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Persistent homology is a recently developed theory in the field of algebraic topology

to study shapes of datasets. It is an effective data analysis tool that is robust to noise

and has been widely applied. We demonstrate a general pipeline to apply persistent

homology to study time series, particularly the instantaneous heart rate time series for

the heart rate variability (HRV) analysis. The first step is capturing the shapes of time

series from two different aspects—the persistent homologies and hence persistence

diagrams of its sub-level set and Taken’s lag map. Second, we propose a systematic

and computationally efficient approach to summarize persistence diagrams, which we

coined persistence statistics. To demonstrate our proposed method, we apply these

tools to the HRV analysis and the sleep-wake, REM-NREM (rapid eyeball movement

and non rapid eyeball movement) and sleep-REM-NREM classification problems. The

proposed algorithm is evaluated on three different datasets via the cross-database

validation scheme. The performance of our approach is better than the state-of-the-art

algorithms, and the result is consistent throughout different datasets.

Keywords: persistent homology, persistence diagram, persistence statistics, sleep stage, heart rate variability

1. INTRODUCTION

Heart rate variability (HRV) is the physiological phenomenon of variation in the lengths of
consecutive cardiac cycles, or the rhythm of heart rate (Draghici and Taylor, 2016). Interest in
HRV has a long history (Billman, 2011), and there have been several theories describing how the
heart rate rhythm, including, for example, the polyvagal theory (Porges, 2009) and the model of
neurovisceral integration (Thayer and Sternberg, 2006). In short, HRV results from an integration
of complicated interactions between various physiological systems and external stimuli (Vanderlei
et al., 2009; Shaffer et al., 2014; Draghici and Taylor, 2016) on various scales, and the autonomic
nervous system (ANS) plays a critical role (Thayer and Sternberg, 2006; Porges, 2009). A correct
quantification of HRV yields dynamical information of various physiological systems and has
various clinical applications (Stys and Stys, 1998), including improving diagnostic accuracy and
treatment quality (Vanderlei et al., 2009).
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In practice, the heart rhythm is quantified by the time series
called instantaneous heart rate (IHR) coming from intervals
between consecutive pairs of heart beats, which is usually
determined from the R peak to R peak interval (RRI) by reading
the electrocardiogram (ECG). See Figure 1 for an illustration
of the ECG, R peaks, and RRI. To quantify HRV, a common
approach is studying various statistics of IHR. There have been
a lot of efforts trying to quantify HRV, and proposed statistics
could be briefly classified into four major categories—time
domain approach, frequency domain approach (Task Force of
the European Society of Cardiology and others, 1996), nonlinear
geometric approach (Marwan et al., 2002; Voss et al., 2008),
and information theory based approach (Costa et al., 2002).
It is worth mentioning that while there have been a lot of
researches in this direction with several proposed statistics, there
is limited consensus and it is still an active research field due to
the non-stationarity nature of the IHR time series (Pincus and
Goldberger, 1994; Glass, 2009).

Topological data analysis (TDA) is a data analysis framework
based on tools from algebraic topology (Carlsson, 2009; Epstein
et al., 2011). In the past decades, its theoretical foundation
has been actively established, and various algorithms have been
proposed to study datasets from different fields. The basic
idea underlying TDA is that the data organization can be
well-captured by counting holes. Theoretically, the number of
holes of different dimensions characterizes how the data is
organized. Thus, researchers design useful statistics based on
the information of holes. This simple yet powerful idea has
been applied to different fields. Specifically, there have been
several efforts applying TDA to analyze time series. For example,
the Vietoris-Rips (VR) complex filtration and the bottleneck or
Wasserstein distances among persistence diagrams are applied
to study voices and body motions (Seversky et al., 2016;
Venkataraman et al., 2016). A transformation of the persistence
diagram, called persistence landscapes (Bubenik, 2015), has
been applied to study trading records (Gidea and Katz, 2018),
electroencephalogram (EEG) signals (Piangerelli et al., 2018;
Wang et al., 2018; Wang et al., 2019), and cryptocurrency
trend forecasting (Kim et al., 2018). Sliding Windows and 1-
Persistence Scoring (Perea, 2019) offers both theoretical and
practical TDA method to detect the periodicity of a time series.
A brief overview of common techniques on the usages of TDA
to time series is summarized in a preprint (Ravishanker and
Chen, 2019). Recently, the proposed TDA tool for HRV
analysis has been applied to differentiating patients with the
history of transient ischemic attack and hypertension (Graff et al.,

Abbreviations: AASM, American academy of sleep medicine; Acc, accuracy;

AHI, apnea-hypopnea index; ANS, autonomic nervous system; AUC, area

under curve; CGMH, Chang Gung Memorial Hospital; CV, cross validation;

DREAMS, DREAMS subjects database; ECG, electrocardiogram; ECOC, error-

correcting output codes; EEG, electroencephalogram; EOG, electrooculogram;

EMG, eletromyogram; HRV, heart rate variability; IHR, instantaneous heart

rate; LOSOCV, leave-one-subject-out CV; NREM, non-rapid eyeball movement;

PPG, photoplethysmography; PR, precision; PS, persistence statistics; PSG,

polysomnogram; REM, rapid eyeball movement; RRI, R peak to R peak interval;

SE, sensitivity; SP, specificity; SVM, support vector machine; TDA, topological data

analysis; UCDSADB, St. Vincent’s University Hospital/University College Dublin

Sleep Apnea Database; VR, vietoris-rips.

2020). However, existing TDA approaches usually suffer from
computational issues, which limits its application to large scale
database. Finding a computationally efficient TDA algorithm is
thus critical.

In this article, motivated by the complicated interaction
among different physiological systems over various scales and
inter-individual variability, the need for a useful tool for the HRV
analysis, and the numerical limitation of the recently developed
TDA tools, we hypothesize that topological information could
be useful to quantify the HRV, and propose a computationally
efficient approach to analyze time series via TDA.

1.1. Our Contribution
Based on the flexibility of TDA tools, and due to the non-
stationarity of complicated time series we commonly encounter
in real life, like the IHR, we propose a systematic, principled, and
computationally efficient approach to study complicated time
series by the TDA tools.

Our main scheme for studying a complicated time series is
shown in Figure 2, which is divided into three steps that we
will detail later. First, consider two filtrations, the Vietoris-Rips
(VR) complex filtration of the Takens’ lag map (Takens, 1981)
and the sub-level set filtration of the time series, and persistent
homology. Second, compute corresponding persistence diagrams.
Finally, calculate persistence statistics (PS) as a novel statistic
of the time series of interest. We mention that compared with
existing TDA approach for time series analysis, our proposed
persistence statistics features based on both sub-level set and
Vietoris-Rips complexes filtrations are intuitive, straightforward
to implement, and also computationally efficient.

1.2. Application—Sleep Dynamics
To demonstrate the usefulness of the proposed persistence
statistics, we apply it to study IHR time series recorded during
sleep, and use obtained statistics to classify sleep stages. Sleep is
a universal recurrent physiological phenomenon. Sleep impacts
the whole body, so we can read sleep via reading different
physiological signals. Taking ECG into account is specifically
attractive, since the ECG sensor is easy to install, and it is now
widely available in mobile health devices. HRV of a subject is
usually quantified by analyzing ECG, and it has been shown to
be related to sleep dynamics (Zemaityte and Varoneckas, 1984;
Vaughn et al., 1995; Toscani et al., 1996; Bonnet and Arand, 1997;
Elsenbruch et al., 1999; Chouchou and Desseilles, 2014; Penzel
et al., 2016). In other words, the heart rate rhythm provides a
non-invasive window for researchers to study sleep. While there
have been several studies trying to classify sleep stages based on
HRV (Lewicke et al., 2008; Mendez and Matteucci, 2010; Long
et al., 2012; Xiao et al., 2013; Aktaruzzaman et al., 2015; Ye et al.,
2016; Malik et al., 2018), it still remains a challenging problem
in the field. The challenge and difficulty of this mission can be
appreciated from the reported results. In this article, we apply
the proposed persistence statistics to quantify HRV during sleep,
and propose a new prediction algorithm for the sleep stage; for
example, an automatic classification of wake and sleep, REM
and NREM, and wake, REM and NREM. We remark that while
we focus on the HRV and sleep stage classification, the result
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FIGURE 1 | An illustration of ECG (black curve), R peaks (red circles), and RRI (the numbers between two consecutive R peaks). It is clear that the RRI changes from

time to time, which form a new time series.

FIGURE 2 | The scheme of our proposed time series analysis can be separated by three steps: constructing filtrations, computing persistence diagrams, and

extracting persistence statistics as features. The features are applied to train a machine learning model for the classification purpose.

indicates the potential of applying TDA-based approaches to
study other complicated time series.

