

Citation: Mukaida H, Hayashida M, Matsushita S, Yamamoto M, Nakamura A, Amano A (2017) Brain natriuretic peptide (BNP) may play a major role in risk stratification based on cerebral oxygen saturation by near-infrared spectroscopy in patients undergoing major cardiovascular surgery. PLoS ONE 12(7): e0181154. https://doi.org/ 10.1371/journal.pone.0181154

Editor: Claudio Passino, Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, ITALY

Received: February 28, 2017

Accepted: June 27, 2017

Published: July 12, 2017

Copyright: © 2017 Mukaida et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Funding: The authors received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

RESEARCH ARTICLE

Brain natriuretic peptide (BNP) may play a major role in risk stratification based on cerebral oxygen saturation by near-infrared spectroscopy in patients undergoing major cardiovascular surgery

Hiroshi Mukaida^{1,2}*, Masakazu Hayashida³, Satoshi Matsushita¹, Makiko Yamamoto³, Atsushi Nakamura⁴, Atsushi Amano¹

 Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan,
Department of Clinical Engineering, Juntendo University Hospital, Tokyo, Japan, 3 Department of Anesthesiology & Pain Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan, 4 Department of Clinical Engineering, Kyorin University Faculty of Health Sciences, Tokyo, Japan

* me-da@juntendo.ac.jp

Abstract

Purpose

A previous study reported that low baseline cerebral oxygen saturation (ScO₂) (\leq 50%) measured with near-infrared spectroscopy was predictive of poor clinical outcomes after cardiac surgery. However, such findings have not been reconfirmed by others. We conducted the current study to evaluate whether the previous findings would be reproducible, and to explore mechanisms underlying the ScO₂-based outcome prediction.

Methods

We retrospectively investigated 573 consecutive patients, aged 20 to 91 (mean \pm standard deviation, 67.1 \pm 12.8) years, who underwent major cardiovascular surgery. Preanesthetic baseline ScO₂, lowest intraoperative ScO₂, various clinical variables, and hospital mortality were examined.

Results

Bivariate regression analyses revealed that baseline ScO_2 correlated significantly with plasma brain natriuretic peptide concentration (BNP), hemoglobin concentration (Hgb), estimated glomerular filtration rate (eGFR), and left ventricular ejection fraction (LVEF) (p < 0.0001 for each). Baseline ScO_2 correlated with BNP in an exponential manner, and BNP was the most significant factor influencing ScO_2 . Logistic regression analyses revealed that baseline and lowest intraoperative ScO_2 values, but not relative ScO_2 decrements, were significantly associated with hospital mortality (p < 0.05), independent of the EuroSCORE (p < 0.01). Receiver operating curve analysis of ScO_2 values and hospital mortality revealed an area under the curve (AUC) of 0.715 (p < 0.01) and a cutoff value of \leq 50.5% for the baseline

and ScO₂, and an AUC of 0.718 (p < 0.05) and a cutoff value of \leq 35% for the lowest intraoperative ScO₂. Low baseline ScO₂ (\leq 50%) was associated with increases in intubation time, intensive care unit stay, hospital stay, and hospital mortality.

Conclusion

Baseline ScO_2 was reflective of severity of systemic comorbidities and was predictive of clinical outcomes after major cardiovascular surgery. ScO_2 correlated most significantly with BNP in an exponential manner, suggesting that BNP plays a major role in the ScO_2 -based outcome prediction.

Introduction

Tissue oximetry by near-infrared spectroscopy (NIRS) is widely used to monitor cerebral oxygen saturation (ScO₂) during cardiovascular surgery [1, 2]. Usefulness of intraoperative ScO₂ monitoring has been reported by many studies [3-12]. However, significance of absolute ScO₂ values has not been established, since they are influenced by multiple factors such as a composition of focal arterial/venous blood components, oxygen saturation in extra-cerebral tissues, blood hemoglobin concentration (Hgb), and the skull thickness [2, 13–17]. In addition, ScO₂ values derived from different NIRS devices can differ even within the same subjects [14, 15, 17, 18]. Therefore, ScO₂ currently is used as a trend monitor rather than as an absolute index of cerebral oxygenation [2]. Intraoperatively, a relative decrease in ScO₂ from baseline (e.g., 20% decrease) or an absolute threshold ScO₂ (e.g., <50%) has been used as provisional criteria for cerebral desaturation [1]. However, extremely wide variations in baseline ScO₂ values raging from less than 20% to more than 80% have been reported [16–18]. Such wide variations seemed unlikely to be explained by aforementioned influencing factors alone. Therefore, it seemed necessary to explore if any factors that might more profoundly influence ScO₂.

Reportedly, patients with cardiac dysfunction and those with renal failure show lower ScO₂ than usual [10, 19, 20-23]. In line with these studies, Heringlake et al. showed that ScO₂ significantly correlated with age, Hgb, N-terminal pro-brain natriuretic peptide (NTproBNP), estimated glomerular filtration rate (eGFR), and left ventricular ejection fraction (LVEF) [24]. ScO₂ values thus could be associated with risk factors, such as cardiac dysfunction [10, 19, 20, 21, 24], renal dysfunction [21-24], age [24], and anemia [16, 17, 21, 24]. Consequently, Heringlake et al. showed that the baseline ScO₂ could be predictive of morbidity and mortality after cardiac surgery [24]. However, their findings have not been reconfirmed by other investigators. In addition, although they showed a negative correlation between NTproBNP and ScO₂, a relationship between brain natriuretic peptide (BNP) and ScO₂ has not been reported. BNP is an active hormone released from the heart in response to cardiac overloads, whereas NTproBNP is an inactive fragment of precursor proBNP [25]. Because a number of studies showed that compared with NTproBNP, BNP better correlated with indices of cardiac function [26, 27], better detected cardiac dysfunction [28], and better predicted progression of cardiac disease [29], BNP may better correlate with ScO₂, compared with NTproBNP reported previously [24].

