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Abstract

Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at

the 8-cell stage during mouse embryonic development. Contractility becomes first visible

with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel

around blastomeres in an oscillatory fashion. How contractility of the mouse embryo

becomes active remains unknown. We have taken advantage of PeCoWaCo to study the

awakening of contractility during preimplantation development. We find that PeCoWaCo

become detectable in most embryos only after the second cleavage and gradually increase

their oscillation frequency with each successive cleavage. To test the influence of cell size

reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell

size across a 20- to 60-μm range. We find that the stepwise reduction in cell size caused by

cleavage divisions does not explain the presence of PeCoWaCo or their accelerating

rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions

until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely.

We further identify the programmed down-regulation of the formin Fmnl3 as a required

event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, corti-

cal softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before pre-

implantation morphogenesis.

Introduction

During embryonic development, the shape of animal cells and tissues largely relies on the con-

tractility of the actomyosin cortex [1–3]. The actomyosin cortex is a submicron thin layer of

cross-linked actin filaments, which are put under tension by nonmuscle myosin II motors [4].

Tethered to the plasma membrane, the actomyosin cortex is a prime determinant of the

stresses at the surface of animal cells [4,5]. Contractile stresses of the actomyosin cortex medi-

ate crucial cellular processes such as the ingression of the cleavage furrow during cytokinesis

[6–8], the advance of cells’ back during migration [9,10], or the retraction of blebs [11,12]. At
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the tissue scale, spatiotemporal changes in actomyosin contractility drive apical constriction

[13,14] or the remodeling of cell–cell contacts [15,16]. Although tissue remodeling takes place

on timescales from tens of minutes to hours or days, the action of the actomyosin cortex is

manifest on shorter timescales of tens of seconds [1,3,17]. In fact, actomyosin is often found to

act via pulses of contraction during morphogenetic processes among different animal species

from nematodes to human cells [13,14,18–25]. A pulse of actomyosin begins with the polymer-

ization of actin filaments and the sliding of myosin minifilaments until maximal contraction

of the local network within about 30 seconds [13,26,27]. Then, the actin cytoskeleton disassem-

bles, and myosin is inactivated, which relaxes the local network for another 30 seconds [28–

30]. These cycles of contractions and relaxations are governed by the turnover of the Rho

GTPase and its effectors, which are well-characterized regulators of actomyosin contractility

[19,29,31]. Indeed, the Rho pathway controls both the activity of myosin motors via their phos-

phorylation and the turnover of actin filaments via formins [5,19,26,29]. In instances where a

sufficient number of pulses occur, pulses of contraction display a clear periodicity. The oscilla-

tion period of pulsed contractions ranges from 60 seconds to 200 seconds [14,18,19,22]. The

period appears fairly defined for cells of a given tissue but can vary between tissues of the same

species. What determines the oscillation period of contraction is poorly understood, although

the Rho pathway may be expected to influence it [19,29,30]. Finally, periodic contractions can

propagate into traveling waves. Such periodic cortical waves of contraction (PeCoWaCo) were

observed in cell culture, starfish, and frog oocytes as well as in mouse preimplantation embryos

[19,22,32,33]. In starfish and frog oocytes, mesmerizing Turing patterns of Rho activation with

a period of 80 seconds and a wavelength of 20 μm appear in a cell cycle–dependent manner

[19,34]. Interestingly, experimental deformation of starfish oocytes revealed that Rho activa-

tion wave front may be coupled to the local curvature of the cell surface [35], which was pro-

posed to serve as a mechanism for cells to sense their shape [34]. In mouse embryos,

PeCoWaCo with a period of 80 seconds were observed at the onset of blastocyst morphogene-

sis [22,36]. What controls the propagation velocity, amplitude, and period of these waves is

unclear, and the potential role of such evolutionarily conserved phenomenon remains a

mystery.

During mouse preimplantation development, PeCoWaCo become visible before compac-

tion [22], the first morphogenetic movements leading to the formation of the blastocyst

[3,37,38]. During the second morphogenetic movement, prominent PeCoWaCo are displayed

in prospective inner cells before their internalization [36]. In contrast, cells remaining at the

surface of the embryo display PeCoWaCo of lower amplitude due to the presence of a domain

of apical material that inhibits the activity of myosin [36]. Then, during the formation of the

blastocoel, high temporal resolution time-lapse hint at the presence of PeCoWaCo as microlu-

mens coarsen into a single lumen [39]. Therefore, PeCoWaCo appear throughout the entire

process of blastocyst formation [3]. However, little is known about what initiates and regulates

PeCoWaCo. The analysis of maternal zygotic mutants suggests that PeCoWaCo in mouse blas-

tomeres result primarily from the action of the nonmuscle myosin heavy chain IIA (encoded

by Myh9) rather than IIB (encoded by Myh10) [40]. Dissociation of mouse blastomeres shows

that PeCoWaCo are cell autonomous since they persist in single cells [22]. Interestingly,

although removing cell–cell contacts free up a large surface for the contractile waves to propa-

gate, the oscillation period seems robust to the manipulation [22]. Similarly, when cells form

an apical domain taking up a large portion of the cell surface, the oscillation period does not

seem to be different from cells in which the wave can propagate on the entire cell surface [36].

This raises the question of how robust PeCoWaCo are to geometrical parameters, especially in

light of recent observations in starfish oocytes [34,35]. This question becomes particularly
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relevant when considering that, during preimplantation development, cleavage divisions halve

cell volume with each round of cytokinesis [41,42].

In this study, we investigate how the contractility of the cleavage stages emerges before initi-

ating blastocyst morphogenesis. We take advantage of the slow development of the mouse

embryo to study thousands of pulsed contractions and of the robustness of the mouse embryo

to size manipulation to explore the geometrical regulation of PeCoWaCo. We discover that

the initiation, maintenance, or oscillatory properties of PeCoWaCo do not depend on cell size.

Instead, we discover a gradual softening of blastomeres with each successive cleavage, which

exposes PeCoWaCo. This softening results in part from the reorganization of the actin cortex

due to the down-regulation of the formin Fmnl3 during the first cleavage stages. Together, this

study reveals how preimplantation contractility is robust to the geometrical changes of the

cleavage stages during which the zygotic contractility awakens.

Results

PeCoWaCo during cleavage stages

PeCoWaCo have been observed at the 8-, 16-cell, and blastocyst stages. To know when PeCo-

WaCo first appear, we imaged embryos during the cleavage stages and performed Particle

Image Velocimetry (PIV) and Fourier analyses (Fig 1A–1C, S1 Movie). We note that PeCo-

WaCo pause during mitosis (S2 Movie), similarly to pulsed contractions in fly neuroblasts

[24], and we have therefore excluded from our analysis embryos during mitosis. This analysis

reveals that PeCoWaCo are detectable in fewer than half of zygote and 2-cell stage embryos

and become visible in most embryos from the 4-cell stage onward (Fig 1D, S1A–S1F Fig, S1

Table, S1 Data). Furthermore, PeCoWaCo only display large amplitude from the 4-cell stage

onward (Fig 1B and 1C). Interestingly, the period of oscillations of the detected PeCoWaCo

shows a gradual decrease from 150 seconds to 80 seconds between the zygote and 8-cell stages

(Fig 1E, S1 Table, S1 Data). The acceleration of PeCoWaCo rhythm could simply result from

the stepwise changes in cell size after cleavage divisions. Indeed, we reasoned that if the con-

tractile waves travel at constant velocity, the period will scale with cell size and shape. This is

further supported by the fact that PeCoWaCo are detected at the same rate and with the same

oscillation period during the early or late halves of the 2-, 4-, and 8-cell stages (S1G and S1H

Fig, S2 Table, S1 Data). Therefore, we set to investigate the relationship between cell size and

periodic contractions.

