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Abstract: Neuro-ophthalmological changes have been reported after prolonged exposure to micro-
gravity; however, the pathophysiology remains unclear. The objectives of the present study were
twofold: (1) to assess the neuro-ophthalmological impact of 21 days of head-down bed rest (HDBR)
and (2) to determine the effects of resistance vibration exercise (RVE) alone or combined with nutri-
tional supplementation (NeX). In this case, 12 healthy male subjects completed three interventions
of a 21-day HDBR: a control condition without countermeasure (CON), a condition with resistance
vibration exercise (RVE) comprising of squats, single leg heel and bilateral heel raises and a condition
using also RVE associated with nutritional supplementation (NeX). Intraocular pressure (IOP) was
assessed by applanation tonometry. Retinal nerve fiber layer thickness (RNFLT) was assessed with
spectral-domain optical coherence tomography, before HDBR and between Day 2 and Day 4 after
each session of HDBR. In CON condition, IOP was preserved; while in RVE and NeX conditions,
IOP was increased. In CON condition, RNFLT was preserved after HDBR. RVE and NeX conditions
did not have significant effects on RNFLT. This study showed that a 3-week HDBR did not induce
significant ophthalmological changes. However, RVE induced an elevation in IOP after HDBR.
Nutritional supplementation did not reduce or exacerbate the side effects of RVE.

Keywords: optical coherence tomography; intraocular pressure; head-down bed rest; microgravity

1. Introduction

Changes in astronauts’ visual function and ocular structure have been reported af-
ter long duration spaceflights defined by NASA as Spaceflight-Associated Neuro-ocular
Syndrome (SANS) [1]. Some astronauts developed some level of optic disc edema after
long-duration spaceflight [2]; with only partial recovery one year after landing [1]. Indeed,
some crewmembers who underwent the environment on the International Space Station
during several months, exhibited a large panel of ophthalmologic issues including enlarge-
ment in optic nerve sheath diameter, a rise in intraocular pressure (IOP), papilledema,
increase in circumpapillary retinal nerve fiber layer thickness (RNFLT), optic disc edema,
choroidal folds, hyperopic shift, globe flattening, etc. All these phenomena may reflect a
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rise in intracranial pressure (ICP). Another hypothesis explaining SANS was a compart-
mentalization of cerebrospinal fluid within the orbital optic nerve sheath [2–7]. Thus, the
description of these visual changes is questioning the medical space community on safety
aspects of long duration spaceflights.

Countermeasures (such as muscular exercise, dietary regimen, thigh cuffs, etc.) have
been tested to counteract the harmful effects of microgravity. However, most of these
countermeasures provides partial protection. During spaceflight, resistance exercise and
dietary regimen are employed in order to lessen bone loss or muscle wasting [8,9]; how-
ever, they were also considered as risk factors contributing to an increased ICP during
spaceflight [2,10]. Very little data is available on the impact of these countermeasures on
ocular changes (and consequently on ICP) in microgravity. However, it was previously
demonstrated that resistance exercise might induce a rise in IOP [11–13]. NASA was also
recommended a low sodium consumption to avoid developing visual outcomes [12,14].

Ground-based model of microgravity are primordial for determining the impact of
weightlessness on crewmembers’ health. Head-down bed rest (HDBR) is one of the most
popular analogues to microgravity. The subject remains in supine position on a bed at
−6 degrees for very variable periods (from days to months). This model reproduces several
physiological changes encountered during spaceflight such as, immobilization, inactivity,
cardiovascular deconditioning, alteration in vestibular function, etc. [11]. The purpose of
the present study was twofold: (1) to assess the neuro-ocular modifications induced by
a 21-day HDBR, and (2) to determine whether resistance vibration exercise (RVE) alone
or combined with nutritional supplementation (NeX) may alter these HDBR-induced
ophthalmological adaptations. We hypothesized that HDBR will provoke thoraco-cephalic
fluid resulting in an increase in ICP as reflected by ophthalmological changes. We also
made the assumption that RVE and NeX countermeasures could strengthen the effects of
HDBR on ICP.