1.3. Organization
In section 2, we review the mathematical background of the
persistent homology and persistence diagram. In section 3,
we demonstrate two ways to use the persistent homology to
study time series, and propose a new approach to summarize
the persistence diagram, called the persistence statistics. The
classification model based on the persistence statistics for the
sleep stage classification will be discussed in detail in section
4. The discussion of our classification performance and a
comparison with the state-of-arts results will be included in
section 5. More technical details and numerical results are
postponed to the Supplementary Material.

2. MATHEMATICAL BACKGROUND

In this section, we describe the mathematical background,
including simplicial complex, homology, filtration of sets, and the
persistent homology. Although these topics can be studied in an
abstract and general way (see e.g., Munkres, 1993), to enhance the
readability, we present them in a relatively concrete way without
losing critical information.

2.1. Simplicial Complexes
To investigate the complicated structure of an object, an
intuitive way is to use simple objects as building blocks to
approximate the original object. In TDA, the main building
block is the simplicial complex, which we briefly recall now.
See Supplementary Material (section 1.1) for more detailed
mathematical background and illustrative examples.
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We start with the simplex. Intuitively, a simplex is a “triangle”
of different dimension. Let x0, x1, . . . , xq be affinely independent

points in R
d, where d, q ∈ N and d ≥ q. The q-simplex, denoted

by σ := 〈x0, x1, . . . , xq〉, is defined to be the convex hull of
x0, x1, . . . , xq. Denote Vert(σ ) := {x0, x1, . . . , xq}. Any q-simplex
is a q-dimensional object consisting of lower degree simplexes.
We are interested in the relation among simplexes of different
dimensions. Since any V ⊂ Vert(σ ) is also affinely independent,
the convex hull of V , called a face of σ , forms a simplex of
dimension |V| ≤ q, where |V| is the cardinality of V . If |V| = k,
the face τ = 〈V〉 is called a k-face of σ . A simplicial complex
K in R

d is a collection of finite simplexes σ in R
d so that any

intersection of two arbitrary simplexes is a face to each of them;
that is,

• If σ ∈ K and τ is a face of σ , then τ ∈ K;
• If σ1, σ2 ∈ K, then σ1 ∩ σ2 is a face of σ1 and σ2. In particular,

σ1 ∩ σ2 ∈ K.

2.2. Homology and Betti Numbers
In order to study the topological information of a given
simplicial complex, we study relations among simplexes of
different dimensions, and hence the “holes.” Homology and
Betti numbers are classic subjects in the algebraic topology
(Munkres, 1993), which capture “holes” of geometric objects
of different dimensions. While we can discuss these topics
in a more general setup, in this work, we mainly consider
simplicial complexes as our target object. For example, the
shape of the notation “∞” contains two 1-dimensional holes
(Supplementary Figure 2C) and the empty void surrounded by
the unit sphere S2 = {(x, y, z) : x2 + y2 + z2 = 1} in R

2

is a 2-dimensional hole (Supplementary Figure 2E). Moreover,
the 0-dimensional holes of an object are defined to be its
disjoint connected components (Supplementary Figure 2E). See
Supplementary Material (section 1.2) for more information and
illustrative examples.

We need an algebraic structure of simplexes. Given q-
simplexes σ1, σ2, . . . , σn in a simplicial complexK, define the sum
over Z2 as c =

∑n
i=1 νiσi, where νi ∈ Z2. This formal sum is

commonly known as a q-chain. One could also define an addition
operator as

∑n
i=1 νiσi +

∑n
i=1 µiσi :=

∑n
i=1(νi + µi)σi. We

consider the collection of all q-chains, denoted as

Cq(K) :=

{ n∑

i=1

νiσi

∣∣∣ νi ∈ Z2, σi ∈ K, dim(σi) = q

}
.

One could prove thatCq(K) is actually a vector space overZ2 with
the above addition. There is a natural relation between Cq(K) and
Cq−1(K), called the boundary map (Munkres, 1993, section 1.5,
p. 30). The qth boundary map ∂q :Cq(K) → Cq−1(K) over Z2 is
defined by

∂q(〈x0, x1, · · · , xq〉) :=

q∑

i=0

〈x0, · · · , x̂i, · · · xq〉,

where 〈x0, x1, · · · , xq〉 ∈ K and the •̂ denotes the drop-out
operation. With the boundary maps, there is a nested relation

among chains

· · ·
∂n+1
−−→ Cn(K)

∂n
−→ Cn−1(K)

∂n−1
−−→ · · ·C1(K)

∂1
−→ C0(K).

This nested relation among chains is known as the chain complex,
which is denoted as C = {Cq, ∂q}q∈Z.

A fundamental result in the homology theory (Munkres, 1993
Lemma 5.3 section 1.5, p. 30) is that the composition of any two
consecutive boundary maps is trivial, i.e., ∂q−1 ◦ ∂q = 0. This
result allows one to define the following quotient space. Denote
cycles and boundaries by Zq(K) and Bq(K), respectively, which are
defined as

Zq(K) := ker(∂q) = {c ∈ Cq | ∂q(c) = 0}, Bq(K) := im(∂q+1)

= {∂q+1(z) ∈ Cq | z ∈ Cq+1}.

Note that each Bq(K) is a subspace of Zq(K) since ∂q−1 ◦ ∂q = 0.
Therefore, we can define the qth homology to be the quotient
space

Hq(K) :=
Zq(K)

Bq(K)
=

ker(∂q)

im(∂q+1)
, (1)

which is again a vector space. For instance, if K = K3 in
Figure 3, then H0(K3) ≃ Z2 and H1(K3) ≃ Z2 because it
contains one connected component and one 1-dimensional hole.
More precisely, the 1-dimensional hole in K3 is represented by
the 1-cycle

c = 〈v1, v2〉 + 〈v2, v3〉 + 〈v3, v1〉.

Actually, a q-hole may be represented by different q-cycles. For
example, if K = K3 in Figure 3, then the 1-cycles c = 〈v1, v2〉 +
〈v2, v3〉 + 〈v3, v1〉 and d = 〈v1, v4〉 + 〈v4, v2〉 + 〈v2, v3〉 + 〈v3, v1〉
represent the same 1-dimensional hole in K4 because c + d =

〈v1, v2〉 + 〈v1, v4〉 + 〈v4, v2〉 ∈ im(∂2) is the boundary of the 2-
simplex 〈v1, v2, v4〉. This gives us an intuition about the algebraic
structure (1).

The qth Betti number is defined to be the dimension of the qth
homology; that is,

βq(K) = dim(Hq(K)) , (2)

which measures the number of q-dimensional holes. As a result,
given a simplicial complex K, the homology of K is a collection
of vector spaces {Hq(K)}∞q=0, and its Betti numbers is denoted as

β(K) := {βq(K)}∞q=0.

2.3. Persistent Homology
We now introduce a natural generalization of homology, the
persistent homology, that is suitable for data analysis. persistent
homology is more suitable for data analysis than homology due
to this capability of dealing with inevitable noise in real world
dataset. It depends on the notion of filtration to handle noise.
In general, filtration is a sequence of simplicial complexes (see
Figure 3 for an example). We are interested in how the “holes”
vary in the filtration. Intuitively, if certain holes are “robust,” they
will survive in the filtration.
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FIGURE 3 | Illustration of a filtration of simplicial complexes K1,K2,K3,K4, and K5.

Definition 1 (Edelsbrunner and Harer, 2010 section 3.4, p. 70).

For an index set I, a filtration is a sequence of simplicial complexes,
{Kt}t∈I , satisfying

Kt1 ⊆ Kt2 , whenever t1 ≤ t2. (3)

From the previous discussion, for each Kt in a filtration, one
could compute its homology group and Betti number. Because
of the nested subset relation in a filtration, there exist relations
among simplicial complexes. This allows one to track and record
the changes of the homology group and the Betti numbers, which
we detail now. Given a fixed q ≥ 0, each Ki induces homology
Hq(Ki). Denote ιi :Ki → Ki+1 to be the inclusion map. Then
ιi(Zq(Ki)) ⊆ Zq(Ki+1) and ιi(Bq(Ki)) ⊆ Bq(Ki+1) (Edelsbrunner
and Harer, 2010 section 4.4, p. 95). Therefore, the mapping

ιi :Hq(Ki) → Hq(Ki+1), c 7−→ ιi(c) (4)

induced by ιi is a well-defined linear transformation over Z2. We
also define a linear transformation

ρi,i+k
q := ιi+k−1 ◦ · · · ◦ ιi+1 ◦ ιi, (5)

which maps Hq(Ki) to Hq(Ki+k). The following definition is
crucial for defining lifespans of connected components or holes
in homology theory.

