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A lot of studies indicated that aberrant expression of long non-coding RNA genes

(lncRNAs) is closely related to human diseases. Identifying disease-related lncRNAs

(disease lncRNAs) is critical for understanding the pathogenesis and etiology of diseases.

Most of the previous methods focus on prioritizing the potential disease lncRNAs based

on shallow learning methods. The methods fail to extract the deep and complex feature

representations of lncRNA-disease associations. Furthermore, nearly all the methods

ignore the discriminative contributions of the similarity, association, and interaction

relationships among lncRNAs, disease, and miRNAs for the association prediction.

A dual convolutional neural networks with attention mechanisms based method is

presented for predicting the candidate disease lncRNAs, and it is referred to as CNNLDA.

CNNLDA deeply integrates the multiple source data like the lncRNA similarities, the

disease similarities, the lncRNA-disease associations, the lncRNA-miRNA interactions,

and the miRNA-disease associations. The diverse biological premises about lncRNAs,

miRNAs, and diseases are combined to construct the feature matrix from the biological

perspectives. A novel framework based on the dual convolutional neural networks is

developed to learn the global and attention representations of the lncRNA-disease

associations. The left part of the framework exploits the various information contained

by the feature matrix to learn the global representation of lncRNA-disease associations.

The different connection relationships among the lncRNA, miRNA, and disease nodes

and the different features of these nodes have the discriminative contributions for the

association prediction. Hence we present the attention mechanisms from the relationship

level and the feature level respectively, and the right part of the framework learns the

attention representation of associations. The experimental results based on the cross

validation indicate that CNNLDA yields superior performance than several state-of-the-art

methods. Case studies on stomach cancer, lung cancer, and colon cancer further

demonstrate CNNLDA’s ability to discover the potential disease lncRNAs.

Keywords: lncRNA-disease prediction, dual convolutional neural networks, attention at feature level, attention at

relationship level, lncRNA-miRNA interactions
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INTRODUCTION

Long non-coding RNA genes (lncRNAs) are transcripts longer
than 200 nucleotides which are not translated into proteins (Reik,
2009). Accumulating evidences have indicated that lncRNAs
play crucial roles in the metastasis and progression of various
diseases (Prensner and Chinnaiyan, 2011; Schmitt and Chang,
2016; Hu et al., 2018). Therefore, identifying the associations
between lncRNAs and diseases is important for understanding
the functions of lncRNAs in the disease processes.

Predicting disease-related lncRNAs (disease lncRNAs) can
screen the potential candidates for the biologists to discover the
real lncRNA-disease associations with the wet-lab experiments
(Chen et al., 2016a). Existing methods have been presented
for prioritizing the candidate disease lncRNAs, which fall into
three main categories. Methods in the first category utilize the
biological information related to lncRNAs, such as the genome
locations, tissue specificity and expression profile. Chen et al. and
Li et al. predicted disease lncRNAs by exploiting the locations of
lncRNAs and genes in the genome (Chen et al., 2013; Li et al.,
2014a). However, the methods are not effective on the lncRNAs
which have no adjacent genes. Liu et al. and Chen predicted the
potential associations by using the lncRNA tissue specificity or
lncRNA expression profile (Liu et al., 2014; Chen, 2015). The
methods suffered from the limited information of tissue-specific
expressions and low expression levels of lncRNAs.

Methods in the second category construct the prediction
models based on machine learning for inferring the lncRNA-
disease associations. A semi-supervised learning based method
was proposed to predict the potential associations (Chen and
Yan, 2013). On the basis of this study, Chen et al. and Huang
et al. optimized the calculation of the similarities of lncRNAs
and diseases (Chen et al., 2015; Huang et al., 2016). However, the
methods considered the information of the lncRNA and disease
spaces, and did not fuse them completely. Several methods infer
the candidate lncRNAs related to a disease by random walk
on the lncRNA functional similarity network or heterogeneous
network composed of lncRNAs, genes and diseases (Sun et al.,
2014; Chen et al., 2016b; Gu et al., 2017; Yao et al., 2017). The
common and similar neighbors of two diseases (or two lncRNAs)
in the lncRNA-disease bipartite network are utilized to infer the
association scores between lncRNAs and diseases (Ping et al.,
2018). Nevertheless, most of these methods fail to be applied to
new diseases without any known related lncRNAs.