The current study was conducted to examine whether the risk prediction by baseline ScO_2 values would be reproducible, and to closely characterize the relationship between BNP and ScO_2 , which might contribute to wide inter-individual variations in baseline ScO_2 values.

Materials and methods

Prior to the current study, approval was obtained from the Institutional Review Board (IRB) of Juntendo University Hospital. Because of the anonymous and retrospective fashion of the study, the IRB waived the need for patient consent.

Patients

The current retrospective study included 573 consecutive adult patients, aged 20–91 (mean \pm standard deviation, 67.1 \pm 12.8) years, who underwent major on-pump or off-pump cardiovascular surgery with ScO₂ monitoring at Juntendo University Hospital from January 2014 to April 2015.

Data collection

 ScO_2 was monitored at the bilateral forehead using the INVOS5100C device (Medtronic, Minneapolis, MN). ScO_2 data were automatically stored every 5–6 seconds in the USB memory stick attached to the device. The baseline ScO_2 was determined by averaging the bilateral ScO_2 readings that had been recorded before induction of general anesthesia while patients were breathing room air in a resting position. In addition, the lowest intraoperative ScO_2 was identified in each patient, and relative decrements in ScO_2 from baseline were calculated as the maximal drop in ScO_2 (= the baseline ScO_2 –the lowest intraoperative ScO_2) and % maximal drop in ScO_2 (= the maximal ScO_2 drop / the baseline $ScO_2 * 100$).

Besides demographic variables serving as potential risk factors, the specific cardiovascular risk factors were assessed, including Hgb, BNP, eGFR, LVEF, and the logistic EuroSCORE II as an established risk analysis model [30, 31], using the previous study as a reference [24]. Clinical outcome data included postoperative intubation time, intensive care unit (ICU) stay, hospital stay, postoperative stroke, and hospital mortality.

Statistical analysis

Because all continuous variables were non-normally distributed after Shapiro-Wilk testing, they are shown as median and quartiles. Categorical data are shown as numbers (%). Because BNP and the EuroSCORE were non-normally distributed in extreme ways, their log-normal transformed values also were used for statistical analyses. Spearman's correlation coefficient was used to identify factors associated with the baseline ScO₂. However, Pearson's correlation coefficient also was used to select candidate variables for multivariate regression analysis, and also to closely illustrate relationships between BNP and the baseline ScO₂ and that between the EuroSCORE and the baseline ScO₂. Multiple regression analysis was used to determine factors that could significantly influence the baseline ScO₂. Bivariate and multivariate logistic regression analyses were used to examine whether the EuroSCORE, absolute ScO₂ values, and relative ScO₂ decrements could be predictors of hospital mortality, as described previously [9, 24]. The best cutoff values for significant predictors were further determined by receiver operating characteristic (ROC) analysis, as described previously [9, 24].

Patients were divided into 2 groups based on whether they remained alive or were deceased during hospitalization. In addition, patients were divided into 2 groups also based on whether their baseline ScO_2 values were \leq 50% or >50%, according to the criterion logically set by Heringlake et al [24]. The groups were compared with Mann-Whitney *U* test and Fisher's exact test, as appropriate. A p value < 0.05 was considered significant. Data were analyzed with the software program JMP12 (SAS Institute. Cary, NC).

Results

Patients' characteristics

Characteristics of the 573 patients in the total cohort are shown in <u>Table 1</u>. Notably, the baseline ScO_2 before oxygenation and induction of general anesthesia ranged extremely widely from 31.5% to 90.5% (see Figs 1 & 2).

Table 1. Patients' characteristics, surgical procedures, and mortality in 573 patients.