Cell size is not critical for the initiation or maintenance of PeCoWaCo

First, to test whether the initiation of PeCoWaCo in most 4-cell stage embryos depends on the

transition from the 2- to 4-cell stage blastomere size, we prevented cytokinesis. Using transient

exposure to Vx-680 to inhibit the activity of Aurora kinases triggering chromosome separa-

tion, we specifically blocked the 2- to 4-cell stage cytokinesis without compromising the next

cleavage to the 8-cell stage (Fig 2A and 2B, S3 Movie). This causes embryos to reach the 4-cell

stage with blastomeres the size of 2-cell stage blastomeres. At the 4-cell stage, we detect PeCo-

WaCo in most embryos whether they have 4- or 2-cell stage size blastomeres (Fig 2C, S3 Table,

S1 Data). Furthermore, the period of oscillation is identical to 4-cell stage embryos in both

control and drug-treated conditions (Fig 2D, S3 Table, S1 Data). Importantly, we do not mea-

sure any change in cell surface tension when treating embryos with Vx-680 indicating that the

treatment does not seem to impact the overall mechanics of the actomyosin cortex (S2 Fig, S4

Table, S1 Data). This suggests that 4-cell stage blastomere size is not required to initiate PeCo-

WaCo in the majority of embryos.
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Then, we tested whether PeCoWaCo could be triggered prematurely by artificially reducing

2-cell stage blastomeres to the size of a 4-cell stage blastomere. To reduce cell size, we treated

dissociated 2-cell stage blastomeres with the actin cytoskeleton inhibitor Cytochalasin D before

deforming them repeatedly into a narrow pipette (Fig 2E and 2F, S4 Movie). By adapting the

number of aspirations of softened blastomeres, we could carefully fragment blastomeres while

keeping their sister cell mechanically stressed but intact. Importantly, we measured identical

surface tensions in intact and fragmented cells indicating that fragmentation does not seem to

impact the overall mechanics of the actomyosin cortex (S2 Fig, S4 Table, S1 Data). While the

fragmented cell was reduced to the size of a 4-cell stage blastomere, both fragmented and

manipulated cells eventually succeeded in dividing to the 4-cell stage. After waiting 1 hour for

cells to recover from this procedure, we examined for the presence of PeCoWaCo over the

Fig 1. Analysis of PeCoWaCo during cleavage stages. (A) Representative images of a short-term time-lapse overlaid with a subset of velocity

vectors from PIV analysis during cleavage stages (S1 Movie). Magenta for positive and green for negative Y directed movement. Scale bar,

20 μm. (B) Velocity over time for a representative velocity vector of each embryo shown in A. (C) Mean power spectrum resulting from Fourier

transform of PIV analysis of zygote (gray, n = 13), 2-cell (blue, n = 18), 4-cell (orange, n = 31), and 8-cell (green, n = 21) stages embryos showing

detectable oscillations. Data show as mean ± SEM (S1 Table). (D) Proportion of zygote (gray, n = 27), 2-cell (blue, n = 52), 4-cell (orange,

n = 39), and 8-cell stage (green, n = 34) embryos showing detectable oscillations after Fourier transform of PIV analysis. Light gray shows

nonoscillating embryos. Error bars show SEM. Chi-squared p-values comparing different stages are indicated (S1 Table, S1 Data). (E)

Oscillation period of zygote (gray, n = 13), 2-cell (blue, n = 18), 4-cell (orange, n = 31), and 8-cell (green, n = 21) stages embryos. Larger circles

show median values. Student t test p-values are indicated (S1 Table, S1 Data). PeCoWaCo, periodic cortical waves of contraction; PIV, Particle

Image Velocimetry.

https://doi.org/10.1371/journal.pbio.3001593.g001
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subsequent 10 hours. PeCoWaCo were detected in similar proportions in either control or

fragmented cells (Fig 2G, S3 Movie, S3 Table, S1 Data). Also, the period of detected PeCo-

WaCo was unchanged (Fig 2H, S3 Table, S1 Data). This suggests that 4-cell stage blastomere

size is not sufficient to trigger PeCoWaCo in the majority of embryos.

Cell size does not influence the properties of PeCoWaCo

The transition from 2- to 4-cell stage blastomere size is neither required nor sufficient to initi-

ate PeCoWaCo. Nevertheless, the decrease in period of PeCoWaCo remarkably scales with the

stepwise decrease in blastomere size (Fig 1E). Given a constant propagation velocity, PeCo-

WaCo may reduce their period according to the reduced distance to travel around smaller

cells. To test whether cell size determines PeCoWaCo oscillation period, we set out to

Fig 2. Initiation of PeCoWaCo is independent of cell size. (A) Schematic diagram of PeCoWaCo analysis after blocking the second cleavage division

with 2.5 μM Vx680. (B) Representative images of DMSO and Vx-680 treated embryos overlaid with a subset of velocity vectors from PIV analysis (S3

Movie). Scale bar, 20 μm. (C, D) Proportion (C) of embryos showing detectable oscillations and their detected period (D, DMSO n = 20 and Vx-680

n = 12). Chi-squared (C) and Student t test (D) p-values comparing 2 conditions are indicated (S3 Table, S1 Data). Error bars show SEM. Light gray

shows nonoscillating embryos. Larger circles show median values. (E) Schematic diagram of PeCoWaCo analysis after fragmentation of 2-cell stage

blastomeres. (F) Representative images of mechanical control, fragmented cell, and enucleated fragments overlaid with a subset of velocity vectors from

PIV analysis (S4 Movie). Scale bar, 20 μm. (G, H) Proportion (G) of cells showing detectable oscillations and their detected period (H) in mechanical

controls (n = 14), fragmented cells (n = 14), and enucleated fragments (n = 14). Error bars show SEM. Chi-squared (G) and Student t test (H) p-values

comparing 2 conditions are indicated (S3 Table, S1 Data). Light gray shows nonoscillating cells. PeCoWaCo, periodic cortical waves of contraction; PIV,

Particle Image Velocimetry.

https://doi.org/10.1371/journal.pbio.3001593.g002
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manipulate cell size over a broad range. For this, we used 16-cell stage blastomeres, which con-

sistently display PeCoWaCo [36] and whose intermediate size permits broad size manipulation

(Fig 3A–3D). By fusing varying numbers of 16-cell stage blastomeres, we built cells equivalent

in size to 8-, 4-, and 2-cell stage blastomeres (Fig 3E–3G, S5 Movie, S5 Table, S1 Data) with

undistinguishable surface tensions (S3A Fig, S6 Table, S1 Data). In addition, by fragmenting

16-cell stage blastomeres, we made smaller cells equivalent to 32-cell stage blastomeres (Fig

3H–3J, S6 Movie, S5 Table, S1 Data) [42]. Together, we could image 16-cell stage blastomeres

with sizes ranging from 10 μm to 30 μm in radius (Fig 3K and 3L, S3B Fig). Finally, to identify

how the period may scale with cell size by adjusting the velocity of the contractile wave, we seg-

mented the outline of cells to compute the local curvature, which, unlike PIV analysis, allows

us to track contractile waves and determine their velocity in addition to their period (Fig 3A–

3D, see S4 Fig for comparisons between PIV and curvature analysis, S7 Movie) [22,36]. We

find that fused and fragmented 16-cell stage blastomeres show the same period, regardless of

their size (Fig 3F, 3I and 3K, S5 Table, S1 Data). This could be explained if the wave velocity

would scale with cell size. However, we find that the wave velocity remains constant regardless

of cell size (Fig 3E, 3J and 3L, S5 Table, S1 Data). Therefore, both the oscillation period and

wave velocity are properties of PeCoWaCo that are robust to changes in cell size and associated

curvature.