Definition 2 (Edelsbrunner and Harer, 2010 section 7.1, p. 151).

Let {Ki}
n
i=0 be a filtration of simplicial complexes. For q ∈ Z≥0

and i, j ∈ Z≥0 with i ≤ j, we define the persistent homology as

H
i,j
q :=

Zq(Ki)

Bq(Kj) ∩ Zq(Ki)
. (6)

Since K0 ⊆ K1 ⊆ · · · ⊆ Kn, we have inclusions of q-chains:
Cq(K0) ⊆ Cq(K1) ⊆ · · · ⊆ Cq(Kn) for all q ≥ 0. Hence, the
intersection Bq(Kj)∩Zq(Ki) is a well-defined subspace of Zq(Ki).
Moreover, for i ≤ j, the kernel of the linear transformation

φ
i,j
q :Zq(Ki) −→

Zq(Kj)

Bq(Kj)
, c 7−→ c = c+ Bq(Kj)

induced by the inclusion map is Bq(Kj) ∩ Zq(Ki). By the
first isomorphism theorem, we obtain an injective linear
transformation

φ
i,j
q :

Zq(Ki)

Bq(Kj) ∩ Zq(Ki)
−→

Zq(Kj)

Bq(Kj)
.

Via the one-to-one linear mapping φ
i,j
q , the vector space H

i,j
q

may be viewed as a subspace of Hq(Kj). In particular, if i = j,

then H
i,j
q = Hq(Ki) = Hq(Kj), which means that the persistent

homology is a generalization of the homology.With the inclusion

H
i,j
q −֒→ Hq(Kj), we define the moments of birth and death of a

“hole” in the filtration.

Definition 3 (Edelsbrunner and Harer, 2010 section 7.1, p. 151).

Let {Ki}
n
i=0 be a filtration of simplicial complexes and q ∈ Z≥0.

• A q-hole c (c ∈ Zq(Ki)) is born at Ki if c ∈ Hq(Ki) \ {0}, but
c /∈ im(ρi−1,i

q );

• A q-hole c (c ∈ Zq(Ki)) dies at Kj if ρ
i,j−1
q (c) /∈ H

i−1,j−1
q , but

ρ
i,j
q (c) ∈ H

i−1,j
q .

The death d = ∞means that the q-hole never dies in the filtration.

We use Figure 3 to explain the relation between these two
abstract definitions. For instance, the non-trivial element c
represented by 1-chain c = 〈v1, v2〉 + 〈v2, v3〉 + 〈v3, v1〉 in
H1(K3) is born at K3 i.e., c /∈ im(ρ2,3

1 ) because H1(K2) = {0}
and Z2 = H1(K3) = span

Z2
{c}. On the other hand, the fact

{0} ⊆ H2,5
1 ⊆ H1(K5) = {0} shows that ρ3,5

1 (c) ∈ H1(K5) = H2,5
1

and ρ
3,4
1 (c) /∈ H2,4

1 because H2,4
1 = {0} (since Z1(K2) = {0}) and

Z2 = H1(K4) = span
Z2
{ρ

3,4
1 (c)}, thus c dies at K5. We refer

readers with interest to Edelsbrunner and Harer (2010) for more
details in persistent homology.

2.4. Persistence Diagram
Persistence diagram proposed in Edelsbrunner et al. (2000) or
equivalently persistence barcodes proposed in Carlsson et al.
(2005) is a tool to visualize the complicated lifespans of holes in
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a given filtration for data analysis. We use persistence diagram in
this paper.

The persistence diagram possesses the desired stability
property (Cohen-Steiner et al., 2007)—a bounded perturbation
of a given filtration leads to a bounded perturbation of the
corresponding persistence diagram. Due to the inevitable noise
in real data, this stability property renders persistence diagram
based approaches suitable for data analysis. The bottleneck and
Wasserstein distances (Cohen-Steiner et al., 2007) are typical
ways to measure differences among persistence diagrams. The
formal statements of the stability property based on these two
distances are provided in sections 3.1, 3.2. We refer readers
with interest to Edelsbrunner and Harer (2010) for details in
persistence diagram.

Definition 4 (Edelsbrunner and Harer, 2010 section 7.1, p. 152).

Let {Ki}
n
i=0 be a filtration of simplicial complexes and q ∈ Z≥0.

The qth persistence diagram, denoted as Pq({Ki}
n
i=0), of the

filtration is the multiset of q-dimension holes in the filtration.

In other words, a q-dimensional hole in a filtration is recorded
by a pair (b, d) of integers where b and d are called the birth and
death of the hole, respectively (Edelsbrunner and Harer, 2010).
Although the above definition of persistence diagram seems
technical, its interpretation is intuitive. For instance, consider
the filtration shown in Figure 3. We look for the “changes”
of topological structure (holes). Note that since a connected
component is born at K1 (specifically, 〈v1, v2〉), its birth value is
b = 1; since it lives throughout the filtration, its death value is
∞. We now turn our focus to the 1-dimensional hole. Note that
a 1-dimensional hole (specifically, 〈v1, v2〉 + 〈v2, v3〉 + 〈v1, v3〉)
is formed at K3, so its birth value is 3; note also that this hole is
filled atK5, so its death value is 5. Since there is nomore change of
holes, we have the persistence diagrams P0({Ki}

5
i=1) = {(1,∞)}

and P1({Ki}
5
i=1) = {(3, 5)}.

Before closing this subsection, we illustrate how persistent
homology and persistence diagram work by taking a noisy point
cloud sampled from a circle contaminated by Gaussian noise
shown in Figure 4A. If there is no noise, the 1st Betti number
of the circle is β1 = 1. In the noisy case, the Betti number
information is contained in the form of the persistence diagram
as shown in Figure 4B, where each point represents one 1-
dimensional hole associated with its birth and death value. In
Figure 4B, we observe that there is an outstanding point with
long lifespan (located around birth value 0.05 and death value
0.25), while lifespans for other points are very small. This suggests
that the noisy point cloud has a strong/robust 1-dimensional
hole. This captures themain topology information, β1 = 1, about
this data.

2.5. Data Analysis With Persistence
Diagram and Commonly Considered TDA
Statistics
Usually, researchers design statistics on the persistence diagram
of a given dataset via the chosen filtration. One basic result
supporting this approach is Mileyko et al. (2011), where authors
showed that the space of persistence diagrams with certain

metric is complete and separable. This result forms a theoretic
foundation for any statistical methods. In Fasy et al. (2014)
and Blumberg et al. (2014), authors derived confidence sets of
persistence diagrams in order to separate the long lifespan holes
from noisy ones, and also proposed four ways to estimated
them. While these theoretical results shed light on applying
TDA to analyze complex data, however, any operation in the
space of persistence diagrams is complicated and difficult to
compute. For example, computing bottleneck or Wasserstein
distances among persistence diagrams is a difficult task and can
be time consuming, even for the state-of-art algorithm (Kerber
et al., 2017). Another result indicates that the mean in the
space of persistence diagrams may not be unique (Turner et al.,
2014a). This computational burden renders it less applicable to
data analysis.

To get around the computational issue when working with
those distances, one major approach is to “vectorize” persistence
diagrams; that is, researchers map the space of persistence
diagrams into another space. For example, persistence landscapes
(Bubenik, 2015) map persistence diagrams into a Banach space,
specifically Lp space. More examples include persistence image
(Adams et al., 2017), generalized persistence landscapes (Berry
et al., 2020), persistence path (Chevyrev et al., 2018), persistence
codebook (Zelinski et al., 2020), persistence curves (Chung and
Lawson, 2019), kernel based methods (Reininghaus et al., 2015;
Kusano et al., 2016), and persistent entropy (Chintakunta et al.,
2015; Atienza et al., 2019b). These methods have been studied
and applied to different applications. In Figure 5, we provide
a chart depicting the relationship among existing TDA tools.
We mention that the proposed persistence statistics in section 3
could be viewed as a computationally efficient vectorization of
persistence diagrams.

3. TDA FOR TIME SERIES ANALYSIS AND
FEATURES EXTRACTION

Armed with the theoretical background in section 2, we are ready
to describe how to apply TDA for time series analysis. To apply
the persistent homology to analyze complicated time series, we
introduce two useful filtrations, the sub-level set filtration and the
Vietoris-Rips complexes filtration. With these two filtrations, we
introduce a novel features extractionmethods, coined persistence
statistics, based on the persistence diagrams of the sub-level set
filtration and the Vietoris-Rips complexes filtration.