The methods in the third category integrate the multiple data
sources about the proteins and miRNAs that are interacted with
lncRNAs, and the drugs associated with the proteins. Zhang et al.
constructed the lncRNA-protein-disease network and obtained
the candidate disease lncRNAs by propagating information
flow in the heterogeneous network (Zhang et al., 2017). After
calculating the various lncRNA and disease similarities, LDAP
used the bagging SVM classifier to uncover the potential diseases
lncRNAs(Lan et al., 2017). A couple of methods established
the matrix factorization based prediction models to fuse the
multiple kinds of information related to the lncRNAs, diseases
and proteins (Fu et al., 2017; Lu et al., 2018). However, most of
the previous methods are the shallow learning methods which

cannot learn the deep and complex representations of lncRNA-
disease associations.

Deep learning approaches can hold the promise of much
better performance (Xu et al., 2017). In our study, we propose
a novel method based on dual convolutional neural networks
to predict lncRNA-disease associations, which we refer to as
CNNLDA. CNNLDA exploits the similarities and associations
of lncRNAs and diseases, the interactions between lncRNAs
and miRNAs, and the miRNA-disease associations. The feature
matrix is firstly constructed based on the biological premises
about lncRNAs, miRNAs, and diseases. Combining the biological
premise about the cases that two lncRNAs (diseases) should be
more similar can capture the relationships between the lncRNA-
disease associations and the lncRNA (disease) similarities.
Integrating the interactions between lncRNAs and miRNAs, and
the miRNA-disease associations can capture the relationships
between the lncRNAs and miRNAs interacted with each other
and the lncRNA-disease associations. A new framework based
on the dual convolutional neural networks is established
for extracting both the global and the attention feature
representations of lncRNA-disease associations. The left part
of the framework is concentrated on extract features from the
associations and similarities of lncRNAs and diseases. In the right
part of the framework, each of features and each kind of features
are assigned to different weights by applying our proposed
attention mechanisms, which may discriminate their different
contributions for predicting the potential disease lncRNAs.
The comprehensive cross-validation experiments confirm that
CNNLDA outperforms several state-of-the-art methods for
predicting candidate disease lncRNAs. Moreover, case studies on
3 diseases indicate that CNNLDA is able to discover potential
association candidates that are supported by the corresponding
databases and literature.

MATERIALS AND METHODS

Datasets for Disease lncRNA Prediction
The lncRNA-disease associations, the lncRNA-miRNA
interactions, and the miRNA-disease associations are obtained
from the previous work on prediction of the lncRNA-disease
associations (Fu et al., 2017). The 2687 lncRNA-disease
associations are originally extracted from the databases
LncRNADisease (Chen et al., 2013) and Lnc2Cancer (Ning
et al., 2016) that contains the experimentally confirmed
lncRNA-disease associations, and the database GeneRIF (Lu
et al., 2006) that records the lncRNA functional description.
The 1002 lncRNA-miRNA interactions are extracted from
database starBase (Li et al., 2014b) which includes the interaction
information between multiple kinds of RNAs. The disease
semantic similarities are obtained from DincRNA (Cheng et al.,
2018) that are used by us to calculate the lncRNA similarities
based on their associated diseases. The 5218 verified miRNA-
disease associations by experiment are obtained from the human
miRNA-disease database HMDD (Li et al., 2013). All of these
associations and interactions cover 240 lncRNAs, 402 diseases,
and 495 miRNAs.
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Calculation and Representation of Multiple
Kinds of Data
Representation of the lncRNA-Disease Associations

and miRNA-Disease Associations
The bipartite graph composed of lncRNAs and diseases
is constructed by the known lncRNA-disease associations
(Figure 1A). We use matrix AǫRnl×nd to represent the
association case between nl lncRNAs and nd diseases, where Aij

is 1 if lncRNA li has been observed to be related to disease dj or
0 otherwise. As shown in Figure 1C, the known miRNA-disease
associations form the miRNA-disease bipartite graph. Matrix
BǫRnm×nd represents the associations between nm miRNAs and
nd diseases. Bij is set to 1 means there is observed association
between miRNAmi and disease dj, and it is 0 otherwise.

Representation of the Disease Similarities
The more similar that two diseases are, the more likely that
they are associated with similar lncRNAs. Hence the disease
similarities are integrated by our model for predicting disease-
related lncRNAs. A disease can be represented by a directed
acyclic graph (DAG) that includes all the disease terms related
to the disease. If two diseases have more common disease terms,
they are more similar, which is the basic idea for semantic
similarity between Gene Ontology terms (Xu et al., 2013b).Wang
et al. have successfully measured the similarity of two diseases
based on their DAGs (Wang et al., 2010). The disease similarities
are calculated by Wang’s method, and they are represented by
matrix DǫRnd×nd where Dij is the similarity of two diseases di
and dj(Figure 1B).