Fusion of cells causes blastomeres to contain multiple nuclei, while cell fragmentation cre-

ates enucleated fragments. Interestingly, enucleated fragments continued oscillating with the

same period and showing identical propagation velocities as the nucleus-containing fragments

(Fig 3I). These measurements indicate that PeCoWaCo are robust to the absence or presence

of single or multiple nuclei and their associated functions.

Together, using fusion and fragmentation of cells, we find that PeCoWaCo oscillation prop-

erties are robust to a large range of size perturbations. Therefore, other mechanisms must be at

play to regulate periodic contractions during preimplantation development.

Cortical maturation during cleavage stages

Despite the apparent relationship between cell size and PeCoWaCo during preimplantation

development, our experimental manipulations of cell size reveal that PeCoWaCo are not influ-

enced by cell size. PeCoWaCo result from the activity of the actomyosin cortex, which could

become stronger during cleavage stages and make PeCoWaCo more prominent as previously

observed during the 16-cell stage [36]. Since actomyosin contractility generates a significant

portion of the surface tension of animal cells, this would translate in a gradual increase in sur-

face tension. To investigate this, we set to measure the surface tension of cells as a readout of

contractility during cleavage stages using micropipette aspiration. Contrary to our expecta-

tions, we find that surface tension gradually decreases from the zygote to 8-cell stage (Fig 4A–

4C, S7 Table, S1 Data) and noticeably mirrors the behavior of the period of PeCoWaCo during

cleavage stages (Fig 1E). Therefore, PeCoWaCo unlikely result simply from increased contrac-

tility. Instead, the tension of blastomeres at the zygote and 2-cell stages may be too high for

PeCoWaCo to become visible in most embryos. To reduce the tension of the cortex, we used

low concentrations (100 nM) of the actin polymerization inhibitor Latrunculin A (Fig 4D and

4E, S7 Table, S1 Data) [32]. Softening the cortex of 2-cell stage embryos increased the propor-

tions of embryos displaying PeCoWaCo (Fig 4F, S8 Movie, S7 Table, S1 Data). This suggests

that PeCoWaCo become more visible thanks to the gradual softening of the cortex of blasto-

meres during cleavage stages. Moreover, low concentrations of Latrunculin A decreased the

oscillation period of PeCoWaCo down to approximately 100 seconds, as compared to approxi-

mately 150 seconds for the DMSO control embryos (Fig 4G, S7 Table, S1 Data). This suggests
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Fig 3. Period and velocity of PeCoWaCo are stable across a broad range of cell sizes. (A, B) Surface deformation tracking for

period detection and velocity measurements. Isolated 16-cell stage blastomere originating from mTmG embryos with the local

curvature fitted around it (A). Arrowheads indicate the PeCoWaCo. White scale bar, 10 μm. (B) Kymograph of curvature changes

observed in the cell shown in (A). The period between consecutive waves and their velocity are indicated. Colored scale bar indicates

curvature. (C, D) Period (C) and velocity (D) of PeCoWaCo in 38 isolated 16-cell stage blastomeres. Large circles show median. (E)
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that modifications of the polymerization rate of the actin cytoskeleton could be responsible for

the increase in PeCoWaCo frequency observed during cleavage stages.

To investigate the changes responsible for blastomere softening during cleavage stages, we

first looked into changes in cortical organization. Using super resolution microscopy on phal-

loidin-stained embryos, we measured the thickness of the actomyosin cortex, which has been

reported to change with surface tension [43]. Using line scans orthogonal to the cell surface,

we measured a width at half maximum of approximately 500 nm at the zygote stage (S5A–S5C

Fig, S8 Table, S1 Data). This width increased during the 2-cell stage and fell back to its initial

levels at the 4- and 8-cell stages (S5A–S5C Fig, S8 Table, S1 Data), suggesting cortical remodel-

ing at the time of PeCoWaCo initiation.

To investigate the molecular changes responsible for blastomere softening during cleavage

stages, we took advantage of available single-cell RNA sequencing and proteomic data [44].

We noted that several regulators of actin polymerization such as formins and actin related pro-

teins (arps) decrease in their mRNA levels (S5D and S5E Fig). This is not necessarily the case

for their protein levels (S5F and S5G Fig). This led us to investigate the formin Fmnl3, whose

expression levels decay both at the mRNA and protein levels during cleavage stages (S5 Fig).

Immunostaining of Fmnl3 finds it primarily at cell–cell contacts with levels seemingly decreas-

ing during cleavage stages (S5H Fig). To test whether sustained expression of Fmnl3 would be

sufficient to delay the appearance of PeCoWaCo, we injected embryos with mRNA encoding

GFP-Fmnl3. Injection in a single blastomeres of 2-cell stage embryos resulted in visible overex-

pression of Fmnl3 at the 4-cell stage as observed using immunostaining (S6 Fig). Importantly,

4-cell stage blastomeres expressing GFP-Fmnl3 did not display PeCoWaCo like their unin-

jected counterparts (S6 Fig, S9 Movie). Consistently with mosaic sustained expression of

GFP-Fmnl3, fewer embryos overexpressing GFP-Fmnl3 in all blastomeres showed PeCoWaCo

as compared to those injected with GFP (Fig 4H–4J, S10 Movie, S7 Table, S1 Data). Interest-

ingly, this effect is clearly present during the first half of the 4-cell stage embryos, but

GFP-Fmnl3 expressing embryos recover almost to the levels of GFP expressing embryos by the

second half of the 4-cell stage (Fig 4I and 4J, S7 Table, S1 Data). Over long-term development,

embryos expressing GFP-Fmnl3 compacted normally and formed blastocysts (S11 Movie).

Together, this indicates that overexpressing Fmnl3 has a specific but transient effect. In fly

embryos, the effect of Fmnl overexpression was proposed to dampen oscillation by stiffening

the cortex [26]. To test the effect of Fmnl3 overexpression on the mechanical properties of

cleavage stage mouse embryos, we measured their surface tension. Indeed, we measured sur-

face tensions twice higher for embryos expressing GFP-Fmnl3 than for those expressing GFP

alone (Fig 4K, S7 Table, S1 Data). We conclude that Fmnl3 down-regulation during cleavage

stages is required for the softening of the cortex, which elicits the appearance of PeCoWaCo.

Together, these experiments using the pulsatile nature of cell contractility reveal the unsus-

pected maturation of the cortex of blastomeres during the cleavage stages of mouse embryonic

development.

Schematic diagram of fusion of 16-cell stage blastomeres. (F, G) Oscillation period (F) and wave velocity (G) of fused blastomeres.

8 × 1/16th (blue, n = 11), 4 × 1/16th (orange, n = 22), and 2 × 1/16th (green, n = 18) fused blastomeres are shown. Large circles show

median (S5 Movie, S5 Table, S1 Data). (H) Schematic diagram of fragmentation of 16-cell stage blastomeres. (I, J) Oscillation period

(I) and wave velocity (J) of fragmented blastomeres. Control (black, n = 6), fragmented cell (magenta, n = 8), and enucleated

fragment (pink, n = 4) are shown (S6 Movie, S5 Table, S1 Data). (K, L) Oscillation period (K) and wave velocity (L) for size-

manipulated 16-cell stage blastomeres. Larger circles show median values. Student t test p-values are indicated (S5 Table, S1 Data).