3.1. First Useful Filtration—Sub-Level Set
Filtration
To simplify the discussion and illustrate the idea, we identify
a time series as a discretization of a continuous function
f :[0,T] → R, where T is some fixed constant. For each h ∈ R,
the sub-level set of f is defined as

fh := f−1((−∞, h]) = {t ∈ [0,T] | f (t) ≤ h}. (7)

Clearly, fh1 ⊆ fh2 whenever h1 ≤ h2. Therefore, for any
increasing sequence {hi}i, the collection of sub-level sets, {fhi},
forms a filtration. Intuitively, the sub-level set filtration reveals
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FIGURE 4 | Toy example of the persistent homology. (A) Data points are sampled from a circle with the Gaussian noise. (B) 1st dimensional persistence diagram.

FIGURE 5 | A chart depicting relationship among existing TDA tools.

the oscillating information of the functions. Since each fh is
a subset of [0,T] ⊆ R, it only contains 0-dimensional
structures, i.e., connected components. Hence, the only non-
trivial persistence diagram in this case is P0. For simplicity,
when there is no danger of confusion, for a given function
f , we use P0(f ) to denote P0({fhi}), the persistence diagram
associated with the sub-level sets filtration of f . As discussed

in Edelsbrunner and Harer (2010), each element in P0 is a
min-max pair in the original function f (t). The concept of
this filtration is closely related to the size function theory (see
Biasotti et al., 2008 and references therein) and is commonly
used as a shape descriptor (Biasotti et al., 2008). In practice,
persistence diagram is robust to noise under the bottleneck
distance. This fact renders persistence diagram an useful
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data analysis quantity. A precise statement of this robustness
is below.

Theorem 3.1.1. Let X be an n-dimensional rectangle in R
n. Take

two continuous functions f , g :X → R with finitely many local
extremums (minimums or maximums). Then, we have for q ∈ N,

dB(Pq(f ),Pq(g)) ≤ ‖f − g‖∞,

where dB is the bottleneck distance defined as dB(Pq(f ),Pq(g)) =
infγ sup(b,d)∈Pq(f )

‖(b, d) − γ (b, d)‖∞, where γ ranges over all

bijections from Pq(f ) to Pq(g) considering the infinite points on
the diagonal.

In fact, Theorem 3.1.1 is a special form of a stability theorem
(Main Theorem in Cohen-Steiner et al., 2007, p. 109). See
Supplementary Material (section 1.3) for an illustrative example
of the sub-level sets filtration.

3.2. Second Useful Filtration—Vietoris-Rips
Complexes Filtration
To introduce Vietoris-Rips (VR) complexes filtration for a
given time series, we first embed the time series into a high
dimension point cloud via Taken’s lag map (Takens, 1981), which
is constructed in the following way. Take p ∈ N to be the
dimension of the embedding, and τ ∈ N to be the lag step.
For a given time series x :Z → R, the lag map with lag τ and
dimension p is defined as

Rp,τ (x) = {(x(t), x(t − τ ), x(t − 2τ ), . . . , x(t − (p− 1)τ ))⊤| t ∈ Z} ,
(8)

which is a subset of R
p. We postpone details of Taken’s

lag map to Supplementary Material (section 1.2). With the
point cloud Rp,τ (x) ⊆ R

p, we are ready to introduce the
Vietoris-Rips complex.

In general, given a point cloud X = {x1, . . . , xN} ⊂ R
p,

the main idea of Vietoris-Rips complex is to build simplicial
complexes from X if points in X are closed enough. A formal
definition is given below.

Definition 5 (Edelsbrunner and Harer, 2010 section 3.2, p. 61).

Let X = {x1, x2, . . . , xN} ⊆ R
p be a point cloud and take ǫ > 0.

The Vietoris-Rips complex is a collection of all simplexes σ with
vertices in X with diam(σ ) ≤ 2ǫ, where diam(σ ) is the diameter
of σ ; that is,

VR(X ; ǫ) :=

p⋃

q=0

{
q−simplex σ | diam(σ ) ≤ 2ǫ, Vert(σ ) ⊆ X

}
.

(9)

Clearly, for an increasing sequence ǫ1 < ǫ2 < · · · < ǫN ,
the corresponding sequence of Vietoris-Rips complexes forms a
filtration:

VR(X ; ǫ1) ⊆ VR(X ; ǫ2) ⊆ · · · ⊆ VR(X ; ǫN). (10)

After determining the representation rules of connected
components, the lifespan of holes of different dimensions can be
computed easily. See Supplementary Material (section 1.3) for
an illustrative example of the Vietoris-Rips filtration.

For simplicity, we denote the q-th persistence diagram
associated with the Vietoris-Rips filtration as Pq(Rp,τ (x)) :=

Pq({VR(Rp,τ (x); ǫ)}ǫ). In parallel with Theorem 3.1.1, the
stability of persistence diagrams extracted from a Vietoris-Rips
filtration has been discussed in Chazal et al. (2014).

Theorem 3.2.1 (Chazal et al., 2014, Theorem 5.2). For finite
metric spaces (X, dX) and (Y , dY ), then for q ∈ N,

dB(Pq(VR(X)),Pq(VR(Y))) ≤ 2dGH(X,Y),

where dB is the bottleneck distance and dGH is the Gromov-
Hausdorff distance.

The formal definition of Gromov-Hausdorff distance can be
found in Chazal et al. (2014) and Burago et al. (2001), and
conceptually, it measures the similarity between two metric
spaces under distance-preserving transformations.

3.3. Persistence Statistics
Wenow introduce a set of new features to summarize persistence
diagrams. It is computationally efficient and straightforward to
implement. We propose to explore distributions of the birth
b and the death d of all possible holes, and calculate their
statistic measurements. This idea is considered one of the most
straightforward way to extract features from persistence diagrams
(Pun et al., 2018). Despite its simplicity, it has been used in several
studies, such as skin lesions classification (Chung et al., 2018),
bifurcations analysis in dynamical systems (Mittal and Gupta,
2017), and protein classification (Cang et al., 2015).

To be more specific, given a persistence diagram P , we
transform it into two multi-sets of numbers, M and L, defined
as

M =

{
d + b

2

∣∣∣ (b, d) ∈ P

}
and L =

{
d − b

∣∣∣ (b, d) ∈ P

}
.

(11)
Note that for the Vietoris-Rips complex filtration, d+b

2 captures
the “size” of the associated hole, and d−b captures the robustness
of the associated hole. On the other hand, for the sublevel set
filtration, d+b

2 reveals the locations of holes, and d − b captures
the differences between low and high peaks in a time series. Note
that since the hole (0,∞) always exists in the persistence diagram
as is shown in the previous section, it is omitted.

In this paper, for each persistence diagram, we consider
eight summary statistics to represent the multi-set M, including
mean, standard deviation, skewness, kurtosis, 25th, 50th, 75th
percentile, and the persistent entropy (Chintakunta et al., 2015).
We number them from 1 to 8. We consider the same summary
statistics for the multi-set L, and number them from 9 to 16.

Definition 6 (Persistence Statistics). Given a persistence
diagram, the persistence statistics (PS) is defined as a map, 8(PS),
that transforms the persistence diagram to a point in R

16.
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As shown in Algorithm 1, for the Vietoris-Rips complex
filtration, we consider 0-th and 1-th persistence diagrams; for the
sub-level set filtration, we consider 0-th persistence diagram.

The persistent entropy of M and L, denoted as E(M) (Chung
and Lawson, 2019) and E(L) (Atienza et al., 2020) respectively,
describes the complexity of M and L. They are formally defined
by

E(M) =
∑

m∈M


−

m∑

m′∈M

m′
log

m∑

m′∈M

m′


 and E(L)

=
∑

l∈L


−

l∑

l′∈L

l′
log

l∑

l′∈L

l′


 .

E(L) has been used to study the cell arrangements (Atienza
et al., 2019a), emotion recognition (Gonzalez-Diaz et al., 2019),
and epileptic seizures detection in EEG signals (Piangerelli
et al., 2018). From the theoretical perspective, E(L) is a stable
measurement (Theorem 3.12 in Atienza et al., 2020). E(M) was
first appeared in Chung et al. (2018) and the discussion about the
stability of E(M) can be found in Chung and Lawson (2019).

Note that while intuitively, holes with long lifespans are
considered important features and those with short lifespans
are considered noises, in our proposed features, we do not
discriminate holes with long or short lifespans. In other words,
we take all holes into consideration. This approach is supported
by a recent discovery that those considered as noisy holes might
actually contain important information. For example, in the
drivers’ behavior classification (Bendich et al., 2016), authors
transformed the space of persistence diagrams into “binned”
diagrams, and found that the main differences occurred in those
short lifespan holes. Another work on the leave classification
(Patrangenaru et al., 2018) also suggested that holes with short
lifespans could better distinguish different types of leaves.