Representation of the lncRNA Similarities
As the lncRNAs associated with the similar diseases are generally
possible to have more similar functions, Chen et al. measured

the similarity of two lncRNAs based on their associated diseases
(Chen et al., 2015), of which similar approaches have been
used for miRNA-miRNA network inference (Xu et al., 2013a).
The lncRNA similarities that we used are calculated by Chen’s
method. For instance, the lncRNA la is associated with a group
of diseases DTa = {di1, di2, . . . , dim}, lncRNA lb is associated
with a group of diseases DTb = {dj1, dj2, . . . , djn}. The similarity
betweenDTa andDTb is then calculated as the similarity of la and
lb, and it is denoted as LS

(

la, lb
)

. LS
(

la, lb
)

is defined as,

LS
(

la, lb
)

=

∑m
i=1

max
1≤j≤n

(

DS
(

dai, dbj
))

+
∑n

j=1
max
1≤i≤m

(

DS
(

dbj, dai
))

m+ n
,(1)

where DS
(

dai, dbj
)

is the semantic similarity of disease of dai
and dbj which belong to DTa and DTb respectively. m and n are
the numbers of diseases that are included by DTa and DTb. The
lncRNA similarities are denoted by matrix LǫRnl×nl where Lij is
the similarity of two lncRNAs li and lj (Figure 1A).

Representation of the lncRNA-miRNA Interactions
It is well-known that the lncRNAs often interact with the
corresponding miRNAs and they are involved in the biological
processes synchronously (Yang et al., 2014; Paraskevopoulou
and Hatzigeorgiou, 2016). Hence our prediction model also
takes the interaction relationships between lncRNAs and
miRNAs into account (Figure 1C). The interactions between
nl lncRNAs and nm miRNAs are represented by the matrix
YǫRnl×nm , and each row of Y corresponds to a lncRNA
and each column of Y corresponds to a miRNA. Yij is
1 when lncRNA li interacts with miRNA mj and it is
0 otherwise.

FIGURE 1 | Construction of the feature matrix of lncRNA l1 and disease d2. (A) Construct the first part of feature matrix by integrating the lncRNA similarities and the

lncRNA-disease associations. (B) Construct the second part by incorporating the lncRNA-disease associations and the disease similarities. (C) Construct the third

part by exploiting the lncRNA-miRNA interactions and the miRNA-disease associations. (D) Concatenate these three parts to form the feature matrix P.
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FIGURE 2 | Construction of the framework based on the dual convolutional neural networks for learning the global and attention representations. (A) Construct the

convolutional and pooling layers. (B) Establish the attention mechanism at the feature and relationship levels. (C) Construct the final module to estimate the

association score.

Disease lncRNA Prediction Model Based
on Dual CNN
In this section, we describe our prediction model for learning

the latent representations of lncRNA-disease associations

and predicting the disease-related lncRNAs. The feature
matrix is constructed firstly by incorporating the similarities,

interactions, and associations about lncRNAs, miRNAs, and
diseases (Figure 1). A novel framework is then established
based on dual convolutional neural networks with attention
mechanisms (Figure 2). The left part of the framework learns
the global representation of a lncRNA-disease association,
while the right part learns the more informative connection
relationships among lncRNAs, miRNAs, and diseases. These two
representations are integrated by an additional convolutional

and fully connected layer and the possibility that a lncRNA
is associated with a disease is obtained as their association
score. We take the lncRNA l1 and the disease d2 as an
example to describe our model CNNLDA for lncRNA-disease
association prediction.

Construction of Feature Matrix
The feature matrix of the lncRNA l1 and the disease d2 is
constructed by combining three biological premises. First, if l1
and d2 have similarity and association relationships with more
common lncRNAs, they are more likely associated with each
other. For instance, if l1 and l2 have similar functions, and
d2 has been observed to be associated with l2, l1 will be possibly
associated with d2. Let x1 represent the 1st row of L which
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contains the similarities between l1 and the various lncRNAs. The
2nd column of D, x2, records the associations between d2 and all
the lncRNAs. x1 and x2 are put together to form a matrix whose
dimension is 2×nl (Figure 1A). Second, when l1 and d2 have
the association and similarity connections with more common
diseases, l1 is more likely to be associated with d2. x3 is the 1st
row of A and it records the associations between l1 and all the
diseases. x4 is the 2nd row of D and it contains the similarities
between d2 and these diseases. x3 and x4 are also combined and
they form a matrix with dimension 2×nd (Figure 1B). Third,
there is a possible association between l1 and d2 when they have
the interaction and association connections with the common
miRNAs. The 1st row of Y, x5, records the interactions between l1
and the various miRNAs, while the 2nd column of B, x6, records
the associations between d2 and these miRNAs. x5 and x6 are
integrated to form a matrix with dimension 2×nm (Figure 1C).
All of these three matrices are concatenated and then form a
feature matrix of lncRNA l1 and disease d2 whose dimension is
2× (nl + nd + nm) (Figure 1D).