2. Materials and Methods
2.1. Subjects

This study (registered number: 2012-A00337-36) was carried out with the recommen-
dations of the Ethics Committee (CPP Sud-Ouest Outre-Mer I). The protocol was approved
by the French Health Authorities. All subjects gave written informed consent in accordance
with the Declaration of Helsinki. The study was performed by the Institute for Space
Medicine and Physiology (MEDES-IMPS) in Toulouse, France and supported by the French
Spatial Agency [Centre National d’Etudes Spatiales (CNES)]. 12 healthy men (at selection:
34 ± 7 years; 176 ± 7 cm; 70 ± 7 kg) were included in the study.

The inclusion criteria were healthy male volunteer, age: 20–45 years, height: 158–190 cm,
BMI: 20–26 kg/m2, no family nor personal past record of acute or chronic diseases, no
psychological disturbances, fitness assessment for <35 years: 35 mL/min/kg < VO2max <
60 mL/min/kg and >35 years: 30 mL/min/kg < VO2max < 60 mL/min/kg, no orthopedic,
musculoskeletal or cardiovascular disorders, and no history of regular smoking, no alcohol,
no drug dependence and no medical treatment.

The non-inclusion criteria were orthostatic intolerance, arterial hypertension and
cardiac rhythm disorders. Glaucoma, optic nerve known pathology or eye injury that could
interfere with the results and their interpretation. Chronic back pains, vertebral fracture,
scoliosis or herniated disc, history of knee problems or joint surgery/broken leg. History
of hiatus hernia or gastro-esophageal reflux, thyroid dysfunction, renal stones, diabetes
and migraines. Past records of thrombophlebitis, family history of thrombosis or positive
response in thrombosis screening procedure. Abnormal result for lower limbs in Doppler
ultrasound. Bone mineral density: T-score ≤ −1.5, osteosynthesis material, presence of
metallic implants. Poor tolerance to blood sampling and having donated blood (more than
8 mL/kg) in a period of 8 weeks or less before the start of the experiment.
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2.2. General Description

Reproducing the space environment by abolishing the longitudinal gravitational stress,
the HDBR consists in a bed-rest in a 6◦ head-down tilt position. The ophthalmological
assessments performed were part of the medical follow-up. During the HDBR period,
subjects were randomly divided into three groups according to the countermeasures
tested: a control group (no countermeasure), a group performing resistance exercise with
vibrations and a group performing resistance exercise with vibrations associated with
nutritional countermeasures. This study included 3 sessions of 35 days of hospitalization,
each with a 21-day HDBR session. Each session was separated from the next one by a
period of 3 months. A flow chart of the study is represented Figure 1.
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Figure 1. Flow chart of the study.

The order of the three interventions during HDBR was randomized: none (CON), resis-
tance vibration exercise (RVE) alone or combined with nutritional supplementation (NeX)
with the following sequences (CON/RVE/NeX or RVE/NeX/CON or RVE/CON/NeX).
Four subjects withdrew from the study, one during the second campaign and three oth-
ers during the third campaign. Ophthalmologic data were completed in eight subjects;
therefore, we performed a per-protocol analysis (Figure 2).
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Figure 2. Allocations for each subject. “CON” denotes control condition, “NeX” denotes resistance
vibration exercise with nutritional supplementation, “RVE” denotes resistance vibration exercise
condition.
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2.3. Countermeasures Description
2.3.1. Resistance Vibration Protocol

