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Abstract
Missing data are a great concern in longitudinal studies, because few subjects will have complete
data and missingness could be an indicator of an adverse outcome. Analyses that exclude potentially
informative observations due to missing data can be inefficient or biased. To assess the extent of
these problems in the context of genetic analyses, we compared case-wise deletion to two multiple
imputation methods available in the popular SAS package, the propensity score and regression
methods. For both the real and simulated data sets, the propensity score and regression methods
produced results similar to case-wise deletion. However, for the simulated data, the estimates of
heritability for case-wise deletion and the two multiple imputation methods were much lower than
for the complete data. This suggests that if missingness patterns are correlated within families, then
imputation methods that do not allow this correlation can yield biased results.

Background
Genetic analyses can be affected by missing data in two
ways. First, there can be a loss of efficiency due to reduced
sample size if potentially informative subjects are com-
pletely excluded from the analysis because one or more
variables are missing in the model. Second, and more seri-
ous, results can be biased if missingness itself is related,
directly or indirectly, to some of the relevant factors. These
problems are particularly germane to longitudinal studies,
because few subjects will have complete data for all visits,
and the fact that missingness could be an indicator of an
adverse outcome (e.g., premature death due to heart dis-
ease or study drop-outs related to failure to comply with
hypertension treatment). In a genetic analysis, it is also
possible that missingness patterns could be correlated
within families, which leads to distortion of estimates of
familial aggregation.

The problem of missing data has received considerable
attention in the statistical literature (for reviews, see [1-
3]), particularly in the context of longitudinal data [4], but
has seldom been applied in genetic analyses. One method
to deal with missing data in the analysis is multiple impu-
tation, in which several augmented data sets are generated
by random replacement of missing values with samples
from appropriate distributions in order to obtain more
stable estimates of the parameters of interest and to quan-
tify the contribution to the variance of the parameter esti-
mates from the uncertainty in the imputation.

Data are said to be missing at random (MAR) if the prob-
ability of missingness is independent of all unobserved
data, although it can depend upon observed data. In the
context of longitudinal studies, we further distinguish two
subtypes: "intermittent" missingness, in which some
observations of a repeated measure are missing followed
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by later observations, and "premature truncation", in
which once an observation is missing all subsequent
observations are also missing. The latter missing type is
likely to be more serious because the reason for missing-
ness could be relate to vital status or other important
determinants of the outcome. Hence, estimates of long-
term levels or rates of change could be biased if unusual
values tend to be systematically missing. Data with no
intermittent missingness are said to have a "monotone
missing data pattern".

In a real life situation, it is not possible to verify whether
data are MAR since we cannot compare the observed and
unobserved values-we can only hope that it is the case
with the data at hand. Classical methods for multiple
imputation available in off-the-shelf statistical packages
such as SAS assume "ignorable missingness". In other
words, data are MAR and the parameters that describe the
probability of missingness conditional on the observed
data are distinct from inferential parameters (see Little
and Rubin [1], pp. 117-120). There are more modern
approaches that do not assume "ignorable missingness".
However, these require a model for the joint distribution
of the data and the specification of the missingness proc-
ess (see Little and Rubin [1], pp. 327-331). Also, these
modern approaches often require sophisticated statistical
procedures such as Gibbs sampling for implementation,
and results will be sensitive to the choice of the missing-
ness model. As Allison [5] notes, "I won't say don't go
there, but if you do, proceed with caution."

In this paper we compare and discuss two multiple impu-
tation methods that can be done using the standard SAS
software [6].

Methods
Subjects and phenotypes
We analyzed both real and simulated (replicate 59) data
sets. Each data set comprised two cohorts: the "original
cohort," enrolled in 1948, was examined every two years
for total of 21 visits; the "offspring cohort," enrolled in
1971, was examined every four years (following an initial
8-year interval) for total of 5 visits. We analyzed the phe-
notype systolic blood pressure (SBP), together with cov-
ariates cohort, age at exam, sex, hypertension treatment
(HRX), and body mass index (BMI). All subjects with phe-
notype data on at least three visits (N = 2583 and 2686
from two cohorts combined for the simulated, S, and real
data, R, respectively) were included in this analysis. The
average number of intermittent missing SBP observations
was 0.88 (SD = 1.97, ranging from 0 to 17) in Cohort 1 for
the simulated data, and 0.68 (SD = 1.70, ranging from 0
to 12) for the real data. For Cohort 2, the means were
about 0.20 and 0.06 (both SD = 0.7, ranging from 0 to 2).
For the last visits, only 41.3% (R) and 21.5% (S) had SBP

values in Cohort 1, whereas most of Cohort 2 returned
(both 90.9%).