CytD, Cytochalasin D; PeCoWaCo, periodic cortical waves of contraction.

https://doi.org/10.1371/journal.pbio.3001593.g003

PLOS BIOLOGY Pecowaco

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001593 March 24, 2022 8 / 23

https://doi.org/10.1371/journal.pbio.3001593.g003
https://doi.org/10.1371/journal.pbio.3001593


Fig 4. Cortical softening elicits PeCoWaCo. (A) Representative images of tension measurements at the zygote, 2-, 4-, and 8-cell stages. Scale bar, 20 μm. (B)

Schematic diagram of the surface tension measurements. Using the Young–Laplace equation, the surface tension γ can be calculated from the critical pressure

Pc applied by a micropipette of radius Rp onto a cell of radius of curvature Rc. (C) Surface tension of blastomeres throughout cleavage stages. Zygote (gray,

n = 60), 2-cell (blue, n = 86), 4-cell (orange, n = 55), and early 8-cell (green, n = 28) stages are shown. Student t test p-values are indicated (S7 Table, S1 Data).

(D) Representative images of Control and 100 nM Latrunculin A treated embryos overlaid with a subset of velocity vectors from PIV analysis (S8 Movie). Scale

bar, 20 μm. (E) Surface tension of embryos treated with DMSO (n = 35) or 100 nM Latrunculin A (n = 32). Student t test p-value is indicated (S7 Table, S1

Data). Larger circles show median values. (F, G) Proportion (F) of embryos showing detectable oscillations and their detected period (G) of DMSO treated

(n = 27) and 100 nM Latrunculin A treated (n = 27) 2-cell stage embryos. Error bars show SEM. Chi-squared (F) and Student t test (G) p-values comparing 2
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Discussion

During cleavage stages, blastomeres halve their size with successive divisions. Besides the

increased number of blastomeres, there is no change in the architecture of the mouse embryo

until the 8-cell stage with compaction. We find that this impression of stillness is only true on

a timescale of hours since, on the timescale of seconds, blastomeres display signs of actomyosin

contractility. During the first 2 days after fertilization, contractility seems to mature by display-

ing more frequent and visible pulses. We further find that pulsed contractions do not rely on

the successive reductions in cell size but rather on the gradual decrease in surface tension of

the blastomeres. Therefore, during cleavage stages, cortical softening awakens zygotic contrac-

tility before preimplantation morphogenesis.

Previous studies on the cytoskeleton of the early mouse embryo revealed that both the

microtubule and intermediate filament networks mature during cleavage stages. Keratin inter-

mediate filaments appear at the onset of blastocyst morphogenesis [45] and become preferen-

tially inherited by prospective trophectoderm (TE) cells [46]. The microtubule network is

initially organized without centrioles around microtubule bridges connecting sister cells

[47,48]. The spindle of early cleavages also organizes without centrioles similarly to during

meiosis [47,49]. As centrioles form de novo, cells progressively transition from meiosis-like to

mitosis-like divisions [47]. We find that the actomyosin cortex also matures during cleavage

stages by decreasing its oscillation period (Fig 1E) and its surface tension (Fig 4C). Interest-

ingly, this decrease in cortical tension seems to be in continuation with the maturation of the

oocyte. Indeed, the surface tension of mouse oocytes decreases during their successive matura-

tion stages [50]. The softening of the oocyte cortex is associated with architectural rearrange-

ments that are important for the cortical movement of the meiotic spindle [51,52]. Therefore,

similarly to the microtubule network, the zygotic actomyosin cortex awakens progressively

from an egg-like state.

The maturation of zygotic contractility may be influenced by the activation of the zygotic

genome occurring partly at the late zygote stage and mainly during the 2-cell stage [53,54].

Recent studies in frog and mouse propose that reducing cell size could accelerate zygotic

genome activation (ZGA) [55,56]. We find that manipulating cell size is neither sufficient to

trigger PeCoWaCo prematurely in most embryos nor required to initiate or maintain them in

a timely fashion with the expected oscillation period of the corresponding cleavage stage (Figs

2 and 3). Instead, we find that the surface of blastomeres in the cleavage stages is initially too

tense to allow for PeCoWaCo to be clearly displayed (Fig 4). We identify Fmnl3 down-regula-

tion as an essential step in the reduction of blastomeres surface tension during cleavage stages

(Fig 4). Taking place at the 2-cell stage, the contribution of the ZGA to zygotic contractility

activation is unclear since Fmnl3 down-regulation begins after the zygote stage both at the

mRNA and protein levels [44].

The effect of mechanical constraints on pulsed contractions is reminiscent of recent reports

in fly embryos in which Fmnl-mediated densification of a persisting actin cytoskeleton damp-

ens pulsed contractions [26]. In addition, the influence of mechanical constrains can also

come from external structures. For example, in starfish oocytes, removing an elastic jelly

conditions are indicated (S7 Table, S1 Data). Light gray shows nonoscillating embryos. Larger circles show median values. (H) Representative images of

embryos expressing GFP or GFP-Fmnl3 overlaid with a subset of velocity vectors from PIV analysis (S10 Movie). Scale bar, 20 μm. (I, J) Proportion (B) of

embryos showing detectable oscillations and their detected period (C) in embryos expressing GFP (n = 11) or GFP-Fmnl3 (n = 8) at the early and late 4-cell

stage. Error bars show SEM. Chi-squared (B) and Student t test (C) p-values comparing 2 conditions are indicated (S7 Table, S1 Data). Light gray shows

nonoscillating embryos. (K) Surface tension of embryos expressing GFP (n = 11) or GFP-Fmnl3 (n = 13) measured during the early phase of the 4-cell stage.

Student t test p-value is indicated (S7 Table, S1 Data). Larger circles show median values. PeCoWaCo, periodic cortical waves of contraction; PIV, Particle

Image Velocimetry.

https://doi.org/10.1371/journal.pbio.3001593.g004
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surrounding the egg softens them and renders contractile waves more pronounced [35]. Inter-

estingly, the changes in surface curvature caused by cortical waves of contraction may influ-

ence the signaling and cytoskeletal machinery controlling the wave [35,57]. Such

mechanochemical feedback has been proposed to regulate the period of contractions via the

advection of regulators of actomyosin contractility [29]. As a result, the curvature of cells and

tissues is suspected to regulate contractile waves [35,58]. Using cell fragmentation and fusion,

we have manipulated the curvature of the surface over which PeCoWaCo travel (Fig 3). From

radii ranging between 10 μm and 30 μm, we find no change in the period or traveling velocity

of PeCoWaCo (Fig 3). This indicates that, in the mouse embryo, the actomyosin apparatus is

robust to the changes in curvature taking place during preimplantation development. There-

fore, the cleavage divisions per se are unlikely regulators of preimplantation contractility. The

robustness of PeCoWaCo to changes of radii ranging from 10 μm to 30 μm is puzzling since

neither the oscillation period nor the wave velocity seem affected (Fig 3K and 3L). One expla-

nation would be that the number of waves present simultaneously changes with the size of the

cells. Using our 2D approach, we could not systematically analyze this parameter. Neverthe-

less, we did note that some portions of the fused blastomeres did not display PeCoWaCo.

These may be corresponding to apical domains, which do not show prominent PeCoWaCo

[36]. Therefore, the relationship between the total area of the cell and the “available” or “excit-

able” area for PeCoWaCo may not be straightforward [19]. In the context of the embryo, in

addition to the apical domain, cell–cell contacts also down-regulate actomyosin contractility

and do not show prominent contractions [22]. As cell–cell contacts grow during compaction

and apical domains expand [59,60], the available excitable cortical area for PeCoWaCo eventu-

ally vanishes [3].

Together, our study uncovers the maturation of the actomyosin cortex, which softens and

speeds up the rhythm of contractions during the cleavage stages of the mouse embryo. Inter-

estingly, zebrafish embryos also soften during their cleavage stages, enabling doming, the first

morphogenetic movement in zebrafish [61]. It will be important to investigate whether cell

and tissue softening during cleavage stages is conserved in other animals.