Patients' characteristics	Total Cohort	Hospital Mortality			
		Alive	Deceased	Significance	
	n = 573	n = 561 (97.9%)	n = 12 (2.1%)		
Demographic data					
Female	205 (35.8%)	201 (36.5%)	4 (33.3%)		
Age	69 (61–77)	69 (61–77)	74 (71–79)	NS	
BSA (m ²)	1.65 (1.5–1.78)	1.66 (1.5–1.78)	1.6 (1.48–1.68)	NS	
History					
CKD5D	34 (5.9%)	31 (5.5%)	3 (25%)	p < 0.05	
Hypertension	358 (62.4%)	349 (62.2%)	9 (75%)	NS	
Dyslipidemia	234 (40.8%)	229 (40.8%)	5 (41.7%)	NS	
DM	137 (23.9%)	133 (23.8%)	4 (33.3%)	NS	
COPD	57 (9.9%)	57 (9.9%)	0	NS	
Risk stratification					
NYHAIII/IV	53 (9.3%)	50 (8.9%)	3 (25%)	NS	
EuroSCORE (%)	2.13 (1.15–4.52)	2.06 (1.14–4.26)	9.79 (5.64–18.3)	p < 0.0001	
Preoperative data					
BNP (pg/mL)	88.7 (34.3–209.3)	86 (33.4–203.1)	288.5 (59.6–2159)	p < 0.05	
Hgb (g/dL)	13 (11.6–14.1)	13 (11.6–14.2)	11.5 (10.7–13.8)	NS	
eGFR (mL/min/1.73m ²)	66.8 (50-81.9)	67.1 (51.2–82.1)	30.5 (14.9–67)	p < 0.01	
LVEF (%)	64 (55–70)	64 (55–70)	62 (41.2–71)	NS	
Baseline ScO ₂ (%)	63.8 (57.5–69.5)	64 (58–69.5)	54.2 (44.4–62.2)	p < 0.01	
Surgical procedures					
On-pump CABG	12 (2.1%)	11 (2%)	1 (8.3%)		
CABG + TA replacement	6 (1.1%)	6 (1.1%)	0		
Valve	233 (40.7%)	229 (40.8%)	4 (33.3%)		
Valve + CABG	60 (10.5%)	55 (9.8%)	5 (41.7%)		
Valve + TA replacement	73 (12.7%)	73 (13%)	0		
Valve + CABG + TA replacement	6 (1.1%)	6 (1.1%)	0		
TA replacement	35 (6.1%)	33 (5.9%)	2 (16.7%)		
Мухота	6 (1.1%)	6 (1.1%)	0		
Adult Congenital	11 (1.9%)	11 (2%)	0		
Off-pump CABG	131 (22.9%)	131 (23.4%)	0		
Operative course					
Duration of surgery (min)	236 (174–316)	236 (175–315)	236 (124–401)	NS	

Data are expressed as median (quartiles) or numbers (%).

BSA, body surface area; CKD5D, chronic kidney disease, stage 5D; DM, diabetes mellitus; COPD, chronic obstructive pulmonary disease; NYHA, New York Heart Association grading; LVEF, left ventricular ejection fraction; CABG, coronary artery bypass grafting; TA, thoracic aortic; BNP, brain natriuretic peptide; Hgb, hemoglobin; eGFR, estimated glomerular filtration rate; ScO₂, baseline cerebral oxygen saturation.

https://doi.org/10.1371/journal.pone.0181154.t001

Fig 1. Relationships of BNP, logarithmic BNP, EuroSCORE, and logarithmic EuroSCORE to baseline ScO₂. Relationships between BNP and baseline ScO₂ (A), between logarithmic BNP and baseline ScO₂ (B), between EuroSCORE and baseline ScO₂ (C), and between logarithmic EuroSCORE and baseline ScO₂ (C), and between logarithmic EuroSCORE and baseline ScO₂ (D) are shown. Pearson's correlation coefficients (r) and p values are depicted in each panel. Exponential regression lines, in addition to linear regression lines, are depicted in left panels (A and C). BNP, brain natriuretic peptide; ScO₂, cerebral oxygen saturation.

https://doi.org/10.1371/journal.pone.0181154.g001

Factors influencing baseline ScO₂

By both Spearman's and Pearson's correlation coefficients, the baseline ScO_2 correlated highly significantly with logarithmic BNP or BNP, Hgb, eGFR, age, LVEF, and BSA (p < 0.0001 for each) (Table 2). By Pearson's correlation analysis, the baseline ScO_2 correlated more closely with logarithmic BNP than with BNP, indicating that the baseline ScO_2 correlated with BNP in an exponential rather than linear manner (Fig 1A and 1B). On the other hand, the baseline ScO_2 correlated with Hgb, eGFR, BSA, and LVEF in linear manners (Fig 2). The multiple linear regression analysis revealed that logarithmic BNP, Hgb, eGFR, LVEF, and BSA, but not age, remained significant influencing factors of the baseline ScO_2 , and that logarithmic BNP was the most significant influencing factor (Table 2).

Baseline ScO₂, mortality, and morbidity

Results of the group comparisons between patients alive (n = 561) and deceased (n = 12) are shown in Table 1. In the total cohort, the predicted mortality estimated by the EuroSCORE

Fig 2. Relationships of Hgb, eGFR, BSA, and LVEF to baseline ScO₂. Relationships between Hgb and baseline ScO_2 (A), between eGFR and baseline ScO_2 (B), between BSA and baseline ScO_2 (C), and between LVEF and baseline ScO_2 (D) are shown. Pearson's correlation coefficient (r) and a p value are depicted in each panel. Hgb, hemoglobin; eGFR, estimate glomerular filtration rate; BSA, body surface area; LVEF, left ventricular ejection fraction; ScO_2 , cerebral oxygen saturation.

https://doi.org/10.1371/journal.pone.0181154.g002

|--|

Variables	Spearman's correl	relation coefficient Pearson's correlation coefficient		ation coefficient	Standardized partial regression coefficient R ² = 0.43 (p < 0.0001)		
	Spearman's ρ	p value	Pearson's r	Pearson's r p value		p value	
Age	-0.25	p < 0.0001	-0.26	p < 0.0001	0.003	NS	
BSA	0.23	p < 0.0001	0.23	p < 0.0001	0.025	p < 0.05	
Hgb	0.44	p < 0.0001	0.42	p < 0.0001	0.208	p < 0.0001	
Logarithmic BNP	-0.58	p < 0.0001	-0.59	p < 0.0001	-0.417	p < 0.0001	
eGFR	0.36	p < 0.0001	0.37	p < 0.0001	0.14	p < 0.0001	
LVEF	0.23	p < 0.0001	0.23	p < 0.0001	0.092	p < 0.01	