Convolutional Module on the Left
The feature matrix of l1 and d2, P, is input to the convolutional
module on the left to learn a global deep representation for l1
and d2. The convolutional module includes two convolutional
layers and two pooling layers (Figure 2A), we take the first
convolutional layer and the first pooling layer as examples to
describe the process of the convolution and the pooling. To learn
the marginal information of P, we pad zeros around P and obtain
a new matrix named P′.

Convolutional layer
For the first convolutional layer, the length of a filter is set as nf ,
and its width is nw. If the number of filters is nconv1, the filters
Wconv1 ∈ R

nconv1×nw×nf are applied to the matrix P
′
, and get the

feature maps Zconv1 ∈ R
nconv1 ×(4−nw+1)×

(

nt+2−nf+1
)

. P′(i, j) is
the element at the ith row and the jth column of P′, and P′

k,i,j

represents a region within the filter when the kth filter slides to

the position P
′
(i, j). The formal definitions of P

′

k,i,j and Zconv1,k

are as follows,

P′
k,i,j = P′

(

i : i+ nw, j : j+ nf
)

, P
′

k,i,j ∈ R
nw×nf , (2)

Zconv1,k

(

i, j
)

= f
(

Wconv1

(

k, :, :
)

∗P′
k,i,j+bconv1

(

k
))

, (3)

i ∈ [1, 4− nw + 1] , j ∈
[

1, nt + 2− nf + 1
]

, k ∈ [1, nconv1] ,

where bconv1 is the bias vector, f is a relu function (Nair and
Hinton, 2010), and nt = nl+nd+nm. Zconv1,k

(

i, j
)

is the element
at the ith row and jth column of the kth feature map Zconv1,k.

Pooling layer
We apply the max pooling to extract the robust features from
the feature maps Zconv1. ng and np are the length and width of
a filter of pooling layer, respectively. The pooling outputs of all
the feature maps are Zconvpool1,

Zconvpool1,k

(

i, j
)

= Max
(

Zconv1,k

(

i : i+ ng , j : j+ np
))

, (4)

i ∈
[

1, 5− nw − ng + 1
]

, j ∈
[

1, nt + 3− nf − np + 1
]

,

k ∈ [1, nconv1 ] ,

where Zconvpool1,k is the kth feature map, and Zconvpool1 ,k

(

i, j
)

is
the element at its’ ith row and jth column.

Attention Module on the Right
In our model, the attention module are used to learn which
features or connection relationships are more informative for the
representation of lncRNA l1 and disease d2. Thus, the module
consists of the attention mechanism at the feature level and the
one at relationship level (Figure 2B).

Attention at the feature level
The features within P usually have different contributions for
representations of lncRNA-disease associations. For instance,
in terms of a specific disease, the lncRNAs that have been
observed to be associated with the disease are often more
important than the unobserved ones. In the feature matrix
P = {x1, x2, . . . , xi, . . . , x6 } , each feature xij of vector xi is
assigned an attention weight αF

ij . α
F
ij is defined as follows,

sFi = HF tanh
(

WF
x xi + bF

)

, (5)

αF
ij =

exp
(

sFij

)

∑

k exp
(

sF
ik

) , (6)

where HF and WF
x are the weight matrices, and bF is a bias

vector. sFi = [sFi1, s
F
i2, . . . , s

F
ik
, . . . , sFini ] is the vector that records the

attention scores representing the importance of different features
in xi, where ni is the length of xi, s

F
ini

is the score of xini . αF
ij is

the normalized attention weight for feature xij. Thus the latent
representation of different features may be denoted as yi,

yi = αF
i ⊗ xi , (7)

where ⊗ is the element-wise product operator, and the symbol F
represents the feature level.

