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Abstract 
 
Background and Motivation: Functional gradients have been used to study 
differences in connectivity between healthy and diseased brain states, however this 
work has largely focused on the cortex. Because the subcortex plays a key role in 
seizure initiation in temporal lobe epilepsy (TLE), subcortical functional-connectivity 
gradients may help further elucidate differences between healthy brains and TLE, as 
well as differences between left (L)-TLE and right (R)-TLE. 
 
Methods: In this work, we calculated subcortical functional-connectivity gradients 
(SFGs) from resting-state functional MRI (rs-fMRI) by measuring the similarity in 
connectivity profiles of subcortical voxels to cortical gray matter voxels. We performed 
this analysis in 23 R-TLE patients and 32 L-TLE patients (who were otherwise matched 
for age, gender, disease specific characteristics, and other clinical variables), and 16 
controls. To measure differences in SFGs between L-TLE and R-TLE, we quantified 
deviations in the average functional gradient distributions, as well as their variance, 
across subcortical structures.  
 
Results: We found an expansion, measured by increased variance, in the principal 
SFG of TLE relative to controls. When comparing the gradient across subcortical 
structures between L-TLE and R-TLE, we found that abnormalities in the ipsilateral 
hippocampal gradient distributions were significantly different between L-TLE and R-
TLE.  
 
Conclusion: Our results suggest that expansion of the SFG is characteristic of TLE. 
Subcortical functional gradient differences exist between left and right TLE and are 
driven by connectivity changes in the hippocampus ipsilateral to the seizure onset zone. 
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Introduction 
 
Epilepsy is a brain disorder characterized by recurrent seizures that result from 
abnormal synchronization of neural activity. While seizures are well controlled with anti-
seizure medications in many individuals with epilepsy, nearly a third of them are 
pharmacoresistant1. Many of these cases occur in patients with temporal lobe epilepsy 
(TLE), the most common type of focal epilepsy2. In these patients, seizures originate in 
the mesial temporal lobe (hippocampus, parahippocampal gyrus, and amygdala) or in 
the temporal neocortex. In unilateral TLE, seizures can be localized to either the left (L-
TLE) or the right temporal lobe (R-TLE). Initially, L-TLE and R-TLE were thought to be 
symmetric disorders, but recent work has provided evidence to the contrary 3–6. 
However, current literature disagrees as to whether L- or R-TLE has more extensive 
abnormalities7. 
 
Epilepsy is being increasingly conceptualized as a network disorder, with abnormal 
connections across the brain8,9. These abnormalities can be quantified and compared 
across patients via the application of graph-theoretical approaches to measures of 
functional connectivity, generated from functional MRI (fMRI)10–12. In TLE, these 
approaches have demonstrated both local and global epileptic network abnormalities 
despite focal seizure localization13–15. 
 
Functional connectivity matrices can additionally be used to generate functional 
connectivity gradients, using linear and non-linear dimensionality reduction 
techniques16. Functional connectivity gradients provide a simple, yet efficient, 
representation of connectivity across the brain, where regions close to each other in 
gradient space have similar connectivity profiles17. Initial work demonstrated that the 
first principal cortical gradient anchors unimodal sensory and motor regions at one end, 
and transmodal regions involved in higher level processing, such as those belonging to 
frontoparietal and default mode networks at the opposite end. In addition, the second 
principal gradient can differentiate between visual and somatosensory/motor regions18. 
These functional gradients are altered in disease states19–21. In idiopathic generalized 
epilepsy, the values taken by the first gradient are expanded, suggestive of increased 
differentiation in connectivity profiles compared to controls20. In TLE, a similar functional 
connectivity distance metric (distinct from gradients) was also found to be contracted in 
temporoinsular and prefrontal networks relative to controls22. Functional activation 
derived from task-based fMRI compared to resting state functional gradients probe 
functional reorganization due to cognitive impairment in epilepsy13,23. In subcortical-to-
cortical functional connectivity gradients, subcortical voxels/regions with similar 
connections to cortical gray matter regions will be close together in gradient space. 
These gradients were used to elucidate the topographical organization of the 
subcortex24, and demonstrate a unimodal to transmodal organization in the thalamus 
similar to that in the cortex20,25. To our knowledge, no work has explored the effects of 
epilepsy on subcortical-to-cortical functional gradients, despite the prominent role of 
subcortical structures in the pathophysiology of epilepsy.  
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In this study, we use subcortical functional connectivity gradients generated from 3T 
resting-state fMRI to compare TLE to healthy controls, and to investigate patterns of 
reorganization that may be specific to L-TLE and R-TLE. We tested whether the first 
principal gradient was expanded in TLE as compared to healthy controls, in line with 
prior work13,20. We also tested whether gradient distributions in key subcortical 
structures that contribute to seizures were altered in patients with TLE. Lastly, we 
explored whether changes seen in L-TLE differed from those seen in R-TLE, which 
would further contribute to the evidence in favor of key functional connectome 
differences between the two disease states. 
 