ScO₂, cerebral oxygen saturation; BSA, body surface area; Hgb, hemoglobin; BNP, brain natriuretic peptide; eGFR, estimate glomerular filtration rate; LVEF, left ventricular ejection fraction.

https://doi.org/10.1371/journal.pone.0181154.t002

	Baseline ScO₂ ≤50%	Baseline ScO ₂ >50%	p values	
	n = 45	n = 528		
Age	74 (66–79)	69 (61–76)	p < 0.05	
BSA	1.57 (1.43–1.72)	1.66 (1.51–1.79)	p < 0.05	
Hgb	11.5 (9.9–13)	13 (11.7–14.2)	p < 0.0001	
BNP (pg/dL)	406.9 (213.2–1767.5)	75.1 (31.8–179.5)	p < 0.0001	
eGFR (mL/min/1.73m ²)	.73m ²) 45.2 (5.4–62.2)		p < 0.0001	
LVEF%	61 (46–66)	65 (55–70)	p < 0.05	
EuroSCORE	5.29 (2.77–10.98)	1.99 (1.1–3.97)	p < 0.0001	
Intubation time (h)	8 (5.6–16)	6 (4–10.5)	p < 0.01	
ICU stay (days)	4 (2–7.5)	2 (1–3)	p < 0.0001	
Postoperative hospital stay (days)	16 (11.5–24)	12 (9–18)	p < 0.001	
Postoperative stroke	0 (0%)	15 (2.84%)	NS	
Hospital mortality	5 (11.1%)	7 (1.3%)	p < 0.01	

Table 3.	Comparison of risk factors	, morbidity, and hos	pital mortality	y between 2 grou	ips according	to the baseline ScO ₂ values
						<u> </u>

Data are expressed as median (quartiles) or numbers (%).

ScO₂, cerebral oxygen saturation; BSA, body surface area; Hgb, hemoglobin; BNP, brain natriuretic peptide; eGFR, estimated glomerular filtration rate; LVEF, left ventricular ejection fraction; ICU, intensive care unit.

https://doi.org/10.1371/journal.pone.0181154.t003

was 2.13 (1.15–4.52) %, while the actual hospital mortality was 2.09% (12/573) (Table 1). The number of patients with end-stage chronic kidney disease (CKD) was significantly more in deceased patients. The EuroSCORE, and BNP were significantly higher, while eGFR and the baseline ScO_2 were significantly lower in deceased patients. Age, Hgb, BSA and LVEF were not different between these patients (Table 1).

Results of the group comparisons according to the baseline ScO_2 are shown in Table 3. Age, BNP, and the EuroSCOR were significantly higher, while BSA, Hgb, eGFR, and LVEF were significantly lower in patients with $ScO_2 \le 50\%$ (n = 528) compared to those with $ScO_2 > 50\%$ (n = 45) (Table 3). Postoperative intubation time, ICU stay, and hospital stay were significantly longer, and hospital mortality was significantly higher in patients with $ScO_2 \le 50\%$ compared to those with $ScO_2 > 50\%$, although the incidence of postoperative stroke did not differ between them (Table 3).

Prediction of hospital mortality by EuroSCORE, absolute ScO_2 values, and relative ScO_2 decrements

Bivariate logistic regression analyses revealed that hospital mortality was significantly associated with the EuroSCORE (p = 0.0005), the baseline ScO₂ (p = 0.0031), and the lowest intraoperative ScO₂ (p = 0.018), respectively, but not with the maximal drop in ScO₂ (p = 0.8928) nor % maximal drop in ScO₂ (p = 0.5666), indicating that the EuroSCORE and the two absolute ScO₂ values, but not relative ScO₂ decrements, could be predictors of hospital mortality. The multivariate logistic regression analysis incorporating the EuroSCORE and the baseline ScO₂ as independent variables revealed that hospital mortality was significantly associated with both of the EuroSCORE and the baseline ScO₂ (chi-square 16.3 [p = 0.0003] for overall model fit; odds ratio 1.076 [95% CI, 1.024–1.127; p = 0.0059] for the EuroSCORE; odds ratio 0.937 [95% CI, 0.882–0.997; p = 0.0417] for the baseline ScO₂ revealed that hospital mortality was significantly associated with both of the lowest intraoperative ScO₂ (chi-square 16.3 [p = 0.0003] for overall model fit; odds ratio 1.076 [95% CI, 1.024–1.127; p = 0.0059] for the EuroSCORE; odds ratio 0.937 [95% CI, 0.882–0.997; p = 0.0417] for the baseline ScO₂ revealed that hospital mortality was significantly associated with both of the EuroSCORE and the lowest intraoperative ScO₂ revealed that hospital mortality was significantly associated with both of the EuroSCORE and the lowest intraoperative ScO₂ (chi-square 16.3 [p = 0.003] for overall model fit; odds ratio 1.076 [95% CI, 1.024–1.127; p = 0.0059] for the EuroSCORE; odds ratio 0.937 [95% CI, 0.882–0.997; p = 0.0417] for the baseline ScO₂ revealed that hospital mortality was significantly associated with both of the EuroSCORE and the lowest intraoperative ScO₂ (chi-