Attention at the relationship level
There are several connection relationships among lncRNAs,
diseases, and miRNAs, including the similarities between
lncRNAs, the associations between lncRNAs and diseases, the
similarities between diseases, the interactions between lncRNAs
andmiRNAs, and the associations between diseases andmiRNAs.
Different relationships also have different contributions to the
representation of lncRNA-disease associations. Therefore, in
relationship level, we use an attentionmechanism on each feature
vector yi to generate the final attention representation. The
attention scores at relationship level are given by,

sRi = hR tanh
(

WR
y yi + bR

)

, (8)

βR
i =

exp(sRi )
∑

j∈6 exp(s
R
j )

, (9)

where WR
y is the weight matrix , and bR is a bias vector . hR is a

weight vector and sRi represents the score of the ith relationship
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yi. β
R
i is the normalized attention weight for relationship yi. The

latent representation of association through the attentions at the
feature and relationship levels is obtained and represented by

g =
∑

i
βR
i yi , (10)

where the symbol R represents the relationship level. Let G be
the matrix after g is padding zeros. The attention representations
Zatt are obtained by feeding G into a convolutional layer and a
maxpooling layer.

Final Module
Let Zglo be the global representation that are learned from the left
convolutional module and Zatt be the attention representation
that are learned from the right convolutional module. Zglo and
Zatt are combined by putting the former on top and putting
the later under it, and denoted as Zcon (Figure 2C). Zcon runs
through an additional convolutional layer to obtain the final
representation Zfin. zo is a vector of flattening Zfin and it is
inputted into a fully connected layer Wout and a softmax layer
(Bahdanau et al., 2014) to get p

p = softmax (Woutzo + bo) . (11)

p is an association probability distribution of C classes (C=2),
and it contains the probability that a lncRNA and a disease
is determined to have an association relationship and the
probability that they have no association.

Loss of Association Prediction
In our model, the cross-entropy loss between the ground truth
distribution of lncRNA-disease association and the prediction
probability p is defined as L,

L = −
∑T

i

∑C

j=1
zj log pj, (12)

where z ∈ R
2 is the classification label vector and T is a set of

training samples. If l1 is associated with d2, the second dimension
of the vector z is 1 and the first one is 0. On the contrary, if l1 is
not associated with d2, the first dimension of z is 1 and the second
one is 0.

We denote all neural network parameters by θ . The objective
function in our learning process is defined as follows,

min
θ

L (θ) = L+ λ ‖θ‖2 , (13)

where λ is a trade-off parameter between the training loss and
regularization term. We use Adam optimization algorithm to
optimize the objective function (Kingma and Ba, 2015).

RESULTS AND DISCUSSION

Parameter Setting
In CNNLDA, 2×2 window size is used for all of the convolutional
and pooling layers. In the left convolutional module (Figure 2A),
the number of filters in the first convolutional layer is 8 and one

in the second layer is 16. In the right attention convolutional
module (Figure 2B), the number of filters is 16. In the final
module (Figure 2C), we set the number of filters to 32. We
implement our method using Pytorch to train and optimize
the neural networks, and a GPU card (Nvidia GeForce GTX
1080Ti) is utilized to speed up the training process. The training
process is terminated when the maximum number of iterations,
80, is reached.

Performance Evaluation Metrics
Five-fold cross-validation is performed to evaluate the
performance of CNNLDA and other state-of-the-art methods
for predicting lncRNA-disease associations. If a lncRNA ls is
associated with a disease dt , we treat the ls-dt node pair as a
positive sample. If ls is not observed to associate with dt , it
is treated as a negative sample. For each cross validation, we
randomly select 80% positive samples and the same number
of negative samples as the training data and use the remaining
20% positive samples and all of the negative samples for testing.
Note that the association dataset is separated to 5 folds for
cross-validation, and we recomputed the lncRNA similarities by
using the known associations that are used for training in each
cross validation process.

The samples are ranked by their association scores after the
association probabilities of the testing samples are estimated. The
higher the node pairs of the positive samples are ranked, the
better CNNLDA performs. If an observed association exists in
lncRNA-disease node pair samples, and its association score is
greater than a threshold θ , it is a successfully determined positive
sample. If the prediction score of a negative sample is smaller
than θ , it is a determined correctly negative sample. We calculate
the true positive rates (TPRs) and the false positive rates (FPRs) to
get a receiver operating characteristic (ROC) curve by changing
threshold θ . TPR and FPR are defined as follows,

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
, (14)

where TP is the number of successfully identified positive
samples, and FN is the number of misidentified negative samples.
TN is the number of correctly identified negative samples, and
FP is the number of incorrectly identified positive samples. The
global prediction performance of a method is always measured
by the area under the ROC curve (AUC) (Karimollah, 2013).