 
Methods 
 
Patient Demographics 
 
Data acquisition for this study was approved by the institutional review board of the 
University of Pennsylvania. A total of 55 temporal lobe epilepsy (TLE) patients were 
included in this study. Localization of seizure focus was determined during the Penn 
Epilepsy Surgical Conference (PESC) following evaluation of various clinical, 
neuroimaging, and neurophysiological data including: seizure semiology, 
neuropsychological testing, MRI, positron emission tomography (PET), scalp EEG, and 
intracranial EEG findings. Thirty-one patients had left-sided seizure onset zone (SOZ) 
lateralization (L-TLE), and 24 patients had right-sided SOZ lateralization (R-TLE). Age, 
gender, disease duration, MRI lesional status, and history of focal to bilateral tonic-
clonic seizures (BTCS) are reported in Table 1. No statistically significant differences 
between demographic variables were found between the L-TLE and R-TLE groups. 
Sixteen age and gender matched controls (mean age 32±11) were also included in the 
study. 
 
Image Acquisition 
 
For 46/55 TLE patients and 8/16 controls, we used a Siemens 3T Magnetom PrismaFit 
scanner. rs-fMRI data were acquired during a 9-min interval with an axial, 72-slice 
gradient echo-planar sequence, TE/TR=37/800ms, with a 2mm isotropic voxel size 
(protocol 1). For the remaining 9/55 TLE patients and 8/16 controls of the Penn cohort, 
we used a Siemens 3T Magnetom Trio scanner. For this subset of patients, resting-
state fMRI data were acquired during a 6-min interval with an axial, 72-slice gradient 
echo-planar sequence, TE/TR=37/800ms, with a 2mm isotropic voxel size (protocol 2). 
High-resolution T1-weighted images, with a sagittal, 208-slice MPRAGE sequence, 
TE/TR=2.24/2400ms, with a 0.8mm isotropic voxel size were acquired in all participants. 
 
Neuroimaging Processing 
 
We used fMRIPrep26 to perform brain extraction and segmentation of individual T1-
weighted (T1w) images, registration of rs-fMRI data to individual T1w and MNI template 
space, and time-series confound estimation. We used the fMRIPrep output data as our 
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input to the xcpEngine post-processing pipeline for 36-parameter confound regression, 
demeaning, detrending and temporal filtering27

�. Complete details about the functional 
and anatomical processing pipelines can be found in previous work28.  
 
 
Subcortical Gradient Calculation 
 
Using the Harvard-Oxford cortical and subcortical atlases, we separated the fMRI time-
series data into subcortical voxels [t seconds x a voxels] and cortical grey matter voxels 
[t seconds x b voxels] (Figure 1A,B). In our dataset a=9,159, b=138,522 and t=675 for 
protocol 1 and t=450 for protocol 2. For computational reasons, and given that there 
were much fewer timepoints than there were cortical gray matter voxels (t<<b), the 
cortical grey matter time-series data was reduced using principal component analysis 
(PCA) to a dimensionality of [t x t-1], following an approach analogous to Haak et al.16 
(Figure 1C). We then computed the Pearson correlation of every subcortical voxel’s 
time-series to each principal component, resulting in a [a voxels x t-1] matrix containing 
the functional connectivity of each subcortical voxel to each cortical voxel in principal 
component space (Figure 1D). This resulting functional connectivity matrix was 
thresholded with only the top 10% of connections in each row remaining20. The 
remaining steps of the gradient calculations were then completed using the BrainSpace 
Toolbox 29. First, the functional connectivity matrix was transformed into a similarity 
matrix by taking the Pearson correlation between every pair of rows [a voxels x a 
voxels] (Figure 1D). Then, the gradients were generated using diffusion map embedding 
(Figure 1E). For computational considerations, only the first 250 gradients were 
generated. 
 