Fig 3. Results of ROC analyses of EuroSCORE, baseline ScO₂, and lowest intraoperative ScO₂ for predicting hospital mortality. Areas under curves (AUCs) and p values were 0.883 (95% CI, 0.806–0.932; p < 0.0001) for the EuroSCORE, 0.715 (95% CI, 0.508–0.859; p < 0.01) for the baseline ScO₂, and 0.718 (95% CI, 0.577–0.826; p = 0.0160) for the lowest intraoperative ScO₂, respectively. ROC, receiver operating curve; ScO₂, cerebral oxygen saturation.

https://doi.org/10.1371/journal.pone.0181154.g003

square 16.9 [p = 0.0002] for overall model fit; odds ratio 1.097 [95% CI, 1.044–1.150; p = 0.0001] for the EuroSCORE; odds ratio 0.948 [95% CI, 0.903–0.995; p = 0.0275] for the lowest intraoperative SCO_2). These indicated that each of baseline and lowest intraoperative SCO_2 values could be predictors of hospital mortality, independent of the EuroSCORE.

Cutoff values of EuroSCORE, baseline ScO_2 , and lowest intraoperative ScO_2 for predicting hospital mortality

ROC analysis of the EuroSCORE and hospital mortality revealed an area under the curve (AUC) of 0.883 (95% CI, 0.806–0.932; p < 0.0001) and a cutoff value of \geq 3.25% (sensitivity 100%, specificity 67.5%) (Fig 3). That of the baseline ScO₂ and hospital mortality revealed an AUC of 0.715 (95% CI, 0.508–0.859; p = 0.0024) and a cutoff value of \leq 50.5% (sensitivity 50.0%, specificity 92.2%) (Fig 3). That of the lowest intraoperative ScO₂ and hospital mortality revealed an AUC of 0.718 (95% CI, 0.577–0.826; p = 0.0160) and a cutoff value of \leq 35% (sensitivity 58.3%, specificity 81.5%) (Fig 3). The EuroSCORE tended to have a better accuracy in predicting hospital mortality compared to the baseline ScO₂ and the lowest intraoperative ScO₂, but the differences did not reach a statistical significance (differences between areas, 0.168, p = 0.0522; and 0.165, p = 0.0535, respectively).

Relationship between EuroSCORE and baseline ScO₂

Similarly to the relationship between BNP and the baseline ScO_2 , the baseline ScO_2 correlated more closely with the logarithmic EuroSCORE than the EuroSCORE, indicating that ScO_2 correlated with the EuroSCORE in an exponential rather than linear manner (Fig 1C and 1D). Despite the close correlation between the EuroSCORE and the baseline ScO_2 , both could be independent predictors of hospital mortality, as mentioned above.

Discussion

Factors influencing baseline ScO₂

We found that the baseline ScO₂ correlated closely with BNP or logarithmic BNP, Hgb, eGFR, LVEF, BSA, and age by bivariate correlation analyses. Previous studies reported that ScO₂ significantly correlated with Hgb, NTproBNP, eGFR, LVEF, age, and variables associated with body size [16, 17, 20, 21, 24]. To our knowledge, the current study was the first one that demonstrated a significant correlation between BNP and ScO₂, although Heringlake et al. reported that between NTproBNP and ScO₂ [24]. Our findings were basically in good agreement with their findings. However, we found a much closer correlation between BNP and ScO₂ ($\rho = -0.58$, p < 0.0001) compared to that between Hgb and ScO₂ ($\rho = 0.44$, p < 0.0001), in contrast to similar correlation coefficients for Hgb ($\rho = 0.37$, p < 0.0001) and NTproBNP ($\rho = -0.35$, p < 0.0001) reported by the previous study [24]. Such a slight difference might result most likely from a difference in patients' populations studied, but might result also from a difference in petides examined, since a number of studies showed that compared with NTproBNP, BNP better correlated with cardiac indices [26–29], although some studies reported equal performance of NTproBNP and BNP [32].

In the current study, ScO_2 correlated with Hgb, eGFR, BSA, and LVEF in linear manners. In contrast, ScO_2 correlated with BNP in an exponential manner. Possibly, this exponential relationship reflected biologic features of BNP, since previous studies analyzed relationships between BNP and cardiac indices with Pearson's correlation after log-transforming BNP or with exponential models, indicating that these relationships were better expressed in exponential rather than linear manners [26, 27, 33]. Consequently, we used logarithmic BNP instead of BNP in multiple regression analysis, and found that logarithmic BNP, Hgb, eGFR, LVEF, and BSA, but not age, remained significant factors that were associated with the baseline ScO_2 , and that logarithmic BNP was the most significant factor. BNP was most significantly associated with the baseline ScO_2 possibly because BNP acted as a surrogate of cardiorenal function that could closely affect baseline ScO_2 values via its effects on cerebral blood flow and/or cerebrovascular pathology [10, 19, 20, 22, 23]. Our findings also suggested that BNP could be the most significant factor that contributed to the wide inter-individual variations in baseline ScO_2 values.