During each session, the sequence was performed as follows: (a) warm up consisted
to bilateral squats from 10◦ to 90◦ knee angle during 8 s (4 down, 4 up) controlled by
metronome with 8 repetitions, load: 50% of the one repetition maximum (1-RM), amplitude:
8 mm, vibration frequency: 24 Hz. (b) squatting exercise was realized by bilateral squats
from 10◦ to 90◦ knee angle during 8 s (4 down, 4 up) controlled by metronome with
10 repetitions, load at study start: 75% of the 1-RM, progression: 5% load increase when
more than 10 repetitions were possible, 5% load decrease when 6 or fewer repetitions
were possible, amplitude: 8 mm, vibration frequency: 24 Hz. (c) single leg heel raises
were carried out from maximal dorsiflexion to maximal plantar flexion as fast as possible
until exhaustion, 1.3 times body weight (bw), progression: 5% load increase when more
than 50 s were possible, 5% load decrease when 30 s or less were possible, amplitude:
8 mm, vibration frequency: 26 Hz. (d) bilateral heel raises were performed from maximal
dorsiflexion to maximal plantar flexion as fast as possible until exhaustion, 1.8 times bw,
progression: 5% load increase when more than 55 s were possible, 5% load decrease when
40 s or less were possible; amplitude: 8 mm, vibration frequency: 26 Hz.

2.3.2. Nutritional Supplementation

An isocaloric supplementation of whey protein (0.6 g/kg bw/day) was given to the
volunteers of the nutritional and exercise intervention sequence. The total protein intake
was 1.8 g/kg bw/day. The schedule of the protein supplementation was the following:
(1) on days without exercise applied in equal amounts with main meal and (2) on days
with exercise, half of the daily amount in a timeframe of 30 min after exercise and the
other half equally distributed with main meals. The product was Diaprotein®, a powder
supplied by Nephrologische Präparate Dr. Volker Steudle (Linden, Germany). The compo-
sition was as follows: Diaprotein® 100 g Powder, calorie intake 1573 kJ (370 kcal), proteins
90 g, fat 0.2 g, lactose 2.5 g, sodium < 300 mg, potassium < 650 mg, calcium < 400 mg,
phosphorus < 250 mg, relation phosphorus/protein < 3 mg/g. Since whey protein added
a certain acid load to the diet, supplementation of 90 mmol potassium bicarbonate per day,
applied in six portions (with main meals) was given to compensate for that. Effervescent
tablets of potassium bicarbonate were provided by Krüger GmbH and Co. (Bergisch Glad-
bach, Germany). The detailed profile of the supplement has been described previously [12].

2.4. Intraocular Pressure Measures

A topical local anesthetic solution (Tetracaïne, 1% per ophthalmic drops) was instilled
in each eye just prior to evaluation. IOP was performed at specific times between 2 p.m.
and 4 p.m. The IOP measurements were performed at rest in supine position, in both eyes,
once a day, with a Perkins tonometer (Perkins MK2, Haag Streit, Luneau, Chartres, France)
4 days before (BDC-4) and 1 day after (R + 1) HDBR. The final measure corresponds to the
average of these two measures.

2.5. Optical Coherence Tomography Measures

The measurements were performed at rest in seated position before HDBR (BDC) and
between Day 2 and Day 4 after each session of HDBR (R), with automatic follow-up scans
placement, by trained ophthalmologists. OCT was performed to quantify the RNFLT, as a
reflection of a disc swelling. Spectral domain OCT images were obtained with the Spectralis
OCT (Heidelberg Engineering software version 5.1.3.0, GmbH, Heidelberg, Germany). The
quality for each measurement was determined by a quality index provided by the OCT
device. Measurements not fulfilling this condition were automatically eliminated and
repeated. Optic nerve head thickness was divided in four quadrants: temporal, nasal,
superior and inferior. If the quality index of a measurement provided by OCT device was
not sufficient, each measurement was eliminated and repeated. Right and left eyes were
assessed. The final measure corresponds to the average of the two measures. All OCT
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measurements were validated by experts (Laurence Mahieu, Vincent Soler and Jean-Claude
Quintyn) blinded to the condition.

2.6. Eye Examination

An examination with slit lamp was also performed for each patient.

2.7. Statistical Analysis

Data were expressed as mean ± SD. We first checked whether data passed Shapiro–
Wilk normality test. A Bartlett’s test was applied in order to verify the homoscedasticity of
variances (p > 0.05). Two-way ANOVA with repeated measures with a Geisser–Greenhouse
correction was used with Sidak’s multiple comparisons test. Subjects were entered as
random factors and condition and time were included as fixed factors. All statistical
analyses were performed with GraphPrism 9. Differences were considered as statistically
significant when p < 0.05.