4. APPLICATION TO SLEEP STAGE
CLASSIFICATION

In recent decades, a growing body of evidence shows that sleep
is not only intimately related to personal health (Karni et al.,
1994; Kang et al., 2009) but also has a direct impact on public
health (Colten and Altevogt, 2006). In clinics, sleep experts
score sleep stage by reading the electroencephalogram (EEG),
electrooculogram (EOG), and electromyogram (EMG) based on
the American Academy of Sleep Medicine (AASM) criteria (Iber
et al., 2007; Berry et al., 2012). Sleep, however, impacts the
whole body, and we can read sleep via reading physiological
signals other than EEG, particularly ECG and HRV mentioned
in section 1. The relationship between HRV and sleep dynamics
has been widely studied in the physiology society (Zemaityte
and Varoneckas, 1984; Vaughn et al., 1995; Toscani et al., 1996;
Bonnet and Arand, 1997; Elsenbruch et al., 1999; Chouchou and
Desseilles, 2014; Penzel et al., 2016). Specifically, when a subject

is awake, since the sympathetic tone of the ANS is dominant,
he/she has a higher heart rate and a less stable heart rhythm
due to external stimuli (Somers et al., 1993). When a subject
is asleep, the heart rate is lower, and it reaches its lowest value
during deep (slow wave) sleep (Snyder et al., 1964). During
NREM (non-rapid eye movement) sleep, the parasympathetic
nervous system dominates the sympathetic tone and the energy
restoration and metabolic rates reach their lowest levels, so
the heart rate decreases and the rhythm of the heart stabilizes
(Somers et al., 1993).

The above physiological facts indicate that the heart rate
rhythm provides a non-invasive window for researchers to
study sleep. There have been several studies trying to classify
sleep stages based solely on HRV. Most of them focus on
classifying wake and sleep (Lewicke et al., 2008; Long et al., 2012;
Aktaruzzaman et al., 2015; Ye et al., 2016; Malik et al., 2018),
some focus on detecting drowsiness (Vicente et al., 2016), and
some focus on classifying rapid eyemovement (REM) andNREM
(Mendez and Matteucci, 2010), or wake, REM, and NREM (Xiao
et al., 2013). The challenge and difficulty of this mission can be
appreciated from the reported results. In this section, we apply
the TDA tool and the proposed persistence statistics to study
this problem.

4.1. Datasets
The databases we use here are the same as those used in Malik
et al. (2018). Here we summarize them and refer readers with
interest in the database details to Malik et al. (2018). The
CGMH-training database consists of standard polysomnogram
(PSG) signals on patients suspicious of sleep apnea syndrome at
the sleep center in Chang Gung Memorial Hospital (CGMH),
Linkou, Taoyuan, Taiwan. The Institutional Review Board of
CGMH approved the study protocol (No. 101-4968A3). All
recordings were acquired on the Alice 5 data acquisition system
(Philips Respironics, Murrysville, PA). Each recording lasts for
at least 5 h. The sleep stages, including wake, REM, and
NREM (REM and NREM constitute the sleep stage), were
annotated by two experienced sleep specialists according to the
AASM 2007 guidelines (Iber et al., 2007), and a consensus was
reached. According to the protocol, the sleep specialists provide
annotation for non-overlapping 30 s long epochs. In this study,
we focus on the second lead of the ECG recording, which was
sampled at 200 Hz. There are 90 participants without sleep apnea
[each with apnea-hypopnea index (AHI) <5] in this database,
among which we consider only 56 participants who have at least
10% epochs labeled as wake to avoid the imbalanced data issue.

We consider three validation databases. The first one is
the CGMH-validation database. This database consists of 27
participants acquired independently of CGMH-training from the
same sleep laboratory in CGMH under the same Institutional
Review Board. The other two validation databases are publicly
available. The DREAMS Subjects Database1 (DREAMS), consists
of 20 recordings from healthy participants, where the ECG
recordings were acquired by the BrainnetTM system (Medatec,
Brussels, Belgium). The sampling rate is 200 Hz, and the

1doi: 10.5281/zenodo.2650142
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minimum recording duration is 7 h. Although the race
information is not provided, we may assume that its population
constitution is different from that of the CGMH databases since
it is collected from Belgium. This database is chosen to assess the
model’s performance on participants of a different race recorded
from different recording machine. The third database is the St.
Vincent’s University Hospital/University College Dublin Sleep
Apnea Database (UCDSADB) from Physionet (Goldberger et al.,
2000)2. It consists of 25 participants with sleep apnea of various
severities. The ECG signal was recorded by Holter monitor at the
sampling rate of 128 Hz. The minimum recording is 6 h long.
We focus on the first ECG lead in this study. The UCDSADB is
chosen to assess the model’s performance on recordings which
come from participants with sleep disorders.We remark the these
validation databases are not used to tune the model’s parameters,
and no subject is rejected.

4.2. Time Series to Analyze—Instantaneous
Heart Rate
The data preprocessing steps are the same as those shown in
Malik et al. (2018). Here we summarize those steps and refer
readers to Malik et al. (2018) for more details. First, apply a
standard automatic R peak detection algorithm (Elgendi, 2013).
Suppose there are nk R peaks in the k-th subject’s ECG recording.
Denote {rk,i}

nk
i=1 the location in time (sec) of the detected R peaks

of the k-th subject. We apply the 5-beat median filter to remove
artifacts in the detected R peaks; that is, if a detected beat is
too close or too far from their preceding beats, it is removed
or interpolated. Then, the IHR of the k-th recording, denoted
as xk, is determined by the shape-preserving piecewise cubic
interpolation (Task Force of the European Society of Cardiology
and others, 1996) over the nonuniform sampling

xk(rk,i) = 60(rk,i − rk,i−1)
−1. (12)

xk describes the IHR at each time in beats-per-minute. The
IHR is sampled at a sampling rate of 4 Hz. We break the IHR
signal into 30-s epochs following the same epoch segmentation
in the experts’ annotations. We discard all epochs with fewer
than 5 detected R peaks. This step is adjusted by physiological
knowledge. For each labeled epoch, we build a time series of
90 s in length by concatenating the epoch with the preceding
2 epochs. For the sake of handling the inter-individual variance,
each 90 s time series is normalized by subtracting its median
value. Thus, for the j-th epoch of the k-th recording, the
associated time series we consider is

x(k,j) :=
[
xk(tj − 359/4), xk(tj − 358/4), . . . , xk(tj − 1/4), xk(tj)

]⊤

−median{xk(tj − (q− 1)/4)| q = 1, . . . , 360} ∈ R
360,

(13)
where tj indicates the ending time of the j-th epoch.

2https://archive.physionet.org/pn3/ucddb/

4.3. IHR Time Series and Their Persistence
Diagrams
Following the discussion in section 3, we apply TDA to IHR time
series defined in (13), x(k,j). More precisely, we consider P0(x

(k,j))
via the sub-level set filtration, and Pi(R120,1(x

(k,j))) for i = 0, 1,
via the Vietoris-Rips complex filtration. We extract persistence
statistics from both P0(x

(k,j)) and Pi(R120,1(x
(k,j))), where i =

0, 1. We summarize section 3 and highlight our approach in the
following pseudocode. See also Figure 2 for an illustration.

Algorithm 1: Feature Extraction Scheme

Input: A time series, x(t).
Output: Topological features used in this article.

1. Calculate P0(x) via sublevel set filtration (as in section 3.1).
2. Calculate Pi(R120,1(x)) via VR complex filtration (as in
section 3.2).
3. Calculate PS features:[
8(PS)(P0(x)), 8(PS)(P0(R120,1(x))), 8(PS)(P1(R120,1(x)))

]

(as in section 3.3).

We illustrate the IHR time series and their persistence
diagrams with different filtrations in Figures 6, 7. From a IHR
time series during a wake (resp. sleep) epoch shown in Figure 6A

(resp. Figure 7), we observe that these IHR’s seem to be different:
wake epoch seems to have more variability than sleep one does.
Sub-level set filtration captures such variability in the form of
the persistence diagram. As shown in Figures 6B, 7B, their
persistence diagram’s of sub-level set filtration are different.
Points in Figure 6B spread widely whilemost points in Figure 7B
are clustered around lower left portion of the diagram. Moreover,
Figure 6B seems to have more long-lived points than Figure 7B

does. Next, we examine the persistence diagrams of Vietoris-Rips
complex filtration. In this work, we take (p, τ ) = (120, 1), where
p = 120 is equivalent to a 30 s long time series (since the sampling
rate is 4 Hz). This set of parameters is motivated/guided by
the AASM criteria where the sleep stage is assigned based on
the 30-s readings. The parameters (120, 1) can be thought as
sliding a window of a 30-s long time series, and P(R120,1(x))
stores information about changes of this 30-s sliding window over
time. Figures 6C, 7C show examples of R120,1(x

(k,j)) projected
onto their first three principal components. Visually, the point
clouds of Figures 6C, 7C have different shapes (former seems
to have a “lamp” shape while the latter does not), and their
persistence diagrams shown in Figures 6D, 7D are also different.
For instance, the red points in Figure 6D cluster around birth
values 10 ∼ 20, the red points in Figure 7D have three clusters
around the birth values 15 ∼ 25, 30 ∼ 40, and 55. It is important
to note that the computations on P0(R120,1(x

(k,j))) are done on
the R

120 space, and projection onto their first three principal
components is merely for the visualization purpose.