Methods

Embryo work

Recovery and culture. All animal work is performed in the animal facility at the Institut

Curie, with permission by the institutional veterinarian overseeing the operation (APAFIS

#11054–2017082914226001). The animal facilities are operated according to international ani-

mal welfare rules.

Embryos are isolated from superovulated female mice mated with male mice. Superovulation

of female mice is induced by intraperitoneal injection of 5 international units (IU) pregnant mare

serum gonadotropin (PMSG, Ceva (CEVA Santé animale, Libourne, France), SYNCRO-PART),

followed by intraperitoneal injection of 5 IU human chorionic gonadotropin (hCG, MSD Animal

Health, Walton UK, Chorulon) 44 to 48 hours later. Embryos are recovered at E0.5 by dissecting

in 37˚C FHM (LifeGlobal, Guildford, USA, ZEHP-050 or Millipore, Darmstadt, Germany, MR-

122-D) from the oviduct the ampula, from which embryos are cleared with a brief (5 to 10 sec-

onds) exposure to 37˚C hyaluronidase (Sigma, Saint Louis, USA, H4272).

Embryos are recovered at E1.5 or E2.5 by flushing oviducts from plugged females with

37˚C FHM using a modified syringe (Acufirm, 1400 LL 23).

Embryos are handled using an aspirator tube (Sigma, A5177-5EA) equipped with a glass

pipette pulled from glass micropipettes (Blaubrand intraMark or Warner Instruments, Hollis-

ton, MA, USA).
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Embryos are placed in KSOM (LifeGlobal, ZEKS-050 or Millipore, MR-107-D) or FHM

supplemented with 0.1% BSA (Sigma, A3311) in 10 μL droplets covered in mineral oil (Sigma,

M8410 or Acros Organics) unless stated otherwise. Embryos are cultured in an incubator with

a humidified atmosphere supplemented with 5% CO2 at 37˚C.

To remove the zona pellucida (ZP), embryos are incubated for 45 to 60 seconds in pronase

(Sigma, P8811).

For imaging, embryos are placed in 5- or 10-cm glass bottom dishes (MatTek, Ashland,

MA, USA).

Only embryos surviving the experiments were analyzed. Survival is assessed by continua-

tion of cell division as normal when embryos are placed in optimal culture conditions.

Mouse lines. Mice are used from 5 weeks old on. (C57BL/6xC3H) F1 hybrid strain is used

for wild-type (WT). To visualize plasma membranes, mTmG (Gt(ROSA)26Sortm4(ACTB-tdTo-

mato,-EGFP)Luo) is used [62].

Isolation of blastomeres. ZP-free 2-cell or 4-cell stages embryos are aspirated multiple

times (typically between 3 and 5 times) through a smoothened glass pipette (narrower than the

embryo but broader than individual cells) until dissociation of cells.

For 8- and 16-cell stage embryos, they are placed into EDTA containing Ca2+ free KSOM

[63] for 8 to 10 minutes before dissociation. Cells are then washed with KSOM for 1 hour

before experiment.

Chemical reagents and treatments. Vx-680 (Tocris Bioscience, Bristol, UK, 5907) 50

mM DMSO stock was diluted to 2.5 μM in KSOM. To prevent mitosis, 2-cell stage embryos

are cultured in 2.5 μM Vx-680 for 3 hours shortly prior to the second cleavage and then

washed in KSOM. Subsequent divisions were observed in 12/20 of the cases.

Cytochalasin D (Sigma, C2618-200UL) 10 mM DMSO stock is diluted to 10 μM in KSOM.

To fragment cells, isolated 2- or 16-cell stage blastomeres were treated with Cytochalasin D for 20

minutes before being gently aspirated into a smoothened glass pipette of diameter about 30 or 5

to 10 μm, respectively [59]. Moreover, 2 to 3 repeated aspirations are typically sufficient to clip

cells into to 2 large fragments, one containing the nucleus and one without. Cells that did not frag-

ment after 2 aspirations are used as control. For 2-cell stage fragmentation, nucleated fragments

divisions were observed in 9/15 of the cases. Enucleated fragments started to deform extensively 6

hours after fragmentation, making it difficult to measure PeCoWaCo and surface tension.

GenomONE-CF FZ SeV-E cell fusion kit (Cosmo Bio, Tokyo, Japan, ISK-CF-001-EX) is

used to fuse blastomeres [40]. HVJ envelope is resuspended following manufacturer’s instruc-

tions and diluted in FHM for use. To fuse blastomeres of embryos at the 16-cell stage, embryos

are incubated in 1:50 HVJ envelope for 15 minutes at 37˚C followed by washes in KSOM.

Latrunculin A (Tocris Bioscience, ref 3973) 10 mM DMSO stock is diluted to 100 nM in

KSOM. To soften cells, 2-cell stage embryos are imaged in medium containing Latrunculin A

covered with mineral oil for 2 hours.

Fmnl3 cDNA isolation, cloning, and in vitro mRNA synthesis. To isolate cDNA of

Fmnl3, we performed total RNA extraction from a pool of 50 zygotes using the PicoPure RNA

Isolation Kit (Thermo Fisher Scientific, Walthan, MA, USA, KIT0204). DNase treatment is

performed during the extraction, using RNase-Free DNase Set (QIAGEN, Hilden, Germany,

79254). Subsequently, a cDNA library is synthesized with oligo(dT) (Thermo Fisher Scientific,

18418012) using the Super-Script III Reverse Transcriptase kit (Thermo Fisher Scientific,

18080044) on all the extracted RNA, according to manufacturer’s instructions. As a final step,

a fragment of 3,084 bp corresponding to Fmnl3 isoform 202 (MGI:109569) is specifically iso-

lated from the cDNA library, by PCR amplification with forward (fw) and reverse (rv) primers

GCATGGACGAGCTGTACAAGGGCAACCTGGAGAGCACCGA and TAGTTCTAGACC

GGATCCGGCTAACAGTTTGACTCGTCATG, respectively.
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To generate the GFP-Fmnl3 plasmid construct for in vitro mRNA synthesis, the Gibson

Assembly cloning method was used. Three linear DNA fragments, corresponding to pCS2

+ backbone, GFP reporter gene, and Formin like 3 (Fmnl3) cDNAs, are initially generated by

PCR amplification. During this step, overlapping ends are incorporated into each fragment.

Forward and reverse primers to obtain a 4,087-bp fragment of the pCS2+ backbone:

TGACGAGTCAAACTGTTAGCCGGATCCGGTCTAGAACTATAGTGAGTCGT and

AGTGAGTCGTATTACCGGATCCGGTCTATAGTGTCACCTAAATC.

Forward and reverse primers to obtain a 717-bp fragment encoding GFP: CGGTAATAC

GACTCACTATAGGCCGGATCCGGATGGTGAGCAAGGGCGAGGA and TCGGTGCT

CTCCAGGTTGCCCTTGTACAGCTCGTCCATGC.

Following DNA purification, the assembly of the final construct is achieved by incubating

the 3 fragments in the Gibson Assembly Master Mix (NEB, Ipswich, MA, USA, E2611S),

according to the manufacturer’s instruction.

Following the linearization of the pCS2-GFP-Fmnl3 plasmid using Hind III, GFP-Fmnl3

mRNA is transcribed using the mMESSAGE mMACHINE SP6 Kit (Invitrogen, Waltham,

MA, USA, AM1340) according to manufacturer’s instructions and resuspended in Rnase-free

water.