3. Results
3.1. Eye Examination

At the back of the eye, no lesion was seen, no papilledema, no hemorrhage before and
after HDBR. We did not ever observe venous pulsations of the optic nerve.

3.2. Intraocular Pressure Measures

In CON condition, compared to BDC-4, IOP was not significantly modified during
R + 1 (15.2 ± 3.5 mmHg vs. 14.4 ± 2.3 mmHg; p = 0.75). However, IOP was significantly
increased both in RVE (14.6 ± 2.4 mmHg vs. 16.4 ± 2.6 mmHg; p = 0.04) and NeX
(14.0 ± 3.3 mmHg vs. 15.4 ± 3.1 mmHg; p = 0.03) conditions during R + 1 (Figure 3).
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Figure 3. Intraocular pressure (IOP) before (BDC-4) and after (R + 1) head-down bed rest. Black dots
denotes control condition, blue dots denotes resistance vibration exercise (RVE) condition, green dots
denotes resistance vibration exercise with nutritional supplementation (NeX) condition.

3.3. Optical Coherence Tomography Measures

There were condition effects for RNFLT in temporal quadrant (p = 0.04). However,
Sidak post hoc test did not reveal any significant differences between groups. We also
noticed non-significant interaction effects for RNFLT in nasal quadrant. We did not observe
any significant modifications in RNFLT, neither in the superior quadrant nor in the inferior
quadrant. The average RNFLT was also preserved (Table 1).
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Table 1. Optical coherence tomography data before (BDC) and after (R) head-down bed rest.

CON RVE NeX
ANOVA Table

Condition, Time,
Condition × Time

BDC R BDC R BDC R

Average (µm) 101.4 ± 9.5 101.1 ± 8.2 100.0 ± 8.9 101.4 ± 7.6 100.7 ± 8.4 101.8 ± 8.6 p = 0.20, p = 0.18, p = 0.10
(93.5–109.3) (94.3–107.9) (92.6–107.5) (95.0–107.7) (93.7–107.8) (94.6–109.0)

Superior (µm) 125.5 ± 15.8 126.1 ± 15.1 124.1 ± 15.3 125.1 ± 12.6 125.3 ± 13.9 126.5 ± 14.5 p = 0.24, p = 0.25, p = 0.86
(112.3–138.7) (113.5–138.7) (111.3–136.8) (114.6–135.6) (113.7–136.9) (114.3–138.6)

Nasal (µm) 77.9 ± 13.8 76.8 ± 12.6 76.4 ± 13.8 77.5 ± 12.6 75.2 ± 12.8 77.1 ± 13.5 p = 0.33, p = 0.35, p = 0.06
(66.4–89.4) (66.2–87.3) (64.9–88.0) (67.0–88.0) (64.5–85.9) (65.7–88.4)

Inferior (µm) 131.1 ± 16.1 130.8 ± 14.6 129.3 ± 16.5 131.4 ± 16.3 130.2 ± 16.8 130.7 ± 16.7 p = 0.63, p = 0.18, p = 0.16
(117.6–144.5) (118.6–142.9) (115.5–143.2) (117.8–145.1) (116.2–144.2) (116.7–144.6)

Temporal (µm) 71.1 ± 8.1 70.8 ± 8.9 70.3 ± 8.6 71.4 ± 9.8 72.1 ± 8.3 73.1 ± 9.7 p = 0.04, p = 0.37, p = 0.27
(64.3–77.9) (63.4–78.3) (63.1–77.4) (63.2–79.5) (65.2–79.1) (65.0–81.2)

“BDC” denotes baseline data collection, “CON” denotes control condition, “NeX” denotes resistance vibration exercise with nutritional
supplementation, “R” denotes recovery, “RVE” denotes resistance vibration exercise condition. Data are expressed as mean ± SD. Values in
parentheses represent 95% CI of the mean.

4. Discussion

Intraocular pressure preserved after head-down bed rest, but impaired with resis-
tance exercise with or without nutritional supplementation.