As discussed in section 2.4, while it is possible to analyze
the data via persistence diagrams, it is usually computationally
challenging. The proposed persistence statistics allows us to
further summarize the persistence diagrams and quantify the
above observations. To examine the persistence statistics features,
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FIGURE 6 | An illustration of the IHR during the wake stage. (A) The IHR signal x(k,j); (B) the persistence diagram of the sub-level set filtration, P0(x
(k,j)); (C) The first

three principal components of the point cloud R120,1(x
(k,j)); (D) the persistence diagrams of the Vietoris-Rips filtration, P0 (R120,1(x

(k,j))) and P1(R120,1(x
(k,j))) are

superimposed, where blue and red points represent q = 0 and q = 1, respectively.

take
⋃

k{8
(PS)(P0(x

(k,j)))}
nk
j=1 as an example. In order to compare

them on the same scale, we perform the standard z-score
normalization for each subject. We abuse the notation and
use 8(PS)(P0(x

(k,j))) to denote the normalized parameters.
In Figure 8A, we show the boxplot of each normalized
persistence statistics parameter, where blue (red) bars represent
the persistence statistics associated with an IHR time series
associated with the sleep (wake) stage. We performed a rank
sum test with the null hypothesis that two samples have equal
medians with a significance level of 0.05 with the Bonferroni
correction. We found that there are significant differences
between waking and sleeping features for all persistence statistics
parameters, except for the kurtosis of M (labeled as 4 in
Figure 8A), and the median of L (labeled as 14 in Figure 8A).
The boxplot as shown in Figure 8A shows that the mean and

standard deviation ofM are the most distinguishable persistence

statistics parameters between sleep and wake epochs. To further
visualize these features, we apply the principle component

analysis (PCA) to
⋃

k{8
(PS)(P0(x

(k,j)))}
nk
j=1, and plot the first

three principal components in R
3 as shown Figure 8B. We

observe a separation between sleep and wake features. The

visualization of 8(PS)(Pi(R120,1(x
(k,j)))), where i = 0, 1, is shown

in Supplementary Figure 5.
Motivated by the above observation and discussion, we

consider the following features for x(k,j) to distinguish sleep and

wake epochs:

[8(PS)(P0(x
(k,j))), 8(PS)(P0(R120,1(x

(k,j)))),

8(PS)(P1(R120,1(x
(k,j))))]. (14)

4.4. Automatic Sleep Stage Annotation
System
4.4.1. Support Vector Machine as the Learning Model
We consider the widely applied classifier with a solid theoretical
foundation, the support vector machine (SVM), to establish
the heartbeat classification model. This is Step 4 (machine
learning step) shown in Figure 2. The linear function kernel is
considered in this work and we use the Matlab built-in function
fitcsvm with default parameters. The input data are features
shown in (14), which are calculated by the publicly available
libraries DIPHA (https://github.com/DIPHA/dipha) and Ripser
(https://github.com/Ripser/ripser). When there are more than 2
classes, we apply the Error-Correcting Output Codes (ECOC)
Dietterich and Bakiri (1994) with one-versus-one design.
Specifically, we use the Matlab built-in function fitcecocwith
default parameters. The Matlab version is 2019b.

4.4.2. Statistics
We carry out the cross-database validation. Specifically, we train
the SVM model on one database, and evaluate the performance
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FIGURE 7 | An illustration of the IHR during the sleep stage. (A) The IHR signal x(k,j); (B) The persistence diagram of the sub-level set filtration, P0(x
(k,j)); (C) The first

three principal components of the point cloud R120,1(x
(k,j)); (D) the persistence diagrams of the Vietoris-Rips filtration P0(R120,1(x

(k,j))) and P1(R120,1(x
(k,j))) are

superimposed, where blue and red points represent q = 0 and q = 1, respectively.

FIGURE 8 | Distribution of normalized persistence statistics features, 8(PS)(P0(x
(k,j))). (A) Boxplot of the 8(PS)(P0(x

(k,j))). The numbers listed on the horizontal axis

indicates the number of persistence statistics. *Indicates that the feature fails to reject the null hypothesis (that two samples have equal medians) of the significance

level of 0.05 on the rank sum test with Bonferroni correction. (B) Visualization of
⋃

k{8
(PS)(P0(x

(k,j)))}
nk
j=1 by the first three principal components.

on the other databases. One of the main challenges in this
automatic annotation problem is that the datasets are usually
imbalanced; for example, the number of wake epochs is usually
much smaller than that of sleep epochs (e.g., in the CGMH-
training, the total number of wake epochs is 9, 150, while the
total number of sleep epochs is 54, 547). Learning on imbalanced

datasets is one of challenging topics in machine learning (He
and Ma, 2013; Kuhn and Johnson, 2013; Fernández et al., 2018).
Typically, the accuracy would heavily skew toward the majority
case. Taking the above CGMH-training as an example, if a model
predicts all epochs as sleep, then its accuracy is 54547/(9150 +

54547) ≈ 85%, whichmay seem high at the first glance. However,
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this model is clearly useless because it has no predictability for the
wake, which can be seen through the sensitivity, 0/9150 = 0.
Therefore, in the case of imbalanced datasets, both sensitivity
and specificity would be important indicators to evaluate the
performance of a model. They both should be as high as possible,
and they should be on the similar level.

In order to account for the imbalanced dataset, we adopt
a down-sampling process. Let Es and Ew be the collection of
all sleep and wake epochs, respectively, across all subjects in
the training set, and denote their cardinality by |Es| and |Ew|,
respectively. We take all epochs in Ew, and randomly select |Ew|
epochs from Es. The SVM model will then be built on these
balanced epochs. Once the model is built on the training dataset,
we test it on the entire testing dataset.

We report the following performance measurement indices.
When there are m labels, denote M ∈ R

m×m to be the
confusion matrix of the automatic classification model, where
Mkl represents the count of epochs whose known group labels
are k and whose predicted group labels are l. The sensitivity (SE),
positive predictivity (+P) and F1 for the k-th class, the Cohen
kappa, and the overall accuracy (Acc) are defined as

SEk =
Mkk∑m
l=1Mkl

, +Pk =
Mkk∑m
l=1 Mlk

, F1k =
2(+Pk) · SEk

(+Pk)+ SEk
,

Acc =

∑m
k=1Mkk∑m

k=1

∑m
l=1 Mkl

, Kappa =
Acc− EA

1− EA
,

(15)
respectively, where EA means the expected accuracy and is
defined by

EA =

∑m
p=1

(∑m
q=1Mpq

)
×

(∑m
q=1Mqp

)

(∑m
p,q=1 Mpq

)2 . (16)

When m = 3, k = 1 means wake, k = 2 means REM, and
k = 3 means NREM. When classifying wake and sleep stages,
k = 1 means wake, and k = 2 means sleep; when classifying
REM and NREM stages, k = 1 means REM, and k = 2
means NREM. When m = 2, SE1 is reduced to the usual
sensitivity (SE), SE2 is reduced to the usual specificity (SP), and
+P1 is reduced to the precision (PR). For each database and
each performance measurement, we report the mean± standard
deviation of all subjects.

All experiments in this and next sections were done using
Windows 7 operating system environment equippedwith i5-4570
CPU and 32 GB RAM. Under this computational environment,
given a random seed, the whole training process of an SVM
model takes 5–7min on average. For the reproducibility purpose,
the Matlab code is available in the GitHub repository website3.

4.4.3. Automatic Sleep Stage Classification Result
We performed three classification tasks—sleep v.s. wake, REM
v.s. NREM, and finally wake v.s. REM v.s. NREM. The random
seed is fixed to 1 in all cases whenwe ran the subsampling scheme.
The results are shown in Tables 1–3, where the SVM model was

3https://github.com/peterbillhu/TDA_for_SleepWake_Classifications

TABLE 1 | SVM cross-database performance of subjects for Wake and Sleep

classification with a single random seed.