Usefulness of baseline ScO2 in risk stratification

As reported previously [24], there was a close correlation between the baseline ScO_2 and the EuroSCORE. Interestingly, ScO_2 correlated with the EuroSCORE in an exponential manner. The reason for such a relationship was unclear, but this might be related to the formula for calculating the logistic EuroSCORE, which uses logistic regression analysis incorporating exponential functions in its formula [30].

Because low ScO_2 values were associated with high BNP, low Hgb, low eGFR, low LVEF, and the high EuroSCORE, low baseline ScO2 values might be reflective of severe comorbidities and thus predictive of poor prognosis, as reported previously [24]. Indeed, we found that the baseline ScO_2 was significantly less in patients deceased than alive. Further, the baseline ScO_2 \leq 50% was associated with increases in intubation time, ICU stay, hospital stay, and hospital mortality. Further, the logistic regression analysis revealed that ScO₂ could predict hospital mortality independent of the EuroSCORE. The ROC analysis revealed that a cutoff value for the baseline ScO_2 in predicting hospital mortality was 50.5%, which was very close to the cutoff value of 51% reported previously [24]. As described above, we found the most significant correlation between BNP and ScO₂. Further, previous studies reported a significant role of BNP in predicting prognosis of cardiac disease [29, 34, 35]. Taken together, it seemed conceivable that BNP played a major role in risk prediction based on the baseline ScO₂. Heringlake et al. found that a low baseline ScO₂ value (\leq 50%) by itself could be predictive of postoperative mortality [24], and we could steadily reconfirm their findings. Hence, it seemed highly likely that cerebral oximetry could have a significant role in risk stratification in patients undergoing cardiovascular surgery. Further, our data suggested that preoperative cerebral oximetry could have an additive value to the EuroSCORE, since the baseline ScO₂ could be a predictor of hospital mortality independent of the EuroSCORE.

Significance of absolute ScO2 values for outcome prediction

Many studies found links between decrements in ScO₂ during cardiac surgery and postoperative neurological complications [3-12]. However, in these studies, quite inconsistent criteria for cerebral desaturation were used even using the identical INVOS device [3–12]. Further, most studies had limitations, such as small sample sizes (mostly $n \le 100$). Therefore, no definite criterion is currently available regarding what threshold ScO₂ and/or what decrement in ScO₂ from baseline indicates an abnormal finding during cardiac surgery [1]. However, Schoen et al. revealed, in 231 patients, that the baseline ScO₂ value, the minimal intraoperative ScO_2 value, and the AUC below $ScO_2 < 50\%$ were associated with postoperative delirium, whereas the relative ScO_2 decrease or the AUC below 80% of the baseline were not [9]. They reported that cutoff values of the baseline ScO₂ and the lowest intraoperative ScO₂ for predicting delirium were 59.5% and 51.0%, respectively [9]. Such results indicated that absolute ScO₂ values rather than relative ScO_2 decrements were more relevant in predicting neurological complications. Further, Heringlake et al. showed, in 1178 patients, that patients with baseline $ScO_2 \leq 50\%$ were at increased risk for postoperative mortality and those with a preoperative $ScO_2 \leq 60\%$ were at increased risk for postoperative morbidity [24]. We also found, in 573 patients, that patients with the baseline $ScO_2 \leq 50.5\%$ and the lowest intraoperative ScO_2 \leq 35% were at increased risk for hospital morbidity, and that absolute ScO₂ values, but not relative ScO₂ decrements, could be predictors of hospital mortality. Such results indicated that

absolute ScO_2 values rather than relative ScO_2 decrements were more relevant in predicting postoperative mortality. Hence, low perioperative absolute ScO_2 might help to identify patients at high risk for postoperative adverse events [5, 6, 8, 12], which highlights the clinical significance of absolute ScO_2 values. However, further studies in large cohorts are required to identify best cutoff points of perioperative ScO_2 values for predicting a variety of postoperative complications and mortality.

Limitations

Our study had several limitations. ScO_2 was measured only with the INVOS device. Therefore, it remains to be known whether our results would be reproducible with other NIRS devices. Further, as this study was conducted in a retrospective fashion, detailed descriptions of postoperative morbidity were omitted, and there might be any problems with measurement accuracy of ScO_2 and other variables. Further, although a low baseline ScO_2 value by itself could be a risk factor for increasing perioperative morbidity and mortality, it remains to be clarified whether low ScO_2 simply identifies patients with severe comorbidities who are at high risk for postoperative complications or it represents a potentially modifiable risk factor.

Conclusion

In 573 patients undergoing major cardiovascular surgery, the baseline ScO₂ correlated with BNP, Hgb, eGFR, and LVEF. BNP was the most significant influencing factor. Further, ScO₂ correlated with the EuroSCORE. ScO₂ correlated with Hgb, eGFR, BSA, and LVEF in linear manners, while correlating with BNP and the EuroSCORE in exponential manners. The baseline and lowest intraoperative ScO₂ values could predict hospital mortality, independent of the EuroSCORE, and the baseline ScO₂ \leq 50.5% and the lowest intraoperative ScO₂ \leq 35% were associated with increased hospital mortality. Low baseline ScO₂ values were associated with longer needs for postoperative care and higher hospital mortality. The low baseline ScO₂ was reflective of severity of preoperative systemic comorbidities and was of value for risk stratification in patients undergoing cardiovascular surgery.

Supporting information

S1 File. 'Available data'. (XLSX)

Acknowledgments

We thank all the staff for their assistance in conducting this study. This study received no specific grants from any funding agency in the public, commercial, or not-for-profit sectors.