Few data are available during spaceflight. However, Draeger et al. [13] showed a
slight but significant increase in IOP (~5 mmHg) after exposure to microgravity in a 8-day
German Spacelab. The same authors found similar trends in a 10-day Spacelab D2 mission.
Indeed, only 15 min after entering in microgravity, IOP was increased (~12–13 mmHg), but
returned to ground-based values on the day 4 [14]. Stenger et al. [15] gathered IOP data
in 11 astronauts from 6 shuttle missions and described preserved post-flight IOP values
compared to pre-flight IOP values. Irrespective of the duration of the spaceflight and an
immediate rise in IOP after entering microgravity; IOP values seem to normalize, although
cranial venous fluid shift were maintained [16]. Most of the results performed during
HDBR are contradictory since some studies showed either a reduced or an increased IOP.
In our study, we did not observe any significant changes in IOP after 21 days of HDBR.
Chiquet et al. [17] reported in a 7-day HDBR performed in young healthy female volunteers,
a drop in IOP associated with hypovolemia related to cephalad fluid shifts followed by an
increase in IOP after HDBR. The authors suggested that these ocular changes were mainly
due to ocular dehydration or to systemic cardiovascular and hormonal variations during
HDBR. The measurement of IOP in the same study is important since the pressure gradient
between ICP (which would increase) and IOP (which would remain stable or decrease)
may be one of the factors favoring optic nerve edema [18]. A case report performed in
a 25-year-old Caucasian man who underwent a 30-day HDBR displayed the same trend
with a diminution in IOP. This phenomenon could contribute to a decreased translaminar
pressure [19]. In contrast, Taibbi et al. [20] showed that 14- and 70-day HDBR provoked an
increase in IOP (respectively, +1.42 and +1.79 mmHg) but returned to baseline values after
HDBR. The magnitude of the increase observed during HDBR was not associated with the
campaign durations.

Several studies showed that even a short-duration spaceflight induced musculoskele-
tal injuries and cardiovascular deconditioning [21,22]. By this way, repeated resistance
exercise countermeasures become essential for crewmembers’ health during mission on
the International Space Station [23,24]. To date, neither IOP nor ICP measurements were
performed during or after resistance exercise onboard the International Space Station [25].
Furthermore, it has been previously suggested that repeated performance of heavy-load
resistance exercise has been proposed as a contributing factor to an elevated ICP and
ocular outcomes during spaceflight [26]. Several studies have attempted to determine the
impact of resistance exercise on IOP. However, data are conflicting. Dickerman et al. [27]
depicted in 11 athletes a massive increase in IOP with the Valsalva maneuver during heavy
resistance exercise with maximal intensity (+15 mmHg). Vieira et al. [8] observed similar
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trends where 30 healthy male volunteers have undergone 4 repetitions of bench press with
and without breath holding during the last repetition. They observed a rise in IOP during
a bench press session either with (+4.3 mmHg) or without (+2.2 mmHg) breath holding.
In contrast, Avunduk et al. [28] described a reduction in IOP during both isometric and
isokinetic exercises of the lower body, with a greater reduction during isokinetic exercise
(−7 mmHg) than isometric exercise (−4 mmHg). Chromiak et al. [29] found a reduction
in IOP in 30 healthy subjects (15 males and 15 females) after 3 sets of 10 repetitions of the
chest press and leg press exercises with 70% 1-RM. Rüfer et al. [30] did not observe any
significant changes in IOP during resistance exercise lower limb, while IOP was slightly
increased during resistance exercise upper limb (20 repetitions with 65% Wmax at the
butterfly machine). Nevertheless, irrespective of the type of the exercise, IOP returned to
baseline values. It is noteworthy that the majority of exercise studies have been performed
in seated position; however, only very few of them determined the impact of resistance
exercise on IOP during HDBR position. One study demonstrated a small decrease in IOP
(−1.61 mmHg) after a short session of weightlifting in 25 healthy volunteers in supine
position with 85% top load for 8 repetitions [31]. Taibbi et al. [32] studied the effects
of a 70-day HDBR on ophthalmic changes with some specific countermeasures such as
integrated resistance and aerobic training in 6 controls and 9 exercisers. The authors de-
clared that both controls and exercisers exhibited a rise in IOP during HDBR (respectively,
+1.38 mmHg and +1.63 mmHg), measured with iCare IOP. They also concluded that no
difference was observed between these two groups. However, the authors found a greater
magnitude of change in Goldmann applanation tonometry IOP in exercisers compared
to controls after HDBR (+1.14 mmHg vs. −0.47 mmHg). Consistently in our study, we
found that resistance exercise induced a slight but significant elevation in IOP (+1.8 mmHg)
after HDBR. The major differences observed in IOP variations reported in the literature are
mainly due to the fact that most exercise studies have been performed in seated position.
Furthermore, as suggested previously by Marshall-Bowman [26], heavy resistance exercise
combined with the effects of microgravity are prone to be involved in the development of
ophthalmological outcomes.