CGMH-training CGMH-validation DREAMS UCDSADB

TP 76 ± 43 76 ± 44 101 ± 55 85 ± 44

FP 151 ± 49 126 ± 48 175 ± 61 149 ± 59

TN 462 ± 68 449 ± 102 592 ± 112 448 ± 110

FN 27 ± 33 42 ± 43 56 ± 45 73 ± 52

SE (%) 78.3 ± 14.7 70.9 ± 16.0 66.9 ± 16.1 57.6 ± 15.5

SP (%) 76.0 ± 6.1 78.9 ± 5.4 77.6 ± 5.8 75.3 ± 5.5

Acc (%) 75.2 ± 5.4 75.8 ± 4.4 74.7 ± 5.0 70.6 ± 5.4

PR (%) 34.0 ± 17.0 38.1 ± 19.6 37.0 ± 18.8 35.6 ± 17.3

F1 0.438 ± 0.161 0.452 ± 0.140 0.445 ± 0.146 0.407 ± 0.140

AUC 0.839 ± 0.084 0.824 ± 0.090 0.789 ± 0.090 0.702 ± 0.094

Kappa 0.320 ± 0.146 0.322 ± 0.123 0.308 ± 0.148 0.238 ± 0.133

The training database is CGMH-training. For each database and each performance

measurement, we report the mean ± standard deviation of all subjects.

TABLE 2 | SVM cross-database performance for REM and NREM classification

with a single random seed in the training procedure.

CGMH-training CGMH-validation DREAMS UCDSADB

TP 75 ± 31 68 ± 30 93 ± 34 64 ± 34

FP 113 ± 32 106 ± 43 138 ± 51 133 ± 35

TN 400 ± 68 391 ± 94 490 ± 97 373 ± 68

FN 25 ± 23 20 ± 17 46 ± 27 50 ± 37

SE (%) 76.3 ± 16.0 78.1 ± 17.4 67.5 ± 16.7 58.0 ± 18.0

SP (%) 78.0 ± 4.8 79.6 ± 6.5 78.4 ± 5.2 73.7 ± 5.8

Acc (%) 77.4 ± 5.6 77.8 ± 8.3 76.3 ± 6.4 70.4 ± 6.4

PR (%) 39.4 ± 13.6 41.4 ± 19.0 41.0 ± 15.4 31.9 ± 16.0

F1 0.505 ± 0.138 0.510 ± 0.160 0.503 ± 0.144 0.390 ± 0.156

AUC 0.842 ± 0.094 0.849 ± 0.108 0.796 ± 0.115 0.711 ± 0.120

Kappa 0.382 ± 0.150 0.393 ± 0.175 0.312 ± 0.175 0.227 ± 0.162

The training database is CGMH-training. The subject #24 in CGMH-validation and subject

#9 in UCDSADB were dropped because they do not have REM epochs. For each

database and each performance measurement, we report the mean± standard deviation

of all subjects.

trained on the CGMH-training dataset and tested on CGMH-
validation, DREAMS, and UCDSADB, respectively. For the
interested readers, we also include extensive experimental results
with different settings in Supplementary Material (section 3),
such as results of training on different datasets, and different
random seeds. All results are similar to those reported in the
main article.

Table 1 lists the result of classifying wake and sleep stages
with different testing sets. For each testing database, we show
the mean±standard deviation of each prediction outcome
measurement of all subjects in that database. Table 1 shows
the performances of training the model on CGMH-training
and testing it on CGMH-validation, DREAMS, and UCDSADB.
When considering the CGMH database, the (SE, SP) pair for
CGMH-training and CGMH-validation are (78.3±14.7%, 76.0±
6.1%) and (70.9±16.0%, 78.9±5.4%), respectively. When testing
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TABLE 3 | SVM cross-database performance for Wake, REM, and NREM

classification with a single random seed in the training procedure.

CGMH-trainingCGMH-validation DREAMS UCDSADB

SE (%) (Wake) 63.7 ± 15.3 61.1 ± 19.0 56.2 ± 14.5 39.5 ± 11.9

SE (%) (REM) 62.8 ± 17.4 67.1 ± 20.9 57.0 ± 18.0 48.4 ± 19.6

SE (%) (NREM) 71.9 ± 6.7 72.6 ± 6.4 72.5 ± 6.8 66.0 ± 7.6

+P (%) (Wake) 40.6 ± 19.1 43.7 ± 16.6 44.1 ± 18.3 39.3 ± 17.9

+P (%) (REM) 39.1 ± 14.9 40.0 ± 17.7 39.4 ± 15.5 28.5 ± 15.8

+P (%) (NREM) 89.3 ± 8.8 85.6 ± 16.0 83.7 ± 8.6 76.6 ± 9.2

Acc (%) 68.3 ± 6.4 67.6 ± 9.2 66.3 ± 6.4 57.1 ± 7.1

Kappa 0.401 ± 10.2 0.390 ± 0.117 0.372 ± 0.1160.244 ± 0.108

The training database is CGMH-training. The subject #24 in CGMH-validation and the

subject #9 in UCDSADB were dropped because they do not have REM epochs. For each

database and each performance measurement, we report the mean± standard deviation

of all subjects.

on DREAMS, the (SE, SP) pair becomes (66.9 ± 16.1%, 77.6 ±

5.8%). SP remains in the range of 70%, although SE falls below
70%. This result of the cross database testing is similar to that of
validation result. When tested on UCDSADB, the pair of (SE, SP)
becomes (57.6 ± 15.5%, 75.3 ± 5.5%). The overall performance
on UCDSADB drops as expected since it contains sleep apnea
subjects, and their sleep dynamics is disturbed by the sleep apnea.
Overall, the cross-database validation results suggest that our
model does not overfit. Moreover, we found that the down-
sampling scheme alleviates the imbalance database issue.

Table 2 shows the performance for the REM and NREM
classification. In this task, since the number of NREM epochs is
much more than that of REM epochs, we apply the same down-
sampling process to NREM as discussed in section 4.4.2.Tables 1,
2 have several similarities.

Finally, Table 3 shows the performance for the wake, REM,
and NREM classification. In this experiment, since the number
of NREM is much more than those of wake and REM, the
down-sampling scheme is applied to NREM. The Acc’s in all
cases are about 60%, except the UCDSADB. The SE’s of wake,
REM, and NREM are balanced and consistent across databases,
except UCDSADB. Again, this result might be due to the fact
that UCDSADB contains subjects with sleep apnea. On the other
hand, note that the +P of NREM is higher than other classes,
which is expected due to the dependence of +P on the database
prevalence. In Supplementary Material, we provide more cross-
database validation results.

5. DISCUSSION AND CONCLUSION

In this work, the TDA tools are considered to analyze time
series. Specifically, we propose a set of novel persistence statistics
features to quantify HRV by analyzing IHR time series by TDA
tools. The proposed HRV features are applied to predict sleep
stages, ranging fromwake, REM, andNREM. In addition to being
computationally efficient, the algorithm is theoretically sound
supported by mathematical and statistical results. Note that while
we focus on the HRV analysis for the sleep stage annotation, the

proposed algorithm has a potential to be applied to analyze other
time series and study the HRV for other clinical problems.

5.1. Theoretical Supports and Open
Problems
We find that empirically, M and L are simple yet effective
representations of the persistence diagram and reveal signatures
about the underlying object. It would be interesting to investigate,
in theory, the probability distribution of M and L for a given
simplicial complex. However, to the best of our knowledge,
while there have been several works in this direction, it is
still a relatively open problem. Recently, there has been
some theoretical work toward this direction, namely the theory
of random complexes (see e.g., survey papers Kahle, 2014;
Bobrowski and Kahle, 2018 and references therein). In order to
understand the role of noises in the persistence diagram, there
have been studies on the topology of the noise. In the theory of
random fields, authors in Mischaikow et al. (2010) used sub-level
sets as filtration to study the number of components (β0) with
various random processes; in Adler et al. (2010), authors studied
the relation between random fields and the persistent homology
in general. In particular, as mentioned in Adler et al. (2010): “It
would be interesting to know more about the real distributions
lying behind the persistence diagram, but at this point we
know very little.” There is also a result in random cubical
complexes (Hiraoka and Tsunoda, 2018), and a few work on the
limiting theorem of total sum persistence (Owada, 2018) and
persistence diagrams (Hiraoka and Tsunoda, 2018). It would also
be interesting to study the stability of each persistence statistics.
As of now, only the sum of L, the max of L, and the entropy of L
have been shown to be stable (Cohen-Steiner et al., 2010; Atienza
et al., 2020). However, the rest of persistence statistics is still
unknown. Another interesting direction, instead of focusing on
each persistence statistics, is to study the probability distributions
of M and L. For instance, let ρM and ρL be the empirical
probability density function of the sets M and L, respectively.
For S = M or S = L, could one establish ‖ρS(f ) − ρS(g)‖D ≤

dB(Pq(f ),Pq(g)), where ‖·‖D is some suitable statistical distance?
We leave those interesting theoretical problems to future work.