GFP mRNA is generated by in vitro transcription of a GFP linear DNA fragment of approx-

imately 750 bp obtained by PCR amplification from the pCS2-GFP-Fmnl3 plasmid, with fw

primer ATTTAGGTGACACTATAGAGCC and rv primer CTACTTGTACAGCTCGTC

CAT.

Microinjection. Glass capillaries (Harvard Apparatus (Holliston, MA, USA) glass

capillaries with 780-μm inner diameter) are pulled using a needle puller and micro forged to

forge a holding pipette and an injection needle. The resulting injection needles are filled with

mRNA solution diluted to 1 μg/μL in injection buffer (5 mM Tris-HCl pH = 7.4, 0.1 mM

EDTA). The filled needle is positioned on a micromanipulator (Narishige MMO-4) and con-

nected to a positive pressure pump (Eppendorf FemtoJet 4i). Embryos are placed in FHM

drops covered with mineral oil under Leica (Wetzlar, Germany) TL Led microscope. Two-cell

stage embryos were injected while holding with holding pipette connected to a Micropump

CellTram Oil.

Micropipette aspiration. As described previously [22,64], a microforged micropipette

coupled to a microfluidic pump (Fluigent, Le Kremlin-Bicêtre, France, MFCS EZ) is used to

measure the surface tension of embryos. In brief, micropipettes of radii 8 to 16 μm are used to

apply stepwise increasing pressures on the cell surface until reaching a deformation, which has

the radius of the micropipette (Rp). At steady state, the surface tension γ of the cell is calculated

from the Young–Laplace’s law applied between the cell and the micropipette: γ = Pc / 2 (1/Rp—
1/Rc), where Pc is the critical pressure used to deform the cell of radius of curvature Rc.

Eight-cell stage embryos are measured before compaction (all contact angles < 105˚), dur-

ing which surface tension would increase [22].

Fragmented cells and their control cells are measured 10 to 15 hours after fragmentation.

At that point, enucleated fragments are mostly irregular in shape and cannot be measured.

Measurements of individual blastomeres from the same embryo are averaged and plotted as

such.

Immunostaining. Embryos are fixed in 2% PFA (Euromedex, Strasbourg, France,

2000-C) for 10 minutes at 37˚C, washed in PBS, and permeabilized in 0.01% Triton X-100

(Euromedex, T8787) in PBS (PBT) at room temperature before being placed in blocking solu-

tion (PBT with 3% BSA) at 4˚C for 2 to 4 hours. Primary antibodies (Table 1) are applied in

blocking solution at 4˚C overnight. After washes in PBT at room temperature, embryos are

incubated with secondary antibodies and phalloidin (Table 1) in blocking solution at room
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temperature for 1 hour. Embryos are washed in PBT and imaged in PBS-BSA immediately

after.

Microscopy

For live imaging, embryos are placed in 5-cm glass bottom dishes (MatTek) under a CellDiscov-

erer 7 (Zeiss, Oberkochen, Germany) equipped with a 20×/0.95 objective and an ORCA-Flash

4.0 camera (C11440, Hamamatsu, Hamamatsu City, Japan) or a 506 axiovert (Zeiss) camera.

Using the experiment designer tool of ZEN (Zeiss), we set up nested time-lapses in which

all embryos are imaged every 3 to 5 hours for approximately 10 minutes with an image taken

every 5 seconds at 2 focal planes positioned 10 μm apart. Embryos are kept in a humidified

atmosphere supplied with 5% CO2 at 37˚C.

mTmG embryos are imaged at the 16-cell stage using an inverted Zeiss Observer Z1 micro-

scope with a CSU-X1 spinning disc unit (Yokogawa, Tokyo, Japan). Excitation is achieved

using a 561 nm laser through a 63×/1.2 C Apo Korr water immersion objective. Emission is

collected through 595/50 band-pass filters onto an ORCA-Flash 4.0 camera (C11440, Hama-

matsu). The microscope is equipped with an incubation chamber to keep the sample at 37˚C

and supply the atmosphere with 5% CO2.

Surface tension measurements are performed on a Leica DMI6000 B inverted microscope

equipped with a 40×/0.8 DRY HC PL APO Ph2 (11506383) objective and Retina R3 camera

and 0.7× lens in front of the camera. The microscope is equipped with an incubation chamber

to keep the sample at 37˚C and supply the atmosphere with 5% CO2.

Stained embryos are imaged on a Zeis LSM900 Inverted Laser Scanning Confocal Micro-

scope with Airyscan detector. Excitation is achieved using a 488-nm laser line through a 63×/

1.4 OIL DICII PL APO objective. Emission is collected through a 525/50 band-pass filter onto

an airyscan photomultiplier (PMT) allowing to increase the resolution up to a factor 1.7.

Data analysis

Image analysis. Manual shape measurements. Fiji [66] is used to measure cell, embryo,

pipette sizes, and wave velocity. The circle tool is used to fit a circle onto cells, embryos, and

pipettes. The line tool is used to fit lines onto curvature kymographs.

PIV analysis. To detect PeCoWaCo in phase contrast images of embryos, we use PIV analy-

sis followed by a Fourier analysis.

As previously [22,40], PIVlab 2.02 running on MATLAB [67,68] is used to process approxi-

mately 10 minutes long time lapses with images taken every 5 seconds using 2 successive passes

through interrogation windows of 20/10 μm resulting in approximately 180 vectors per

embryo.

The x- and y-velocities of individual vectors from PIV analysis are used for Fourier analysis.

A Fourier transform of the vector velocities over time is performed using MATLAB’s fast Fou-

rier transform function. The resulting Fourier transforms are squared to obtain individual

Table 1. Antibodies and dyes used for immunostaining.

Primary antibody Dilution Provider

Fmnl3 1:200 [65]

Secondary antibodies and dyes Dilution Provider

Alexa Fluor 647 anti-guinea pig 1:200 Jackson ImmunoResearch, 706-605-148

Alexa Flour 488 phalloidin 1:500 Thermo Fisher Scientific, A12379

Alexa Flour 405 phalloidin 1:200 Thermo Fisher Scientific, A30104

https://doi.org/10.1371/journal.pbio.3001593.t001

PLOS BIOLOGY Pecowaco

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001593 March 24, 2022 14 / 23

https://doi.org/10.1371/journal.pbio.3001593.t001
https://doi.org/10.1371/journal.pbio.3001593


power spectra. Squared Fourier transforms in the x and y directions of all vectors are averaged

for individual embryos resulting in mean power spectra of individual embryos.

Spectra of individual embryos are checked for the presence of a distinct amplitude peak to

extract the oscillation period. The peak value between 50 seconds and 200 seconds was taken

as the amplitude, as this oscillation period range is detectable by our imaging method. An

embryo is considered as oscillating when the amplitude peaks 1.777 times above background

(taken as the mean value of the power spectrum signal of a given embryo). This threshold

value was determined using CutOffFinder [69] (S1 Fig) to minimize false positive and false

negative according to visual verification of time-lapse movies. The number of oscillating

zygote is likely overestimated, while the number of oscillating 8-cell stage is underestimated

(S1 Fig).

Two-cell, 4-cell, and 8-cell stages are considered early during the first half of the corre-

sponding stage and late during the second half.

Since PeCoWaCo halt during mitosis (S2 Movie), time lapses including dividing cells were

excluded from the analysis.

Local curvature analysis. To measure PeCoWaCo period, amplitude, and velocity, we ana-

lyze the associated changes in surface curvature and perform Fourier analysis. Importantly,

since we can only extract these parameters from oscillating blastomeres and embryos, data

shown in Fig 3 and S4 Fig come from selected cells and embryos based on their visible

oscillation.