The known lncRNA-disease associations (the positive
samples) and the unobserved ones (the negative samples) form
the serious imbalance. In such case, we also use the precision-
recall (PR) curve and its area (AUPR) to assess the performance
of a prediction method (Takaya and Marc, 2015). Precision and
recall are defined as follows,

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
. (15)

Precision is the rate of the correctly identified positive samples
among the samples that are retrieved, and recall is the rate of
the correctly identified positive samples among all the positive
samples. In terms of 5-fold cross-validation, we use averaging
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FIGURE 3 | ROC curves and PR curves of CNNLDA and other methods for all the diseases. (A) ROC curves of all the methods. (B) PR curves of all the methods.

TABLE 1 | AUCs of ROC curves of CNNLDA and other methods for all of the diseases and 10 well-characterized diseases.

Disease name AUC of ROC curve

CNNLDA SIMCLDA Ping’s method MFLDA LDAP

Average AUC on 402 diseases 0.952 0.746 0.871 0.626 0.863

Respiratory system cancer 0.885 0.789 0.911 0.719 0.891

Organ system cancer 0.967 0.82 0.95 0.729 0.884

Intestinal cancer 0.955 0.811 0.909 0.559 0.905

Prostate cancer 0.897 0.873 0.826 0.553 0.71

Lung cancer 0.94 0.79 0.911 0.676 0.883

Breast cancer 0.836 0.742 0.871 0.517 0.83

Reproductive organ cancer 0.922 0.707 0.818 0.74 0.742

Gastrointestinal system cancer 0.945 0.784 0.896 0.582 0.867

Liver cancer 0.918 0.799 0.91 0.634 0.898

Hepatocellular carcinoma 0.922 0.765 0.903 0.688 0.902

The bold values significant the highest AUC.

CV to obtain the final performance. Averaging CVmeans that we
obtain a separate performance (AUC or AUPR) for each of the 5
folds when used as a test set, and the 5 performances are averaged
to give the final performance.

In addition, the biologists usually select lncRNA candidates
from the top part of the ranking list, and then further validate
their associations with diseases. Therefore, the recall values of top
30, 60, . . . , 240, are calculated, and they represent the fraction of
the successfully recovered positive samples in the top list k among
the total positive samples.

Comparison With Other Methods
To evaluate the performance of CNNLDA, we compare it with
several state-of-the-art methods including SIMCLDA (Lu et al.,
2018), Ping’s method (Ping et al., 2018), MFLDA (Fu et al.,
2017) and LDAP (Lan et al., 2017) for lncRNA-disease association
prediction. As shown in Figure 3A and Table 1, CNNLDA
achieves the highest average AUC on all of the tested 402 diseases

(AUC = 0.952). It outperforms SIMCLDA by 20.6%, Ping’s
method by 8.05%, MFLDA by 32.6% and LDAP by 8.85%. We
also list the AUCs of the five methods on 10 well-characterized
diseases that are associated with at least 15 lncRNAs (Table 1).
CNNLDA yields the best performance for 9 out of 10 diseases.
CNNLDA achieves best average performance (AUPR = 0.251)
which is 15.6%, 3.19, 18.5, and 8.51% better than SIMCLDA,
Ping’s method, MFLDA and LDAP respectively (Figure 3B). In
addition, CNNLDA achieves the highest AUPRs on 9 out of 10
well-characterized diseases (Table 2). The performance of Ping’s
method is similar to that of LDAP as they exploit different
types of similarities of lncRNAs and diseases. These two methods
achieves the second and third best performance respectively. The

performance of MFLDA is not as good as the other four methods
as it did not exploit the disease similarities and the lncRNA

similarities. The improvement of CNNLDA over the compared
methods is primarily due to its deeply learning the global and

attention representations of lncRNA-disease associations.
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TABLE 2 | AUPRs of PR curves of CNNLDA and other methods for all of the diseases and 10 well-characterized diseases.