Since exams were scheduled at regular intervals and height
and weight did not vary much from visit to visit, we
imputed intermittent missing values in these variables
using deterministic rules (missing data due to premature
truncation were not imputed). For Cohort 1, missing ages
were imputed by adding two years to the age at the previ-
ous visit; for Cohort 2, four years were added to the age at
previous visit, except for the second visit, when eight years
were added to the age of the first visit. If the imputed value
was greater than or equal to age at the next visit, three
years were subtracted from the age at the following visit.
Missing heights and weights were replaced by the most
recent value. Several subjects had no height information
(three in the real data and one in the simulated data), so
we estimated their heights by single imputation, based on
a regression of height on weight from subjects with avail-
able data.

Multiple imputation
We assumed that SBP values were MAR and multivariate
normal. Multiple imputation inference assumes that the
model used to analyze the imputed data (the analysis
model) is the same as the model used to impute missing
values (the imputation model) [7]. However, this is not a
critical assumption as long as the variables that appear in
one model but not in the other are not related to the
dependent variable, and additional variables can be used
to improve the imputation that are not needed in the
analysis model [5]. In our analyses, age, BMI, HRX, and
SBP were included in the imputation, but only sex, BMI,
and SBP were included in the analysis model. Hyperten-
sion treatment was addressed separately before the analy-
sis, as described below.

Two different imputation methods, propensity score [8,9]
and regression methods [3,10], were compared to address
the problem of potentially informative missingness. We
also compared the two imputation methods to the case-
wise deletion method for real data and complete data
analysis for simulated data. The propensity score and
regression methods require a monotone missing data pat-
tern. Since these data had an arbitrary missingness pattern
(for example, HRX was missing when SBP was observed
and/or SBP at visit 4 was missing when SBP at visit 5 was
observed), we applied these methods in a "time-wise"
two-stage manner to data sets with intermittent missing
values. First, we dealt with missing HRX and SBP at each
visit chronologically. HRX was imputed first using age and
BMI at that visit t and SBP from all previous visits t- since
HRX at visit t only depends on HRX and SBP at visit t-.
Then SBP at visit t was imputed, conditional on recorded
or imputed HRX at visit t. Only the intermittent missing
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data (subjects who returned for subsequent visit) were
imputed; further "premature truncations" were not
imputed.

The propensity score method is a semiparametric
approach, based on the following steps. First, for each var-
iable with missing values, a logistic model is fitted for the
probability of missingness (the "propensity score") as a
function of all previous variables in the data set. The
observations are then grouped based on these propensity
scores, and an approximate Bayesian bootstrap imputa-
tion is applied to each group. (This is done first by draw-
ing a sample with replacement from the set of nonmissing
observations, and then assigning the missing observations
by sampling from this subset of nonmissing values.)

The regression method is a parametric approach, in which
a regression model is fitted for each variable with missing
values, using the previous observations as covariates.
Based on the fitted regression coefficients, a new regres-
sion model is simulated from the posterior predictive dis-
tribution of the parameters and is used to impute the
missing values for each variable. The process is repeated
sequentially for variables with missing values. The regres-
sion method yielded a continuous value for imputed
HRX, which was then converted to a binary variable as fol-
lows: the imputed value less than or equal to 0 was
assigned as 0, and the value greater than or equal to 1 was
assigned as 1 in the final imputed value. If the value was
in between 0 and 1, the subject was assigned to treatment
with corresponding probability. For those subjects who
were either known or imputed to have received hyperten-
sion treatment at a given observation, SBP was adjusted
further with Levy's algorithm to estimate their untreated
SBP [11].

For comparison purposes, we also used the imputed and
adjusted SBP values to form age-interval-specific residuals
as in the GAW13 contribution from Kraft et al. [12]. We
first averaged each subject's imputed SBP and BMI meas-
urements over the age interval 35-50. Then the average

imputed SBP was regressed on gender and average BMI.
We used the residuals from this regression in a variance-
components analysis with a fixed mean effect, a random
additive polygenic effect, and an independent random
error. Thus there were three parameters to estimate: the
mean µ, the polygenic variance σa

2, and the random error
variance σe

2.

Ten imputed data sets were generated for each of the three
methods for the real and simulated missing data, and each
was analyzed using the variance components method. The
results from the multiple analyses were then combined for
final summary. Parameter estimates are given by simple
averages of the estimates over all imputations. The within-

imputation variance  (the mean of the sampling vari-
ance estimates from each imputation) and the between-
imputation variance B (the sample variance of the esti-
mates across imputed data sets) were calculated, and the
total variance is given by

where m is the number of imputations. The relative
increase in variance due to nonresponse [3] is calculated
by

Results
From the simulated data, the estimates of the polygenic
and random environmental effects from the complete
data were strikingly different than the estimates from case-
wise deletion and imputations. The estimated heritability
from the complete data was 81%; case-wise deletion, the
propensity score, and regression methods yielded much
smaller heritabilities (0.13, 0.11, and 0.12, respectively;
Tables 1 and 2). The standard errors from both multiple-
imputation analyses were smaller than from the case-wise
deletion analysis.
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Table 1: Estimates of variance components (simulated data)