Author Contributions

Conceptualization: Hiroshi Mukaida.

Data curation: Hiroshi Mukaida, Masakazu Hayashida, Makiko Yamamoto.

Formal analysis: Hiroshi Mukaida, Satoshi Matsushita.

Investigation: Hiroshi Mukaida, Makiko Yamamoto.

Methodology: Hiroshi Mukaida, Makiko Yamamoto.

Supervision: Atsushi Amano.

Validation: Masakazu Hayashida, Satoshi Matsushita, Atsushi Nakamura.

Writing – original draft: Hiroshi Mukaida.

Writing - review & editing: Masakazu Hayashida, Atsushi Amano.

References

- Zheng F, Sheinberg R, Yee MS, Ono M, Zheng Y, Hogue CW. Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review. Anesth analg. 2013; 116: 663–76. https://doi.org/10.1213/ANE.0b013e318277a255 PMID: 23267000
- 2. Steppan J, Hogue CW Jr. Cerebral and tissue oximetry. Best Pract Res Clin Anaesthesiol. 2014; 28: 429–39. https://doi.org/10.1016/j.bpa.2014.09.002 PMID: 25480772
- Yao FS, Tseng CC, Ho CY, Levin SK, Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2004; 18: 552–8. PMID: 15578464
- Reents W, Muellges W, Franke D, Babin-Ebell J, Elert O. Cerebral oxygen saturation assessed by near-infrared spectroscopy during coronary artery bypass grafting and early postoperative cognitive function. Ann Thorac Surg. 2002; 74: 109–14. PMID: 12118739
- Hong SW, Shim JK, Choi YS, Kim DH, Chang BC, Kwak YL. Prediction of cognitive dysfunction and patients' outcome following valvular heart surgery and the role of cerebral oximetry. Eur J Cardiothorac Surg. 2008; 33: 560–5. https://doi.org/10.1016/j.ejcts.2008.01.012 PMID: 18272385
- Slater JP, Guarino T, Stack J, Vinod K, Bustami RT, Brown JM 3rd, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg. 2009; 87: 36–44. https://doi.org/10.1016/j.athoracsur.2008.08.070 PMID: 19101265
- de Tournay-Jetté E, Dupuis G, Bherer L, Deschamps A, Cartier R, Denault A. The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2011; 25: 95–104. https://doi.org/10. 1053/j.jvca.2010.03.019 PMID: 20650659
- Schoen J, Husemann L, Tiemeyer C, Lueloh A, Sedemund-Adib B, Berger KU, et al. Cognitive function after sevoflurane- vs propofol-based anaesthesia for on-pump cardiac surgery: a randomized controlled trial. Br J Anaesth. 2011; 106: 840–50. https://doi.org/10.1093/bja/aer091 PMID: 21518736
- Schoen J, Meyerrose J, Paarmann H, Heringlake M, Hueppe M, Berger KU. Preoperative regional cerebral oxygen saturation is a predictor of postoperative delirium in on-pump cardiac surgery patients: a prospective observational trial. Crit Care. 2011; 15: R218. <u>https://doi.org/10.1186/cc10454</u> PMID: 21929765
- Skhirtladze K, Birkenberg B, Mora B, Moritz A, Ince I, Ankersmit HJ, et al. Cerebral desaturation during cardiac arrest: its relation to arrest duration and left ventricular pump function. Crit Care Med. 2009; 37: 471–5. https://doi.org/10.1097/CCM.0b013e3181953d4c PMID: 19114911
- 11. Edmonds HL Jr. Protective effect of neuromonitoring during cardiac surgery. Ann N Y Acad Sci. 2005; 1053: 12–9. https://doi.org/10.1196/annals.1344.002 PMID: 16179501
- Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007; 104: 51–8. https://doi.org/10.1213/01.ane.0000246814.29362.f4 PMID: 17179242
- Sørensen H, Secher NH, Siebenmann C, Nielsen HB, Kohl-Bareis M, Lundby C, et al. Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine. Anesthesiology. 2012; 117: 263–70. <u>https://doi.org/10.1097/ALN.</u> 0b013e3182605afe PMID: 22739762
- Davie SN, Grocott HP. Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology. 2012; 116: 834–40. https://doi. org/10.1097/ALN.0b013e31824c00d7 PMID: 22343469
- Greenberg S, Murphy G, Shear T, Patel A, Simpson A, Szokol J, et al. Extracranial contamination in the INVOS 5100C versus the FORE-SIGHT ELITE cerebral oximeter: a prospective observational crossover study in volunteers. Can J Anaesth. 2016; 63: 24–30. https://doi.org/10.1007/s12630-015-0451-7 PMID: 26307186
- Yoshitani K, Kawaguchi M, Iwata M, Sasaoka N, Inoue S, Kurumatani N, et al. Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia. Br J Anaesth. 2005; 94: 341–6. https:// doi.org/10.1093/bja/aei046 PMID: 15591331