Due to differences in gradient ordering and signs, the gradients needed to be aligned to 
a template before comparison. Following Hong et al.30, we horizontally stacked the 
gradients of all 71 participants (patients + controls) [a voxels by 250 * 71]. Using PCA, 
the first 250 principal components were generated [a voxels x 250]. The gradients of all 
patients were aligned to this template using a Procrustes alignment31, which utilizes 
linear transformations (i.e. translation, scaling, rotation) to align a source to a target. 
 
To account for differences in fMRI collection protocols, the resulting aligned gradients 
were harmonized using NeuroCombat32. This process regressed out differences in 
gradients due to protocol, but preserved differences due to seizure lateralization and 
control status. 
 
Validation Analysis 
 
To assess the stability of the results, we computed the correlation between the 
gradients obtained in our original approach, with the gradients obtained through 
different correlation techniques for similarity matrix calculation (the step between Figure 
1D and Figure 1E), and different embedding techniques for gradient calculation (the 
step between Figure 1E and Figure 1F). In our approach proposed above, the similarity 
matrix was calculated using Pearson’s correlation coefficient, so we also investigated 
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the use of 5 alternative measures: Gaussian kernels, cosine similarity, normalized angle 
similarity, and Spearman rank order correlations. Additionally, the gradients were 
originally calculated using diffusion maps, so we considered the use of Laplacian 
eigenmaps and PCA. This yielded (5x3=) 15 different gradient variants. 
 
To compare the gradients estimated by different methods, we averaged together the 
aligned and harmonized first and second gradients of all patients for each method, and 
computed the magnitude of the Pearson correlation between every pair of gradients. 
The magnitude was used because the gradients within a single method were aligned to 
each other but not to the gradients of other methods, so the possibility of the gradients 
having inverted signs had to be accounted for. 
 
Statistical Analysis 
 
The gradients of all L-TLE and all R-TLE patients were averaged together to yield a 
representative gradient distribution for each group. Only the first two gradients were 
considered in subsequent analyses (relative magnitude of eigenvalue 1 = 0.14 ± 0.05, 
and eigenvalue 2 = 0.09 ± 0.02). In all analyses, unless otherwise specified, we 
compared regions ipsilateral and contralateral to the SOZ in one group, with the 
corresponding ipsilateral and contralateral regions in the other group. Since left and 
right ROIs were flipped as necessary, both L-TLE and R-TLE had an ipsilateral and a 
contralateral ROI for comparison. With left-to-right flipping, the left sided ROIs in the L-
TLE group were always compared with the right sided ROIs in the R-TLE group. To 
ensure that the measured differences were not driven by inherent asymmetries between 
the left and right ROIs, we randomly shuffled the group assignments and computed the 
statistics of interest between the ROIs in the shuffled groups. This procedure was 
repeated 2000 times, generating a null distribution for each statistic of interest. The p-
value (pPERM) was determined by the fraction of the null distribution that exceeds the true 
value in a two-tailed fashion. Additionally, where indicated, a Bonferroni procedure was 
used to correct for multiple comparisons (pBON).  
 
The distribution spanned by principal gradients 1 and 2 was approximately normal and 
was estimated as a multivariate normal distribution with a [2 x 1] μ and [2 x 2] Σ. We 
compared the gradients in ipsilateral and contralateral regions between R-TLE and L-
TLE using the Bhattacharyya distance, a metric for measuring the similarity of two 
multivariate normal distributions. To estimate the significance of the Battacharyya 
distance, we used the same permutation procedure described above. 
 