Estimates

Polygenic Heritability Score Polygenic Variance (SE) Random Error (SE)

Complete data 0.81 126.8 (7.51) 30.3 (4.01)
Case-wise deletion 0.13 21.6 (5.93) 146.4 (6.91)
Propensity score 0.11 18.8 (5.75) 145.5 (6.81)
Regression 0.12 20.4 (5.85) 147.5 (6.88)
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For the real data, both multiple imputation methods
yielded similar conclusions to case-wise deletion (Table
3). Estimates of the polygenic effect were significantly dif-
ferent than zero, with an estimated heritability of 0.34 for
both imputed and case-wise deleted data. The within-
imputation variance for the parameter estimates was
smaller than the case-wise deletion variance (the square of
the standard error from Table 3), reflecting the fact that
the imputed observations contribute information to each
analysis (Table 4). However, due to the added imputation
sampling error B, standard errors of parameter estimates
from the imputation methods need not be smaller than
the standard errors from case-wise deletion. In this case

the standard errors from the propensity-score method
were slightly larger.

Discussion
Case-wise deletion and multiple imputation analyses of
the simulated data severely underestimated the polygenic
effect and overestimated the random environmental effect
relative to the complete data. This may be due to strong
correlation in missingness within families, as described in
Daw et al. [13], as well as non-ignorable missingness
induced by premature truncation. Since we imputed data
independently for each subject, we were not able to allow
for this dependency. Imputation methods that take famil-

Table 2: Variance information on multiple imputations (simulated data)

Between Within Total Relative Increase in 
Variance

Propensity score
Polygenic component 0.89 32.02 33.01 0.031
Random error 
component

1.15 45.10 46.37 0.028

Regression
Polygenic component 0.33 33.89 34.25 0.011
Random error 
component

0.42 46.87 47.33 0.010

Table 3: Estimates of variance components (real data)

Estimates

Polygenic Heritability Score Polygenic Variance (SE) Random Error (SE)

Case-wise deletion 0.34 76.1 (9.24) 149.3 (8.37)
Propensity score 0.34 75.2 (9.27) 148.9 (8.52)
Regression 0.34 75.1 (9.16) 148.3 (8.36)

Table 4: Variance information on multiple imputations (real data)

Between Within Total Relative Increase in 
Variance

Propensity score
Polygenic component 2.34 83.34 85.91 0.031
Random error 
component

3.66 68.63 72.66 0.059

Regression
Polygenic component 0.69 83.22 83.98 0.009
Random error 
component

1.42 68.39 69.95 0.023
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ial relationships into account may perform better; such
methods were discussed in the GAW13 contribution by
Fridley et al. [14]. On the simulated data, their estimates
were much more consistent between imputed and com-
plete data than our estimates. Their complete data esti-
mates were also noticeably different than ours (their
estimated heritability is about 35% – less than half of
ours), perhaps because they used cross-sectional data
(whereas we used age-matched data) and our SBP trait is
an average of several visits, which should reduce measure-
ment error.

We did not observe clear differences in performance
between multiple imputation and case-wise deletion in
these applications. In part, for example, this is due to the
fact that only 10 subjects in the real data failed to contrib-
ute any data in this age range due to intermittent missing-
ness, so the multiple imputation methods use only 0.4%
more subjects (2409 vs. 2419).

This application of multiple imputation methods to real
data cannot of course address the statistical performance
(bias, power, etc.) of the approach. Unfortunately, the
complexity of the simulation model, with many interme-
diate traits and time-dependent effects, precludes deter-
mining a "true" heritability for comparison with our
estimated values. However, much is known about the per-
formance of multiple imputation method in other con-
texts. Under MAR, parameter estimates produced by
multiple imputations have been shown to be consistent,
asymptotically efficient, and asymptotically normal [7].
The propensity score approach is attractive because it is
semiparametric, but both methods require the MAR
assumption. Our results from the simulated data suggest
that results are very sensitive to this assumption. If there is
a reason to believe the MAR assumption does not hold,
alternative methods should be used. One such approach,
discussed during the GAW13 but not implemented by any
of the participants, is marginal structural models [15] (a
form of weighted regression using ratios of estimated
probabilities of missingness as weights), which appears to
merit further attention. However, this method requires
data to be missing completely at random (a more strin-
gent condition than MAR in which the probability of
missingness cannot depend on observed data) within
each weighting class. Computation of appropriate stand-
ard errors is also less straightforward and no statistical
package is available for more complex situations [1]. Sim-
ilar techniques could also be used to adjust time-depend-
ent covariates as well as intermediate variables, like
hypertension treatment [16].

Imputation techniques for non-ignorable missingness are
also available, but require stronger modeling assumptions
regarding the nature of the missingness mechanism [7].

Clearly, methods that can allow for both longitudinal and
familial dependencies simultaneously would be desirable.
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