Disease name AUPR of PR curve

CNNLDA SIMCLDA Ping’s method MFLDA LDAP

Average AUPR on 402 diseases 0.251 0.095 0.219 0.066 0.166

Respiratory system cancer 0.245 0.149 0.414 0.072 0.303

Organ system cancer 0.795 0.411 0.765 0.338 0.628

Intestinal cancer 0.406 0.141 0.252 0.042 0.246

Prostate cancer 0.390 0.176 0.333 0.095 0.297

Lung cancer 0.058 0.138 0.334 0.008 0.094

Breast cancer 0.964 0.445 0.803 0.476 0.629

Reproductive organ cancer 0.091 0.047 0.403 0.031 0.396

Gastrointestinal system cancer 0.441 0.130 0.271 0.104 0.238

Liver cancer 0.666 0.201 0.526 0.086 0.498

Hepatocellular carcinoma 0.323 0.096 0.239 0.082 0.303

The bold values significant the highest AUPR.

TABLE 3 | A pairwise comparison with a paired Wilcoxon-test on the prediction results in terms of AUCs and AUPRs.

P-value between CNNLDA and another method SIMCLDA Ping’s method MFLDA LDAP

P-values of ROC curves 7.2911e-116 7.7561e-53 1.3120e-133 3.7677e-64

P-values of PR curves 1.7468e-41 0.0455 5.0559e-52 4.8014e-09

FIGURE 4 | The average recalls across all the tested diseases under different top k cutoffs.

We perform a paired Wilcoxon-test to evaluate whether
CNNLDA’s AUCs and AUPRs across all of the tested diseases
are significantly higher than those of another method. CNNLDA
achieves significantly higher performance than the other
methods in terms of both AUCs and AUPRs as the corresponding
P-values are smaller than 0.05 (Table 3).

The higher the recall rate on the top k ranked lncRNA-disease
associations is, the more genuine associations are determined
correctly. Under different k cutoffs, the performance of CNNLDA
consistently outperforms other methods (Figure 4), and ranks

89.6% of the positive samples in the top 30, 96.2% in the top 60,
and 98.8% in the top 90. Most of the recalls of Ping’s method are
very close to LDAP, while Ping’s method ranks 68.9% in top 30,
81.3% in top 60, 88% in top 90. LDAP ranks 68.5% in top 30,
81.3% in top 60, 88% in top 90. SIMCLDA ranks 49.3% in top
30, 63% in top 60, 74.1% in top 90, which is not as good as Ping’s
method but better than MFLDA (42%, 53.9% and 61%).

In addition, to validate the effectiveness of exploiting the
information related to the miRNAs, we construct another
instance of CNNLDA that is trained without this kind of
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TABLE 4 | The candidate lncRNAs associated with stomach cancer, lung cancer and colon cancer.

Disease name Rank LncRNA

name

Description Rank LncRNA name Description

Stomachcancer 1 XIST LncRNADisease, Lnc2Cancer 9 HULC LncRNADisease, Lnc2Cancer

2 NEAT1 LncRNADisease, Lnc2Cancer 10 PCAT1 Lnc2Cancer

3 SOX2-OT Lnc2Cancer 11 HOTTIP LncRNADisease, Lnc2Cancer

4 CCAT2 LncRNADisease, Lnc2Cancer 12 KCNQ1OT1 literature1 Sun et al., 2018

5 TUG1 LncRNADisease, Lnc2Cancer 13 WT1-AS LncRNADisease, Lnc2Cancer

6 MALAT1 LncRNADisease, Lnc2Cancer 14 NPTN-IT1 miRCancer, StarBase

7 BCYRN1 Lnc2Cancer 15 MIR17HG literature1 Bahari et al., 2015

8 HCP5 literature2 Mo et al., 2018

Lung cancer 1 HOTTIP LncRNADisease, Lnc2Cancer 9 LINC00663 Lnc2Cancer

2 PCA3 unconfirmed 10 SOX2-OT LncRNADisease

3 LINC00675 unconfirmed 11 MIAT Lnc2Cancer

4 HULC literature1Zhang et al., 2016 12 LINC00312 Lnc2Cancer

5 KCNQ1OT1 Lnc2Cancer 13 TINCR Lnc2Cancer

6 SNHG12 Lnc2Cancer 14 LINC00961 Lnc2Cancer

7 CBR3-AS1 miRCancer, StarBase 15 GHET1 Lnc2Cancer

8 TUSC7 Lnc2Cancer

Colon cancer 1 PVT1 Lnc2Cancer 9 SNHG4 miRCancer, StarBase

2 UCA1 LncRNADisease, Lnc2Cancer 10 SPRY4-IT1 literature1 Shen et al., 2017

3 NEAT1 Lnc2Cancer 11 BANCR Lnc2Cancer

4 WT1-AS Lnc2Cancer 12 HULC Lnc2Cancer

5 CDKN2B-

AS1

Lnc2Cancer 13 LSINCT5 Lnc2Cancer

6 BCYRN1 literature1 Gu et al., 2018 14 KCNQ1OT1 Lnc2Cancer

7 GAS5 Lnc2Cancer 15 HNF1A-AS1 Lnc2Cancer

8 HOTAIRM1 Lnc2Cancer

(1) “Lnc2Cancer” and “LncRNADisease” are manually curated database. (2) “literature1” means that published literature supports that dysregulation of the lncRNA in cancer. (3)