Zwart et al. [33] showed that high-protein diet may induce a low-grade metabolic
acidosis. Thus in our study, an additional supplementation with potassium bicarbonate
was applied in order to counteract the potential low-grade metabolic acidosis, as previously
detailed in some studies [34,35]. Blottner et al. [36] has previously attempted to determine
whether whey protein plus potassium bicarbonate supplement may impact on disused
muscle after HDBR. Even though they found an attenuated disuse-induced reductions in
muscle fiber oxidative capacity after HDBR [37]; whey protein with potassium bicarbonate
supplement failed to prevent skeletal muscle atrophy [36]. However, little is known about
the impact of potassium and sodium supplementation on IOP. It has been shown in 15 pa-
tients with glaucoma that administration of potassium chloride (58 mmol) did not lower
IOP [38]. It has also been proven that high sodium levels produced an osmotic shift of
body fluid from the interstitial to the intravascular compartment leading to venous conges-
tion [9]. Consequently, in our study it is unlikely that low supplementation with potassium
bicarbonate (90 mmol) may affect IOP. Furthermore, Stenger et al. [15] suggested that
the association between microgravity-induced cranial fluid shift and an elevated sodium
intake (which may expand the extracellular fluid volume) might have deleterious synergic
effects on the ICP. NASA recommended to drastically reducing the daily sodium intake,
below 3 g per day [10] to prevent visual outcomes [9]. A previous study demonstrated
the strong relationship between elevated ICP and sodium and water retention. Indeed,
77% patients with idiopathic intracranial hypertension had peripheral edema and 80% had
orthostatic retention of sodium and water [39]. Newborg [34] has observed a total remission
of papilledema in 9 patients who were initially treated for intracranial hypertension. In
their diet, inter alia, patients’ sodium intake was less than 100 mg per day. However, the
authors mentioned that it was difficult to determine whether the enhancement observed
was due to either weight loss or sodium and water distribution. In our study, nutritional



Life 2021, 11, 741 8 of 11

supplementation did not enhance or worsen the side effects of resistance exercise. Indeed,
it was unlikely that low sodium intake (<300 mg) had an impact on the ophthalmological
changes induced by resistance exercise.

Retinal nerve fiber layer thickness preserved after head-down bed rest, no effect
of resistance exercise with or without nutritional supplementation.

