible radiomic features [30]. Due to these factors,
the promising results reported by individual studies are at high
risk of bias and may not be externally valid.

Appropriate feature reduction methods were used in some
studies; e.g. Coroller et al (2016 and 2017) [13, 14] excluded
highly correlated and non-reproducible features prior to anal-
ysis. Without appropriate feature reduction, some studies were
highly susceptible to overfitting; e.g. Hunter et al (2015) built
a model using 35 radiomic features with a sample size of 64
patients [26]. It is generally accepted that a minimum of ten
patients per radiomic feature is required for a model to be
generalisable [1]. Studies mostly reported the performance
of radiomic markers using discrimination statistics, and
under-utilised calibration statistics. Only two of the studies
reporting cutoff analyses used a pre-specified threshold [16,
23]. Post hoc optimal cutoff selection in combination with a
large number of candidate radiomic features has been shown

to significantly increase the risk of type I error (76% proba-
bility) [32]. External validation was missing in all but one
study [25]. Taken together, these factors have likely produced
over-optimistic estimates of predictive performance in many
included studies.

Efforts were made to correlate radiomic features to biolog-
ical features; however, evidence for clinical applicability was
critically lacking. No study carried out a clinical utility analy-
sis or cost-effectiveness analysis. An evaluation of the added
value of radiomics in comparison to the current ‘gold stan-
dard’was missing in all but two studies [13, 14]. It is therefore
unsurprising that the proposed radiomic predictors have not
been translated into clinical practice.

The key strengths of this review are its broad literature
coverage, clear summary of study results and use of a
standardised quality assessment tool. An important limitation
is that this is not a systematic review. It is possible that some
relevant studies have not been included as other medical da-
tabases and the grey literature have not been searched. A
meta-analysis could not be performed due to the heterogeneity
between individual studies.

It has been argued that the traditional radiomics approach is
inferior to artificial intelligence (AI) approaches such as deep
learning with convolutional neural networks [31], as AI pre-
cludes the need for manual feature extraction and selection
which may introduce a human bias. However, AI approaches
require significantly larger datasets of annotated imaging re-
cords, and the logic behind the decisions remains a ‘black
box’ [33]. Combining traditional radiomics with AI holds
the promise of benefitting from the advantages of both tech-
niques [34]. Radiologists have a crucial role to play in curating
high-quality imaging datasets by using uniform and structured
reporting lexicon in order to facilitate large cohort studies. In
reality, this is challenging in day-to-day clinical practice.

Conclusion

In the future, it will be important to establish reproducible and
interpretable radiomic markers of treatment response in lung
cancer. The image biomarker standardisation initiative (IBSI)
has attempted to address the lack of standardisation in
radiomics by defining standardised imaging biomarker no-
menclature and producing tools for verifying radiomics soft-
ware implementations [35]. For radiomic models to become a
clinically meaningful tools, future studies need to adopt a
standardised approach in compliance with the IBSI standard.

A move from hypothesis-generation towards hypothesis-
testing is needed in future radiomics studies. The promising
predictive features described in this review must be validated
using datasets from different institutions to establish diagnos-
tic accuracy across many populations. This requires a collab-
orative approach across institutions. Predictive models must
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be investigated prospectively within the clinical pathway to
establish clinical benefit. By demonstrating reproducibility
and clinical utility, radiomic models can prove their potential
as a clinical decision-making tool that facilitates personalised
treatment for patients with NSCLC.
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