Linear Model for Clinical Variables 
 
In addition to studying the effect of disease laterality on the gradient mean and variance, 
we also measured the effect of clinical variables on these two metrics. To do so, we 
used a linear model defined as: 
 

� �  �� � �������� �  �������� � ���	����	� � �
�������
������ 
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where � is either the subject level mean or variance of the gradient, ���� is an indicator 
for laterality (L-TLE vs. R-TLE), ���� is an indicator variable for the presence of mesial 
temporal sclerosis (MTS) as determined by structural imaging, ���	� is an indicator 
variable for the presence of a history of bilateral tonic-clonic seizures, and �
������ is a 
continuous variable that represents the number of years a subject has had epilepsy for. 
The above model was applied for each subcortical ROI. 
 
Results 
 
Subcortical functional connectivity gradients follow a lower to higher computational 
hierarchy along the first principal gradient 
 
We estimated the functional connectivity signature across subcortical voxels of TLE 
patients by computing their functional connectivity gradients from subcortical voxels to 
cortical gray matter voxels. The first two principal gradient values for each subcortical 
ROI resulted in separate functional clusters, mostly following the anatomical 
organization of the subcortex (Figure 2, 3A). Interestingly, voxels within functionally 
related, but anatomically separate regions, such as the caudate and the putamen, had 
substantial overlap in gradient space. Further dividing each ROI into ipsilateral and 
contralateral demonstrates that ipsilateral ROIs have similar gradient distributions as 
their contralateral counterparts (Supplementary Figure 1).  
 
Mean values across gradient 1 suggest an organization that progresses from regions 
with lower computational hierarchy (with neural signaling that primarily projects to the 
thalamus) to regions with higher computational hierarchy (hippocampus and thalamus) 
(Figure 3B). This is similar to Margulies et. al.’s work in cortical functional gradients, 
which demonstrated a unimodal to transmodal organization along the first principal 
gradient 33. These results were also replicated in the control cohort (Supplementary 
Figure 2). All mean ROI pairwise differences across gradient 1 were significant 
(p<0.001, Bonferroni corrected). However, pairwise Cohen’s D effect sizes between 
ROIs (Figure 3C) were smallest between the caudate and putamen, as well as between 
the thalamus, hippocampus and amygdala. The proximity along the dimension of 
gradient 1 for the hippocampus and amygdala relative to the thalamus was countered 
by separation along the dimension of gradient 2 (Figure 3D,E), suggesting that gradient 
2 represents a separation between functions within lower and higher computational 
hierarchy domains (e.g. the thalamus is functionally different from the hippocampus and 
the amygdala, but they are both of high computational hierarchy).  
 
Subcortical Principal Gradient 1 is Expanded in Temporal Lobe Epilepsy 
 
Previous studies in epilepsy have demonstrated an expansion of the cortical functional 
gradient 1 in generalized epilepsy relative to controls 34. Therefore, we tested whether 
the subcortical functional gradient was expanded in focal epilepsy relative to controls. 
We quantified the extent of gradient expansion and contraction by measuring the 
subject-level variance in the principal gradient across all subcortical ROIs. For R-TLE 
and L-TLE combined, we found a statistically significant gradient 1 expansion relative to 
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controls (p=0.0180, one-tailed t-test; Cohen’s D=0.54) (Figure 4A). For R-TLE and L-
TLE separately, we found a statistically significant expansion of gradient 1 in R-TLE 
relative to controls (p=0.048, one-tailed t-test, Bonferroni corrected; Cohen’s D=0.68), 
and a non-statistically significant expansion in L-TLE relative to controls (p=0.138, one-
tailed t-test, Bonferroni corrected; Cohen’s D=0.47) (Figure 4B). Figure 4C-E shows 
representative examples of the spread of gradient 1 across different subjects and 
different groups.  The group level gradient 1 distribution for each group is shown in 
Supplementary Figure 2. No differences were found for gradient 2 global variance 
across groups. These findings suggest a subcortical functional principal gradient 
expansion in focal TLE that is similar to that observed in the cortex and thalamus in 
generalized epilepsy34. 
 