- Yoshitani K, Kawaguchi M, Miura N, Okuno T, Kanoda T, Ohnishi Y, et al. Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectroscopy measurements. Anesthesiology. 2007; 106: 458–62. PMID: <u>17325503</u>
- Thavasothy M, Broadhead M, Elwell C, Peters M, Smith M. A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers. Anaesthesia. 2002; 57: 999–1006. PMID: 12358958
- Madsen PL, Nielsen HB, Christiansen P. Well-being and cerebral oxygen saturation during acute heart failure in humans. Clin Physiol. 2000; 20: 158–64. PMID: 10735984
- Paquet C, Deschamps A, Denault AY, Couture P, Carrier M, Babin D, et al. Baseline regional cerebral oxygen saturation correlates with left ventricular systolic and diastolic function. J Cardiothorac Vasc Anesth. 2008; 22: 840–6. https://doi.org/10.1053/j.jvca.2008.02.013 PMID: 18834789
- Kobayashi K, Kitamura T, Kohira S, Torii S, Horai T, Hirata M, Mishima T, Sughimoto K, Ohkubo H, Irisawa Y, Matsushiro T, Hayashi H, Miyata Y, Tsuchida Y, Ohtomo N, Miyaji K. Factors associated with a low initial cerebral oxygen saturation value in patients undergoing cardiac surgery. J Artif Organs. 2017; 20:110–116. https://doi.org/10.1007/s10047-016-0941-6 PMID: 28054177
- Hoshino T, Ookawara S, Goto S, Miyazawa H, Ito K, Ueda Y, et al. Evaluation of cerebral oxygenation in patients undergoing long-term hemodialysis. Nephron Clin Pract. 2014; 126: 57–61. https://doi.org/ 10.1159/000358432 PMID: 24526002
- Ito K, Ookawara S, Ueda Y, Goto S, Miyazawa H, Yamada H, et al. Factors affecting cerebral oxygenation in hemodialysis patients: cerebral oxygenation associates with pH, hemodialysis duration, serum albumin concentration, and diabetes mellitus. PLoS One. 2015; 10: e0117474. <u>https://doi.org/10.1371/journal.pone.0117474 PMID: 25706868</u>
- Heringlake M, Garbers C, K\u00e4bler JH, Anderson I, Heinze H, Sch\u00f6n J, et al. Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology. 2011; 114: 58–69. https://doi. org/10.1097/ALN.0b013e3181fef34e PMID: 21178669
- Maries L, Manitiu I. Diagnostic and prognostic values of B-type natriuretic peptides (BNP) and N-terminal fragment brain natriuretic peptides (NT-pro-BNP). Cardiovasc J Afr. 2013; 24: 286–9. <u>https://doi.org/10.5830/CVJA-2013-055</u> PMID: 24217307
- Forfia PR, Watkins SP, Rame JE, Stewart KJ, Shapiro EP. Relationship between B-type natriuretic peptides and pulmonary capillary wedge pressure in the intensive care unit. J Am Coll Cardiol 2005; 45: 667–71.
- Maeder MT, Mariani JA, Kaye DM. Hemodynamic determinants of myocardial B-type natriuretic peptide release: relative contributions of systolic and diastolic wall stress. Hypertension. 2010; 56: 682–9. https://doi.org/10.1161/HYPERTENSIONAHA.110.156547 PMID: 20713912
- Ewald B, Ewald D, Thakkinstian A, Attia J. Meta-analysis of B type natriuretic peptide and N-terminal pro B natriuretic peptide in the diagnosis of clinical heart failure and population screening for left ventricular systolic dysfunction. Intern Med J. 2008; 38: 101–13. <u>https://doi.org/10.1111/j.1445-5994.2007</u>. 01454.x PMID: 18290826
- Klaar U, Gabriel H, Bergler-Klein J, Pernicka E, Heger M, Mascherbauer J, Rosenhek R, Binder T, Maurer G, Baumgartner H. Prognostic value of serial B-type natreuretic peptide measurement in asymptomatic organic mitral regurgitation. Eur J Heart Fail. 2011; 13: 163–9. https://doi.org/10.1093/ eurjhf/hfg189 PMID: 21051463
- Roques F, Michel P, Goldstone AR, Nashef SA. The logistic EuroSCORE. Eur Heart J 2003; 24: 881– 2.
- Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, et al. EuroSCORE II. Eur J Cardiothorac Surg. 2012; 41: 734–45. https://doi.org/10.1093/ejcts/ezs043 PMID: 22378855
- Jungbauer CG, Kaess B, Buchner S, Birner C, Lubnow M, Resch M, et al. Equal performance of novel N-terminal proBNP (Cardiac proBNP®) and established BNP (Triage BNP®) point-of-care tests. Biomark Med. 2012; 6: 789–96. https://doi.org/10.2217/bmm.12.67 PMID: 23227844
- Kainuma S, Taniguchi K, Toda K, Shudo Y, Takeda K, Funatsu T, et al. B-type natriuretic peptide response and reverse left ventricular remodeling after surgical correction of functional mitral regurgitation in patients with advanced cardiomyopathy. J Cardiol. 2015; 66: 279–85. https://doi.org/10.1016/j. jjcc.2015.02.015 PMID: 25851471
- de Lemos JA, McGuire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease. Lancet. 2003; 362(9380): 316–22. https://doi.org/10.1016/S0140-6736(03)13976-1 PMID: 12892964
- El-Saed A, Voigt A, Shalaby A. Usefulness of brain natriuretic peptide level at implant in predicting mortality in patients with advanced but stable heart failure receiving cardiac resynchronization therapy. Clin Cardiol. 2009; 32: E33–8.