Degradation in visual acuity such as hyperopic shift or residual choroidal folds
have been previously observed during spaceflight [3,40]. Mader et al. [41] showed in
a 57-year-old astronaut, who underwent 2 long-durations spaceflight, ophthalmological
issues such as unilateral choroidal folds and a single cotton wool spot during the 1st
mission. These phenomena were exacerbated during the 2nd mission. Moreover, 29%
and 60% of crewmembers presented deterioration in distant and near visual acuity after
short- and long-duration spaceflights, respectively [35]. Mader et al. [42] described in a
case study, an asymmetric increase in total retinal thickness determined by OCT. It is note-
worthy that these changes were always observed after 1 year. Patel et al. [43] documented
similar findings in 15 astronauts after long-duration spaceflight. In their study, OCT scans
depicted a rise in total retinal thickness and global circumpapillary RNFLT (~20 µm) with
a more pronounced increase in the inferior RNFL quadrant. Macias et al. [3] noticed the
same trends. Indeed, the authors noted an increase in global total retinal thickness in
11 astronauts after long-duration missions to the International Space Station (4 to 6 months).
The same authors found a very high interindividual variability in 11 crewmembers. Only
2 of them had an increase in total retinal thickness. Moreover, choroidal folds and op-
tic disc edema lasted over 1 year. Even though no optic disc edema was discerned, an
increase in peripapillary retinal thickness (~19.4 µm), measured by spectralis OCT, was
found in a healthy 25-year old male astronaut after a 30-day HDBR [19]. It appeared that
a 30-day strict HDBR would develop more pronounced ocular changes than a “classical”
70-day HDBR, with cases of papilledema and an increase in peripapillary total retinal thick-
ness [44]. Surprisingly, they also observed a greater peripapillary total retinal thickness in
healthy subjects after 30-day strict HDBR vs. astronauts during ~30 days of spaceflight [45].
The authors suggested that subjects exposed to strict HDBR had developed a moderate
ICP but greater than that observed in astronauts during similar duration of spaceflight.
Time duration appears to play a key role on the development of the amount of optic disc
swelling. Indeed, spectralis OCT revealed that 70-day HDBR (6 subjects) provoked greater
peripapillary retinal thickening compared to 14-day HDBR (16 subjects) [20]. Glaucoma is
an optic neuropathy in which electrophysiological response is altered. Thus, it would be
interesting to extend subsequent studies to electrophysiological methods. Indeed, Bessler
et al. [46] used silent substitution stimulation to detect objectively primary open-angle
glaucoma in a large cohort of patients. Moreover, the impact of the hydrostatic effects on
retinal vessel diameter should not be overlooked. It has been previously demonstrated in
15 young healthy subjects that Mayer waves led to significant variations in retinal vessel
diameter [47]. Moreover, Louwies et al. [48] showed that hydrostatic effect might impact
on central retinal arteriolar equivalent during a 21-day hypoxic bed rest performed in
11 subjects.

Only few studies determined the impact of resistance exercise on RNFLT. Laurie
et al. [45] reviewed exercise logs and findings from retrospective ophthalmological data
from 34 crewmembers who spent several months on the International Space Station over
12 years. 8 of them presented optic disc edema. They mentioned that astronauts, with or
without optic disc edema, spent the same amount of time to performing either aerobic or
resistance exercise. A study performed in 24 healthy volunteers assessed the impact of
weightlifting on ocular changes [42]. The authors described a preserved retinal thickness,
ganglion cell layer and choroidal thickness after weightlifting. However, Taibbi et al. [32]
also studied the effects of integrated resistance and aerobic training on circumpapillary
RNFL and peripapillary retinal thicknesses after 70 days of HDBR. In this study, spectralis
OCT revealed an increase in circumpapillary RNFLT (+1.33 µm) in 15 subjects (6 controls
and 9 exercisers) after HDBR. They also described a peripapillary retinal thickening in



Life 2021, 11, 741 9 of 11

controls (+9.77 µm) and exercisers (+6.65 µm), but no difference was found between these
two groups. However, in our study resistance exercise did not affect significantly RNFLT
after HDBR. Time duration may explain the lack of effects of resistance exercise on RNFLT.

5. Limitations

Some limitations must be taken into account. The study was performed with a
limited number of subjects (n = 8) due to some withdrawals during the last campaign
(n = 4). However, the subjects were their own controls. The frequency of exercise was only
performed twice a week, which may limit the effects of the countermeasures.

6. Conclusions

In summary, these findings suggest that 21 days of HDBR did not induce significant
ophthalmological changes. However, RVE provoked a rise in IOP. Nutritional supplementa-
tion did not enhance or worsen the side effects of RVE. In conclusion, it would be valuable
to optimize the exercise in order to avoid ophthalmological outcomes. Moreover, it would
be necessary to find out whether changes in retinal nerve fibers, IOP and ICP might be
observed during higher frequency resistance exercises, as those conducted by astronauts
during spaceflight.
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