Hippocampal principal gradient 1 ipsilateral to the SOZ is different in left and right TLE 
 
Given the observed differences in gradient expansion present between left and right 
TLE, we then explored how the gradient expansion and magnitude differed across 
subcortical ROIs between left and right TLE. We performed this comparison in two 
ways: in average gradient space, and in subject space. For the average gradient space 
comparison, a voxel-wise average was taken across all subjects in each group. This 
resulted in two average gradient distributions (one for L-TLE and one for R-TLE) for 
each ROI. For the subject space comparison, the mean and variance of each gradient 
distribution was computed for each individual subject, and the distribution of subject 
level gradient mean and variance was compared across groups. The subject space 
distributions were z-scored relative to the distribution of controls across both left and 
right ROIs. The results for this analysis, applied to gradient 1 across ROIs ipsilateral to 
the SOZ, are shown in Figure 5.  
 
Average gradient space demonstrates a larger magnitude for the ipsilateral 
hippocampus in R-TLE relative to L-TLE that trended towards significance 
(pBON,PERM=0.063; Cohen’s D=0.72). At the subject level, the mean gradient 1 value in the 
ipsilateral hippocampus was also higher for R-TLE than L-TLE (pBON,PERM=0.032; Cohen’s 
D=0.87), with the subject level variance also being larger for R-TLE, but not statistically 
significant (pBON,PERM=0.39; Cohen’s D=0.52). A trend in the same direction was observed 
in the ipsilateral amygdala: higher group level gradient for R-TLE (pBON,PERM=0.48; Cohen’s 
D=0.59), and higher subject level gradient mean (pBON,PERM=0.56; Cohen’s D=0.43) and 
variance (pBON,PERM=0.42; Cohen’s D=0.48), but the findings were not statistically 
significant. For the thalamus, caudate and pallidum, the differences between L-TLE and 
R-TLE had small effect sizes (Cohen’s D < 0.50) and no differences were statistically 
significant (pBON,PERM >0.05). However, a trend in the opposite direction was observed in 
the putamen and caudate, with a lower group and subject level mean gradient values in 
R-TLE relative to L-TLE. These findings suggest that the increased global variance in 
the principal gradient of R-TLE relative to L-TLE and controls, is driven by more extreme 
(more positive) principal gradient 1 values in the ipsilateral hippocampus. However, 
potential contributions by more extreme values in other more computationally complex 
subcortical areas such as the amygdala, and more extreme values in the opposite 
direction (more negative values) in less computationally complex subcortical areas, like 
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the putamen and caudate, cannot be fully excluded. No sizeable effects nor significant 
differences were observed for the contralateral ROIs (Supplementary Figure 3).  
 
Using the Bhattacharyya distance, we wanted to validate whether the findings of the 1st 
principal gradient in the hippocampus would extend to the group level 2-dimensional 
distribution generated by principal gradients 1 and 2. We found that the Battacharyya 
distance was statistically significant between the ipsilateral hippocampus of L-TLE and 
R-TLE (pPERM =0.029, Battacharyya distance=0.10). Distances across other ipsilateral 
and contralateral ROIs are show in Supplementary Figures 4 and 5.  
 
Overall, these findings demonstrate differences in the ipsilateral hippocampal functional 
gradient in L-TLE compared to R-TLE, suggesting a cortical connectivity profile in the 
ipsilateral hippocampus that depends on the laterality of the SOZ.  
 
Clinical variables other than epilepsy laterality had little association with subcortical 
functional gradients 
 
We used a linear model to assess whether clinical variables, other than disease 
laterality, influenced the mean and variance of gradient 1. We found that, for the 
ipsilateral hippocampus, disease laterality remained the only covariate with a 
statistically significant association with the gradient 1 mean (p=0.012, corrected across 
4 covariates), consistent with the findings in the previous sections of the paper. We also 
found that the mean gradient 1 of the contralateral caudate had a statistically significant 
association with the presence of MTS (p=0.012, corrected across 4 covariates). We 
additionally found for MTS status, negative coefficients for higher computational regions 
(hippocampus, amygdala, and thalamus), and positive coefficients for lower 
computational regions (putamen and caudate). This suggests a trend towards gradient 
1 contraction in the presence of MTS, or conversely, an expansion in the absence of 
MTS. Our data further supports this interpretation with a negative coefficient for MTS in 
a model predicting the global gradient 1 variance, which demonstrates a decrease in the 
latter quantity (contraction) in the presence of MTS (Supplementary Table 3). We found 
no other significant associations between the mean, or variance, of gradient 1 and the 
presence of mesial temporal sclerosis, history of focal to bilateral tonic-clonic seizures, 
or disease duration across ROIs (Supplementary Table 1 and 2).  
 