To obtain the local curvature of isolated blastomeres and embryos, we developed an

approach similar to that of [22,36,70]. First, a Gaussian blur is applied to images using Fiji

[66]. Then, using ilastik [71], pixels are associated with cell surface or background. Segmenta-

tions of cells are then used in a custom made Fiji plug-in (called WizardofOz, found under the

Mtrack repository) for computing the local curvature information using the start, center and

end point of a 10-μm strip on the cell surface to fit a circle. The strip is then moved by 1 pixel

along the segmented cell, and a new circle is fitted. This process is repeated till all the points of

the cell are covered. The radius of curvature of the 10-μm strip boundaries are averaged.

Kymograph of local curvature values around the perimeter over time is produced by plotting

the perimeter of the strip over time.

Curvature kymographs obtained from local curvature tracking are then exported into a cus-

tom made Python script for 2D Fast Fourier Transform analysis.

Spectra of individual cells are checked for the presence of a distinct amplitude peak to

extract the oscillation period. The peak value between 50 seconds and 200 seconds was taken

as the amplitude, as this oscillation period range is detectable by our imaging method.

To measure the wave velocity, a line is manually fitted on the curvature kymograph using

Fiji.

Cortex thickness measurement. Super resolution images obtained using airyscan microscopy

are used to measure cortex thickness. The full width at half maximum of cortical intensity pro-

files were used to assess cortical thickness by using CortexThicknessAnalysis tool [43] available

at https://github.com/PaluchLabUCL/CortexThicknessAnalysis.

Statistics. Data are plotted using Excel (Microsoft, Redmond, WA, USA) and R-based

SuperPlotsOfData tool [72]. Mean, standard deviation, median, 1-tailed Student t test, and

chi-squared p-values are calculated using Excel (Microsoft) or R (R Foundation for Statistical

Computing). Statistical significance is considered when p< 10−2.

The sample size was not predetermined and simply results from the repetition of experi-

ments. No sample that survived the experiment, as assessed by the continuation of cell divi-

sions, was excluded. No randomization method was used. The investigators were not blinded

during experiments.
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Code availability

The code used to analyze the oscillation frequencies from PIV and local curvature analyses can

be found at https://github.com/MechaBlasto/PeCoWaCo.git.

The Fiji plug-in for local curvature analysis WizardofOz can be found under the MTrack
repository.

Supporting information

S1 Fig. (related to Fig 1). Analysis of PeCoWaCo during cleavage stages using PIV and

Fourier transform. (A) Peak value divided by mean signal of the respective power spectra

after Fourier analysis of PIV data for embryos at the zygote, 2-, 4-, and 8-cell stages. Embryos

are classified as showing a visible oscillation (+) or not (−), as assessed visually. (B) ROC curve

resulting from CutOffFinder [62] showing that a threshold of 1.777 for the peak/mean ampli-

tude (red cross) yields a maximized AUC of 0.97. (C–F) Classification of zygote (C), 2- (D), 4-

(E), and 8-cell stages (F) using a threshold of 1.777 for the peak/mean amplitude. Red indicates

a mismatch between the visual assessment and the use of the threshold to determine whether a

given embryo oscillates or not at a given time point. (G) Proportion of early and late 2-cell

(blue, n = 33 and 44), 4-cell (orange, n = 38 and 29), and 8-cell stage (green, n = 17 and 26)

embryos showing detectable oscillations after Fourier transform of PIV analysis. Error bars

show SEM. Chi-squared p-values comparing different stages are indicated (S2 Table, S1 Data).

Light gray shows nonoscillating embryos. (H) Oscillation period of early and late 2-cell (blue,

n = 11 and 9), 4-cell (orange, n = 27 and 17), and 8-cell (green, n = 8 and 15) stages embryos.

Larger circles show median values. Student t test p-values are indicated (S2 Table, S1 Data).

AUC, area under the curve; PeCoWaCo, periodic cortical waves of contraction; PIV, Particle

Image Velocimetry; ROC, receiver operating characteristic.

(PDF)

S2 Fig. (related to Fig 2). Surface tension of Vx-680 and fragmented embryos. (A) Surface

tension of embryos treated with DMSO (n = 12) or Vx-680 (n = 13). Student t test p-value is

indicated (S4 Table). Larger circles show median values. (B) Surface tension of mechanical

control (n = 14) or fragmented cells (n = 14). Student t test p-value is indicated (S4 Table).

Larger circles show median values.

(PDF)

S3 Fig. (related to Fig 3). Surface tension of fused blastomeres. (A) Surface tension of cells

resulting from the fusion of 8, 4, or 2 16-cell stage blastomeres (n = 18, 20 and 14 embryos,

respectively). Student t test p-value is indicated (S6 Table, S1 Data). Larger circles show median

values. (B) Radius of fused and fragmented 16-cell stage blastomeres. Larger circles show

median values (S1 Data).

(PDF)

S4 Fig. (related to Figs 1 and 3). Comparison of PIV and curvature analyses of PeCoWaCo.

(A) Representative images of a 4-cell stage embryo overlaid with a subset of velocity vectors

from PIV analysis (top left) or a color coded local curvature analysis (top right). Velocity over

time for a representative velocity vector (bottom left) or local curvature measurement (bottom

right) for the bottom most blastomere. White scale bar, 10 μm. Colored scale bar indicates cur-

vature. See S7 Movie. (B) Oscillation period of 4-cell stage embryos (n = 6) as determined by

PIV or curvature tracking analyses. Pairwise Student t test p-value is indicated (S1 Data).

PeCoWaCo, periodic cortical waves of contraction; PIV, Particle Image Velocimetry.

(PDF)
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S5 Fig. (related to Fig 4). Molecular and structural characterization of the actomyosin cor-

tex during cleavage stages. (A) Representative image of the actin cortex of a Phalloidin-

stained 2-cell stage embryo acquired using super resolution microscopy. Scale bar, 5 μm. Over-

laid white line shows the segmentation of the cortex, and orthogonal blue and yellow lines

show line scans outside and inside the cell, respectively. Schematic diagram below shows

example of where in the cell such image is taken. (B) Phalloidin intensity along lines orthogo-

nal to the cell cortex of the cell shown in (A) (black, n = 348). Mean intensity profile shown in

red. (C) Cortex thickness measured at the zygote, 2-, 4-, and 8-cell stage (n = 15, 19, 13, and

11, respectively). Student t test p-values are indicated (S8 Table, S1 Data). Larger circles show

median values. (D–G) mRNA (D and E) and protein (F and G) levels during cleavage stages

for formins (D and F) and arps (E and G) adapted from [44]. (H) Immunostaining of FMNL3

(gray and cyan in merged image) on representative zygote, 2-, 4-, and 8-cell stage embryos.

Phalloidin shown in magenta on the merged image. Scale bar, 20 μm.

(PDF)

S6 Fig. (related to Fig 4). Molecular and structural characterization of the actomyosin cortex

during cleavage stages. (A) Schematic diagram of GFP-Fmnl3 mRNA injection in one blasto-

mere of a 2-cell stage embryo. (B) Immunostaining of a 4-cell stage embryo injected with

GFP-Fmnl3 at the 2-cell stage. GFP-Fmnl3 is shown on the left, and FMNL3 immunostaining is

shown in gray in the middle and in cyan on the right together with Phalloidin in magenta. Scale

bar, 20 μm. (C) Live imaging of a 4-cell stage embryo injected with GFP-Fmnl3 at the 2-cell stage.