“literature2”or “miRCancer, StarBase” means that the lncRNA is related to some important factors affecting the development of the cancer.

information, and the instance is referred to as CNNLDA-nM.
The instance of CNNLDA that is trained by using the miRNA-
related information is still named as CNNLDA. CNNLDA’s AUC
and AUPR are 0.2%and 0.94% greater than CNNLDA-nM, which
confirms the importance of integrating the information for
improving CNNLDA’s prediction performance.

Case Studies: Stomach Cancer, Lung
Cancer, and Colon Cancer
To demonstrate CNNLDA’s ability to discover potential
candidate disease lncRNAs, we execute the case studies on
stomach cancer, lung cancer, and colon cancer and analyze the
top 15 candidates respectively related to these cancers (Table 4).

First, a database named Lnc2Cancer curates the lncRNAs that
have different expression in the disease tissues compared to the
normal ones. Lnc2Cancer contains lncRNAs related to cancers
that have been identified by analyzing the results of northern
blot experiments, microarray experiments, and quantitative
real-time polymerase chain reaction experiments (Gao et al.,
2018). LncRNADisease is also a database which includes 2,947
lncRNA-disease entries (Chen et al., 2013). By using text
mining techniques, these associations are extracted from the
published literature, and then the dysregulation of lncRNAs are
manually confirmed. As shown in Table 4, 33 candidate lncRNAs

are contained by Lnc2Cancer and 13 candidate lncRNAs are
included by LncRNADisease, which confirms these lncRNAs
have been upregulated or downregulated in these cancers.

Next, 2 candidates of stomach cancer, 1 candidate of lung
cancer and 2 candidates of colon cancer labeled with “literature1”
are supported by several published literature. These lncRNAs are
confirmed to have dysregulations in the cancers when compared
with the normal tissues (Bahari et al., 2015; Zhang et al., 2016;
Shen et al., 2017; Gu et al., 2018; Sun et al., 2018).

Finally, 5 candidates labeled with “literature2,” and

“miRCancer, StarBase” are related to the important factors

affecting the development of the corresponding cancers.
In the metabolic network, lncRNA HCP5 is regulated by
three miRNAs, and the miRNAs are downregulated in
stomach cancer. It indicates that the expression of HCP5
is more likely to associate with stomach cancer (Mo et al.,
2018). Four lncRNAs (CBR3-AS1, NPTN-IT1, CDKN2B-
AS1 and SNHG4) have interactions with four corresponding
miRNAs (hsa-miR-217, hsa-miR-520c-3p, hsa-miR-320a
and hsa-miR-4458) (Li et al., 2014b). These four miRNAs
have been to be observed associated with stomach cancer,
lung cancer and colon cancer (Xie et al., 2013). Hence
these lncRNAs are probably involved in the progression of
these cancers.
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Predicting Novel Disease-Related lncRNAs
After evaluating its prediction performance through the cross-
validation process and case studies, CNNLDA is applied to all
402 diseases. All the positive samples and the negative ones are
used to train CNNLDA to predict the novel disease-associated
lncRNAs. The potential candidate lncRNAs for these diseases
are listed in Supplementary Table 1. In addition, the lncRNA
similarities based on the diseases associated with these lncRNAs
are shown in Supplementary Table 2.

CONCLUSIONS

A novel method based on dual convolutional neural networks,
CNNLDA, is developed for predicting the potential disease-
related lncRNAs. We respectively construct the attention
mechanism at feature and relationship levels to discriminate
the different contributions of features and learn the more
informative representation of lncRNA-disease associations. The
new framework based on dual convolutional neural networks
is developed for learning the global representation and the
attention of lncRNA-disease associations. The experimental
results indicate that CNNLDA is superior to the compared other
methods in terms of both AUCs and AUPRs. The case studies
on 3 diseases demonstrate CNNLDA’s ability for discovering
potential disease-associated lncRNAs.
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