Subcortical functional connectivity gradients were stable across different gradient 
estimation approaches 
 
Results for the correlation between the gradients across all ROIs computed using 
different methodologies are shown in Figure 6. Across the different gradient estimation 
approaches, we found a large correlation across methodologies for gradient 1, with the 
lowest correlation between approaches that used Laplacian embedding as the 
dimensionality reduction technique, and approaches that did not (Figure 6C). For 
gradient 2 (Figure 6D) we found a similar pattern, with an even lower correlation 
between approaches that used Laplacian embedding as the dimensionality reduction 
technique, and approaches that did not. We also repeated the Bhattacharyya distance 
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analysis within the ipsilateral hippocampus across all methodologies, and the findings 
remained statistically significant, with consistent distances, for across all approaches 
that used a diffusion mapping dimensionality reduction. For Laplacian embedding 
dimensionality reduction, cosine similarity, Pearson correlation, and Spearman 
correlation similarities did not produce significant findings, and had very low distances. 
Finally, for PCA dimensionality reduction, Gaussian kernel and Spearman similarity also 
had low distances that were not significant. These findings are summarized in 
Supplementary Table 4. 
 
Discussion 
 
In this study we describe the subcortical-to-cortical functional connectivity signature of 
temporal lobe epilepsy via the use of functional connectivity gradients. While previous 
functional gradient studies in epilepsy have largely focused on cortical gradients, here 
we provide an overview of subcortical-to-cortical functional gradients, which further 
supports the involvement of these structures in the pathophysiology of temporal lobe 
epilepsy. Our results demonstrate a lower to higher computational hierarchy in the 
subcortex that goes from the putamen to the thalamus along principal gradient 1. We 
also show an expanded subcortical principal gradient in individuals with TLE subjects 
relative to healthy controls, which is consistent with previous findings in the cortical 
gradients of patients with generalized epilepsy34, but contradicts previous findings with 
similar methods in the cortex of patients with TLE22. Finally, we show that the gradient 
expansion in TLE was more pronounced in R-TLE than in L-TLE, with this difference 
being driven by a larger (more positive) principal gradient 1 value in the ipsilateral 
hippocampus of R-TLE patients.  
 
A contraction of functional connectivity gradients, relative to neurotypical controls, has 
been previously demonstrated in several neuropsychiatric disorders, including autism 
spectrum disorder and schizophrenia21,35. In epilepsy, however, studies have 
demonstrated principal cortical gradient expansion in both generalized epilepsy34, and 
more recently, in newly diagnosed focal epilepsy36. Our findings add to the growing 
body of evidence of an expanded functional gradient in epilepsy, by demonstrating that 
functional gradient expansion also occurs in the subcortex of patients with TLE. These 
findings in combination suggest that principal gradient expansion is a characteristic 
feature of the functional connectome of epilepsy both at the cortical level as well as 
within the subcortex.  
 
An expanded subcortical functional gradient is evidence of a connectivity profile within 
subcortical voxels that is more variable in TLE than it is healthy controls. Broadly, this 
means that two voxels that have a similar connectivity pattern in healthy controls and, 
therefore, are close together in diffusion embedding space in these, are less likely to 
have a similar connectivity pattern in individuals with epilepsy, therefore they will be 
further apart in diffusion embedding space. Furthermore, our findings suggest that the 
increased variation in connectivity is driven by changes in the hippocampus ipsilateral to 
the SOZ. Mechanistically, this is consistent with current evidence on TLE, in that we 
would expect a disrupted connectivity pattern in the hippocampus based on prior 
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structural and functional MRI studies37–40. Additionally, some research avenues place 
the hippocampus as a node within the default mode network41, which is where changes 
have been previously demonstrated to drive gradient expansion in epilepsy34. Our 
findings therefore are consistent and complementary to current neuroimaging research 
in epilepsy. 
 