Left shows a merged image of phase contrast and GFP-Fmnl3. Right image shows the same

embryo overlaid with a subset of velocity vectors from PIV analysis. Graphs on the right are veloc-

ity over time for a representative velocity vector of an uninjected (left) and GFP-Fmnl3 injected

blastomere (right). Scale bar, 20 μm. See S9 Movie. (D) Schematic diagram of GFP or GFP-Fmnl3

mRNA injection in both blastomeres of a 2-cell stage embryo. (E) Representative images of the

preimplantation development of GFP or GFP-Fmnl3 expressing embryos shown at the 4-, 8-,

16-cell, and blastocyst stages. Scale bar, 20 μm. S11 Movie. PIV, Particle Image Velocimetry.

(PDF)

S1 Table. (related to Fig 1). p-Values from chi-squared test for PeCoWaCo detection and

from Student t test for period comparisons. Red when above 0.05, green when below 0.01, and

black in between. See S1 Data for individual quantitative observations. PeCoWaCo, periodic

cortical waves of contraction.

(DOCX)

S2 Table. (related to S1 Fig). p-Values from chi-squared test for PeCoWaCo detection and

from Student t test for period comparisons. Red when above 0.05, green when below 0.01, and

black in between. See S1 Data for individual quantitative observations. PeCoWaCo, periodic

cortical waves of contraction.

(DOCX)

S3 Table. (related to Fig 2). p-Values from chi-squared test for PeCoWaCo detection and

from Student t test for period comparisons. Red when above 0.05, green when below 0.01, and

black in between. See S1 Data for individual quantitative observations. PeCoWaCo, periodic

cortical waves of contraction.

(DOCX)

S4 Table. (related to S2 Fig). p-Values from Student t test. Red when above 0.05, green when

below 0.01, and black in between. See S1 Data for individual quantitative observations.

(DOCX)
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S5 Table. (related to Fig 3). p-Values from Student t test. Red when above 0.05, green when

below 0.01, and black in between. See S1 Data for individual quantitative observations.

(DOCX)

S6 Table. (related to S3 Fig). p-Values from Student t test. Red when above 0.05, green when

below 0.01, and black in between. See S1 Data for individual quantitative observations.

(DOCX)

S7 Table. (related to Fig 4). p-Values from chi-squared test for PeCoWaCo detection and

from Student t test for period and surface tension comparisons. Red when above 0.05, green

when below 0.01, and black in between. See S1 Data for individual quantitative observations.

PeCoWaCo, periodic cortical waves of contraction.

(DOCX)

S8 Table. (related to S5 Fig). p-Values from chi-squared test for PeCoWaCo detection and

from Student t test for period and surface tension comparisons. Red when above 0.05, green

when below 0.01, and black in between. See S1 Data for individual quantitative observations.

PeCoWaCo, periodic cortical waves of contraction.

(DOCX)

S1 Data. Individual quantitative values collected to compute the data shown in figures.

Individual tabs are named according to the corresponding figure panels.

(XLSX)

S1 Movie. PIV analysis during cleavage stages. Time-lapse imaging of zygote, 2-, 4-, and

8-cell stage embryos showing PeCoWaCo. Pictures are taken every 5 seconds, and PIV analysis

is performed between 2 consecutive images. PIV vectors are overlaid on top of the images with

vectors pointing upward in magenta and downward in green. Scale bar, 20 μm. PeCoWaCo,

periodic cortical waves of contraction; PIV, Particle Image Velocimetry.

(AVI)

S2 Movie. PeCoWaCo are absent during mitosis. Time-lapse imaging of 4- to 8-cell stage

embryos before, during and after undergoing their third cleavage. Pictures are taken every 5

seconds. Scale bar, 20 μm. PeCoWaCo, periodic cortical waves of contraction.

(AVI)

S3 Movie. PIV analysis of 4-cell stage embryos treated with DMSO or Vx-680. Time-lapse

imaging of 4-cell stage embryos showing PeCoWaCo after treatment with DMSO or 2.5 μM

Vx680 at the time of the second cleavage division. Pictures are taken every 5 seconds, and PIV

analysis is performed between 2 consecutive images. PIV vectors are overlaid on top of the

images with vectors pointing upward in magenta and downward in green. Scale bar, 20 μm.

PeCoWaCo, periodic cortical waves of contraction; PIV, Particle Image Velocimetry.

(AVI)

S4 Movie. PIV analysis of fragmented 2-cell stage blastomeres. Time-lapse imaging of

mechanically manipulated and fragmented 2-cell stage blastomeres with and without nucleus.

Pictures are taken every 5 seconds, and PIV analysis is performed between 2 consecutive

images. PIV vectors are overlaid on top of the images with vectors pointing upward in magenta

and downward in green. Scale bar, 20 μm. PIV, Particle Image Velocimetry.

(AVI)

S5 Movie. Surface deformation tracking of fused cells. Montage of mTmG (top) and local

curvature measurements (bottom) of fused 8×, 4×, 2× 1/16th blastomeres showing
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PeCoWaCo. Scale bar, 20 μm. PeCoWaCo, periodic cortical waves of contraction.

(AVI)

S6 Movie. Surface deformation tracking of fragmented 16-cell stage blastomeres. Montage

of mTmG (top) and local curvature measurements (bottom) of mechanically manipulated and

fragmented 16-cell stage blastomeres with and without nucleus 1/16th blastomeres showing

PeCoWaCo. Scale bar, 10 μm. PeCoWaCo, periodic cortical waves of contraction.

(AVI)

S7 Movie. Comparison of PIV and curvature tracking analyses. Time-lapse imaging of a

4-cell stage embryos. PIV analysis is performed between 2 consecutive images. PIV vectors are

overlaid on top of the images with vectors pointing upward in magenta and downward in

green. Curvature analysis is performed by locally fitting a circle to the cell surface. Pictures are

taken every 5 seconds. Scale bar, 20 μm. PIV, Particle Image Velocimetry.

(AVI)

S8 Movie. PIV analysis of 2-cell stage embryos treated with DMSO or Latrunculin A.

Time-lapse imaging of 2-cell stage embryos treated with DMSO or 100 nM Latrunculin A

(LatA) showing PeCoWaCo. Pictures are taken every 5 seconds, and PIV analysis is performed

between 2 consecutive images. PIV vectors are overlaid on top of the images with vectors

pointing upward in magenta and downward in green. Scale bar, 20 μm. PeCoWaCo, periodic

cortical waves of contraction; PIV, Particle Image Velocimetry.

(AVI)

S9 Movie. PIV analysis of 4-cell stage embryo injected in one blastomere with GFP-Fmnl3

mRNA at the 2-cell stage. Time-lapse imaging of 4-cell stage embryos expressing GFP-Fmnl3

in 2 blastomeres. First frame shows the merge of GFP-Fmnl3 (green) and phase contrast

(gray) images. Pictures are taken every 5 seconds, and PIV analysis is performed between 2

consecutive images. PIV vectors are overlaid on top of the images with vectors pointing

upward in magenta and downward in green. Scale bar, 20 μm. PIV, Particle Image Velocime-

try.

(AVI)

S10 Movie. PIV analysis of 4-cell stage embryo expressing GFP or GFP-Fmnl3. Time-lapse

imaging of 4-cell stage embryos expressing GFP or GFP-Fmnl3. Pictures are taken every 5 sec-

onds, and PIV analysis is performed between 2 consecutive images. PIV vectors are overlaid

on top of the images with vectors pointing upward in magenta and downward in green. Scale

bar, 20 μm. PIV, Particle Image Velocimetry.

(AVI)

S11 Movie. Preimplantation development of embryos expressing GFP or GFP-Fmnl3.

Time-lapse imaging of 4-cell stage embryos expressing GFP or GFP-Fmnl3. Pictures of GFP

(green) and phase contrast (gray) are taken every 3 hours. Scale bar, 20 μm.

(AVI)
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