5.2. Comparison With Existing Automatic
Sleep Stage Annotation Results
There have been several results in automatic sleep stage
annotation by taking solely the HRV into account. A common
conclusion is that classifying sleep-wake by quantifying HRV
is a challenging job. In general, due to the heterogeneity of
the data sets, various evaluation criteria and different features
and models used in these publications, it is difficult to have a
direct comparison. But to be fair, below we summarize some
related existing literatures for a discussion. To the best of our
knowledge, except (Malik et al., 2018), there is no result reporting
a cross-database validation. For those running validation on
a single database, we shall distinguish two common cross
validation (CV) schemes – leave-one-subject-out CV (LOSOCV)
and non-LOSOCV. When the validation set and the training set
come from different subjects, we call it the LOSOCV scheme;
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otherwise we call it the non-LOSOCV scheme. The LOSOCV
scheme is in general challenging due to the uncontrollable inter-
individual variability, while the non-LOSOCV scheme tends
to over-estimate. Therefore, for a fair comparison, below we
only summarize papers considering only the IHR features and
carrying out the LOSOCV scheme.

In Xiao et al. (2013), the database was composed of healthy
participants aged 16 − 61 years. A random forest model was
established to differentiate between the wake, REM, and NREM
stages for those epochs labeled as “stationary.” Based on the
confusion matrix provided in Xiao et al. (2013), the SE, SP, Acc,
and F1 for detecting the wake stage are 51.2, 90.2, 84.0, and
0.50%. The authors also provided the SE of wake, REM, and
NREM, which are 53.72±20.15, 59.01±19.72, and 79.50±7.82%
respectively. In Table 3, our validation on CGMH-validation is
61.1 ± 19.0, 67.1 ± 20.9, and 72.6 ± 6.4%, respectively. Observe
that our SE of wake and REM are better, and SE of NREM is on
the similar level. In addition to the balance of all classes due to
the sub-sampling scheme in our result, note that we focus on all
epochs but not “stationary epochs,” and the subjects in CGMH-
validation are not healthy but simply without sleep apnea.

In Mendez and Matteucci (2010), the database was composed
of 24 participants aged 40 − 50 years with 0 AHI. The authors
took the temporal information and the phase and magnitude of
the “sleepy pole” as features to train a hidden Markov model
to differentiate REM and NREM stages. The reported SE, SP,
and Acc were 70.2, 85.1, and 79.3%, respectively. Our results
outperform theirs. Our SE, SP and Acc of the REM and NREM
classification in CGMH-validation shown in Table 2 are 78.1 ±

17.4, 79.6± 6.5, and 77.8± 8.3%, respectively. Observe that both
Accs are similar which means portion of correct predictions are
similar. Not only our SE is better, but SE and SP are also balanced.

In Lewicke et al. (2008), the database is composed of 190
infants. A variety of features and classification algorithms were
considered and the wake and sleep classes were balanced for the
analysis. The SE and SP of their multi-layer perceptron model
without rejection was 79.0 and 77.5%, respectively. InTable 1, the
SE and SP of our result on CGMH-validation is 70.9 ± 16.0 and
78.9± 5.4%. Our performance is comparable to theirs. However,
there is a fundamental difference between their experiments and
ours—the sleep dynamics of infants and adults are different.

In Aktaruzzaman et al. (2015), the database is composed
of 20 participants aged 49-68 years with varying degrees of
sleep apnea. Detrended fluctuation analysis and a feed-forward
neural network were applied to differentiate the wake and sleep
stages. Various epoch lengths were considered, and the highest
performance was recorded on an epoch length of 5 min. The
Acc, SE, SP, and Cohen’s kappa were 71.9 ± 18.2, 43.7 ± 27.3,
89.0±7.8, and 0.29±0.24, respectively. We consider UCDSADB
for a comparison. In Table 1, the Acc, SE, SP, and Cohen’s kappa
of our testing result on UCDSADB is 70.6 ± 5.4, 57.6 ± 15.5,
75.3 ± 5.5, and 0.238 ± 0.133%. Their Acc and ours are on the
same level, our SE is better than theirs, while their SP is better
than ours. However, our SE and SP are balanced compared with
theirs. A major difference is that our standard deviations for Acc,
SE, SP are much smaller. Thus, our performance is comparable
to theirs.

In Long et al. (2012), fifteen participants aged 31.0 ± 10.4
years with the Pittsburgh Sleep Quality Index less than 6 were
considered. The linear discriminant-based classifier was trained
with spectral HRV features. The SE, SP, Cohen’s kappa and AUC
were 49.7± 19.2%, 96± 3.3%, 0.48± 0.24 and 0.54, respectively.
As shown in Table 1, the SE, SP, Cohen’s kappa and AUC of our
result on CGMH-validation is 70.9±16.0, 78.9±5.4, 0.322±0.123,
and 0.824 ± 0.090%, respectively. Again, compared with their
results, our SE and SE are more balanced.

To make a conclusion, we emphasize that all those results
under comparison are not carried out in the cross-database
scheme. Also, usually the SE and SP are not balanced with
high SP, which leads to the high accuracy. Therefore, the
results suggest that the proposed persistence statistics features
and chosen learning model lead a better, or at least similar,
performance compared with the state-of-the-art results. The
cross-database validation further suggests the usability of the
persistence statistics features and the proposed learning scheme
in clinical setups. Last but not the least, due to the numerical
efficiency of the proposed persistence statistics features, it is
potential to apply it to analyze large scale time series.

5.3. Technical Issues
We remark that although it is possible to include Pi(R120,1(x

(k,j)))
for i ≥ 2 in (14), in practice, it is a challenging task due to
its computational complexity. Its computation is known to be
poorly scalable in dimension and memory-intensive. We refer
readers to Otter et al. (2017) for more details and comparisons
among state-of-arts TDA packages and extensive benchmark.
To get an idea of the computational cost, for any epoch, the
computational time by the state-of-art package Ripser for
P1(R120,1(x

(k,j))), P2(R120,1(x
(k,j))), and P3(R120,1(x

(k,j))) are
0.06, 1.7, and 106 s in a standard laptop, respectively. This
echos the fact that the computation of Pi(R120,1(x

(k,j))) does
not scale well in i Otter et al. (2017). We demonstrated
on adding features P2(R120,1(x

(k,j))) and tested classification
performance on DREAMS and UCDSADB datasets. The
results are listed in Supplementary Tables 18, 19. Comparing
Supplementary Table 18 with Supplementary Table 1 and
Supplementary Table 19 with Supplementary Table 2, we find
that the improvements are too marginal to justify the additional
computational time.

Thus, it would be inefficient to obtain the higher dimensional
persistence features. A possible approach for tackling the
computational inefficiency is to reduce the Taken’s embedding
dimension. In Myers et al. (2019), the authors discussed how
to find a proper embedding dimension p by considering the
false nearest neighbors (Fraser and Swinney, 1986). It would be
interesting to combining this embedding technique to our future
works. Also, finding another reduction criterion for the Taken’s
embedding is also an important future direction.

5.4. Limitations and Future Directions
In addition to the theoretical development discussed above, there
are several interesting practical problems left untouched. While
we systematically consider the inter-individual variance, the race,
the machine, and the sleep disorder by taking three different
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databases into account, we acknowledge the fact that the data
is collected from the sleep lab. When the data is collected from
the real-world mobile device, it is not clear if the algorithm could
perform as well and run in real-time. Moreover, its performance
for the home-based screening needs to be further evaluated. Yet,
in the current mobile health market, the photoplethysmography
(PPG) sensor has been widely applied, and its applicability for
the sleep-wake classification has been reported in Malik et al.
(2018). It is interesting to see how the TDA approach could
be applied to analyze the HRV from the PPG for the sleep
stage classification mission. From the data analysis perspective, it
would be interesting to perform amore sophisticated analysis and
take other features from the persistence diagram. For instance,
the persistent homology transformation (Turner et al., 2014b)
was recently developed and proven to be a sufficient statistic, and
had been successfully applied to the shape analysis. It would be
interesting to combine the persistent homology transformation
and persistence statistics. IHR is a well-known non-stationary
time series. Based on the encouraging results of applying the
TDA, we suspect that the persistence statistics features could
be applied to study other clinical problems related to HRV, and
furthermore, analyze other physiological time series, including
the multivariate ones. There has been some work using TDA
tools to analyzing the multivariate time series (Merelli et al.,
2015; Gidea and Katz, 2018;Wu and Hargreaves, 2021) where the
critical step is to transform multivariate time series into a point
cloud so that Vietoris-Rips complex persistent homology can be
computed. It would also be interesting to investigate ways to use
the sublevel set filtration in this context. We will explore those
limitations/directions in our future work.
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