Differences between left and right TLE have been demonstrated in the past both in 
functional and structural neuroimaging studies, and while there is not universal 
agreement  in the literature, many studies report that right TLE has either stronger, or 
more widespread, abnormalities3,4,6,42,43. These reported functional and structural 
alterations in R-TLE are consistent with the findings of this study, since a stronger 
expansion of the principal gradient in R-TLE could represent a more widely distributed 
subcortical, and more specifically, hippocampal, connectivity network. Our findings 
contribute to the hypothesis of left and right TLE as two distinct epilepsy phenotypes 
that differ on more than the laterality of the disease, with widespread hippocampo-
cortical connectivity abnormalities as part of this phenotype. 
 
In this study, we found that disease laterality was the main factor that seemed to 
influence gradient values. We also found an association between the contralateral 
caudate and MTS, which at a larger scale, represented a trend towards global gradient 
contraction in the presence of MTS, or consequently, an expansion in non-lesional TLE. 
This might be evidence of a more distributed epileptic network in non-lesional TLE, but 
our results are preliminary, and further confirmation is needed. As for other clinical 
factors, history of focal to bilateral tonic-clonic seizures and disease duration were not 
related to gradient values. There are several reasons as to why this might be the case. 
First, it is possible that during the dimensionality reduction implemented during gradient 
generation, the variance of disease laterality dominates over the variance of the other 
covariates, causing the gradient representation to encode differences in disease 
laterality much better than differences in other disease factors. Second, it is possible 
that with more granular ROIs we could obtain more specific gradient changes due to 
disease factors. For example, quantifying the gradient properties within thalamic 
subnuclei, such as the mediodorsal nucleus, we might be able to capture differences 
between patients with and without a history of BTCS44. Third, it is possible that the 
temporal signal-to-noise ratio (tSNR) of the BOLD signal in subcortical structures 
measured at 3T is not sufficient to discriminate nuances in disease factors at a gradient 
level, making a higher field strength (e.g. 7T) functional acquisition a more appropriate 
approach for these questions. Finally, it is also possible that the functional signature of 
subcortical structures is not sensitive to these disease factors and is instead inherent to 
the disease itself. This can be particularly true for disease duration, where even in clear 
structural abnormalities like hippocampal sclerosis, it is still controversial whether 
disease duration has an impact on hippocampal volume45–47.  
 
Our study has several limitations. First, our sample size is moderate. Future multicenter 
epilepsy studies should attempt to validate our findings using larger sample sizes. 
Second, gradient representations provide a global characterization of the connectivity 
from a subcortical voxel to the cortex, however, there is no established methodology for 
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identifying the cortical regions that are driving the subcortical gradient differences. 
Future work in the functional gradient literature should focus on developing efficient 
strategies for mapping the gradient differences back to target cortical voxels. This would 
allow researchers in the field to confirm whether the differences between R and L-TLE 
that we reported in the ipsilateral hippocampus are driven by connectivity differences in 
the default mode network, or other cortical regions. Finally, we made use of subcortical 
ROIs that were defined a priori through a standard atlas. While appropriate for this 
exploratory study, future studies should leverage subject-specific subcortical 
segmentations, such as those provided by FreeSurfer48, ASHS49 and THOMAS50. 
Additionally, usage of ultra-high field imaging at 7T can not only help get more accurate 
segmentations of these structures, but also improved tSNR in the BOLD signal, which 
would precisely localize signals within the subcortex, further elucidating differences 
between epilepsy subtypes and disease factors in gradient space. 
 
Conclusions 
 
In this study we describe the subcortical-to-cortical functional connectivity signature of 
temporal lobe epilepsy through functional connectivity gradients, demonstrating an 
expansion of the principal subcortical gradient in individuals with epilepsy relative to 
healthy controls. These findings indicate gradient expansion as a functional connectome 
phenotype in epilepsy. We also demonstrate differences in the gradient between L-TLE 
and R-TLE that may be driven by changes in the hippocampus ipsilateral to the seizure 
onset zone. 
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Tables 
 
Table 1 – Subject Demographics: Table demographics showing number of subjects, 
age, sex, disease duration in years, MRI lesional status, and history of focal to bilateral 
tonic-clonic seizures (BTCS). MTS: mesial temporal sclerosis. 
 
  

Subject Demographics 

Characteristic Group 
L-TLE R-TLE 

Number of Subjects 31 24 
Age 35±10 39±12 
Female 16 12 
Disease Duration (years) 16±13 18±14 
MRI Lesional 20 16 

MTS 6 9 
FBTCS History 23 16 
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Figures 
 

 
 
Figure 1 – Subcortical Functional Gradient Generation: For each subject, A. the 
subcortical voxels and the cortical gray matter voxels were identified using the Harvard-
Oxford subcortical and cortical atlases respectively, and B. the timeseries in each of 
these voxels was extracted. To reduce the computational complexity of the gradient 
estimation, C. the PCA of the cortical gray matter timeseries was taken, resulting in a 
cortical gray matter PCA matrix. D. The Pearson correlation between the cortical gray 
matter PCA matrix and the subcortical timeseries matrix was computed, resulting in a 
subcortical-cortical correlation matrix. E. The subcortical similarity matrix was estimated 
by computing the row-wise Pearson correlation of the subcortical-cortical correlation 
matrix, and F. diffusion embedding was applied to the subcortical similarity matrix 
resulting in the gradient space representation of the subcortical voxels. 
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Figure 2 – Gradient projection on the subcortical surface: A. Lateral (left) and 
medial (right) view of subcortical regions of interest (ROI) with corresponding labels. 
Subcortical surface projection of the average across all TLE subjects for B. gradient 1 
and C. gradient 2.  
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Figure 3 – Overview of the Subcortical Functional Gradients: A. Average gradient 
space generated by principal gradient 1 and 2 across all TLE subjects. Different colors 
represent different subcortical regions of interest (ROIs). Ipsilateral and contralateral 
structures are assigned the same color in this representation. B.,C. Boxplots 
representing the distribution across ROIs for gradient 1 (B.) and gradient 2 (C.). D., E. 
Pairwise Cohen’s D values between each ROI for gradient 1 (D.) and gradient 2 (E.). 
Differences between all ROIs were statistically significant (pBON < 0.05) 
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Figure 4 – Increased Gradient 1 Global Variance in TLE:  Boxplot for global gradient 
1 variance across A. control and all TLE subjects, and B. control, L-TLE, and R-TLE. C-
E. 1-dimensional scatter of gradient 1 across all ROIs for 10 subjects (one per line) 
sorted from most gradient 1 variance (bottom) to least (top) for C. control, D. L-TLE and 
E. R-TLE.  
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Figure 5 – Principal Gradient 1 Across Ipsilateral Subcortical ROIs: A-F. Each 
panel represents a different subcortical ROI, and they show both, the average 
distribution in gradient space for gradient 1 across subjects in each group (left), and the 
distribution of individual gradient 1 mean and variance for subjects in each group (right). 
The individual subject mean and variance were z-scored relative to the distribution of 
gradient 1 mean and variance for controls in the same ROI, but across bilateral regions. 
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Figure 6 – Gradient Stability Across Estimation Methods: A. Scatterplot between 
gradient 1 estimated with a Pearson correlation similarity matrix and diffusion mapping 
dimensionality reduction (the original approach used in this study), and gradient 1 
estimated with a Pearson correlation similarity matrix and principal component analysis 
dimensionality (PCA) dimensionality reduction. B. Same as A. but with gradient 2. C-D. 
Absolute value of the Pearson correlation between gradient 1 (C.) and gradient 2 (D.) 
for different methods of estimating the similarity matrix and the subsequent 
dimensionality reduction. Arrows point to the rows and columns corresponding to the 
Pearson-DM approach used in the main findings of this study. DM – Diffusion mapping, 
LE – Laplacian embedding, PCA – Principal component analysis. 
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