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1  | INTRODUC TION

Chronic Heart failure (CHF) is not simply the end‐stage of all types 
of heart disease but also a multifactorial epidemic disease. The 
mechanisms of CHF involve a complex interplay among neurohor‐
monal,1 metabolic,2 genetic,3 inflammatory4 and other biochemi‐
cal factors. Meanwhile, HF has a genetic predisposition that has 
been widely recognized by Framingham heart Study5 and Swedish 
Nationwide Adoption Study,6 in addition to the traditional risk 

factors. Genetic testing strategies might be a potential tool for 
individualized disease risk detection, prevention and interven‐
tion. Genetic risk scores (GRS), which is the sum of risk genes in 
individuals has been beneficial to primary prevention. Genome‐
wide association study (GWAS) studies have identified 73 gene 
mutation loci for coronary artery disease (CAD),7 and almost 100 
genes were associated with cardiomyopathies (most of which are 
DCM and HCM),3 while only few previous studies such as stud‐
ies on coronary artery disease,8 and cardiometabolic diseases9 in 
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Abstract
Chronic heart failure (CHF) has poor prognosis and polygenic heritability, and the 
genetic risk score (GRS) to predict CHF outcome has not yet been researched com‐
prehensively. In this study, we sought to establish GRS to predict the outcomes of 
CHF. We re‐analysed the proteomics data of failing human heart and combined them 
to filter the data of high‐throughput sequencing in 1000 Chinese CHF cohort. Cox 
hazards models were used based on single nucleotide polymorphisms (SNPs) to esti‐
mate the association of GRS with the prognosis of CHF, and to analyse the difference 
between individual SNPs and tertiles of genetic risk. In the cohort study, GRS en‐
compassing eight SNPs harboured in seven genes were significantly associated with 
the prognosis of CHF (P = 2.19 × 10−10 after adjustment). GRS was used in stratifying 
individuals into significantly different CHF risk, with those in the top tertiles of GRS 
distribution having HR of 3.68 (95% CI: 2.40‐5.65 P = 2.47 × 10−10) compared with 
those in the bottom. We developed GRS and demonstrated its association with first 
event of heart failure endpoint. GRS might be used to stratify individuals for CHF 
prognostic risk and to predict the outcomes of genomic screening as a complement 
to conventional risk and NT‐proBNP.

K E Y W O R D S

chronic heart failure, exome sequencing, genetic risk score, inheritance

www.wileyonlinelibrary.com/journal/jcmm
https://orcid.org/0000-0002-8883-0759
https://orcid.org/0000-0002-4013-1449
mailto:
https://orcid.org/0000-0002-9774-3980
http://creativecommons.org/licenses/by/4.0/
mailto:dwwang@tjh.tjmu.edu.cn


286  |     LI et aL.

cardiovascular disease have shown the use of genomic information 
in risk prediction.

Genetic variation in subjects with CHF may determine out‐
comes,10,11 but previous studies on the prognosis of HF and 
related GRS remain unclear. First, CHF has broad spectrum of ae‐
tiology and heterogeneity of symptoms12; however, the common 
characteristics of genetics and/or environment have verified a 
final common pathway in CHF.13 Second, the outcomes of HF have 
cumulative effects for multiple risk factors interaction. In deter‐
mining the prognosis of CHF, the role of monogenic variant is rare, 
and this will miss the superposition of minor genetic variations. 
Hence, there is a considerable room for improvement to genetic 
risk assessment for CHF.

Here, we reported a whole exome sequencing wide GRS for 
CHF to provide prognosis risk evaluation. We re‐analysed the 
mass spectrometry (MS) data for 34 non‐failing and failing human 
left ventricular myocardium.14 Moreover, in more than three phe‐
notypes of failing heart, such genes will be included only if it has 
the same variability trend as normal contrast expression (P < 0.05), 
and thus were detected from whole exome sequencing data of 
1000 Han Chinese CHF patients (787 idiopathic dilated cardio‐
myopathy and 213 ischaemic dilated cardiomyopathy). GRS for HF 

was constructed utilizing cox regression in HF cohort, to evalu‐
ate the stratifying prognosis and risk performance of GRS in 1000 
CHF study cohort.

2  | MATERIAL S AND METHODS

2.1 | Data of mass spectrometry of human 
myocardial tissue

Thirty four hearts samples were all diagnosed and collected by Chen 
from the Hospital of the University of Pennsylvania.14 The samples 
were divided into normal, compensated hypertrophy (cHyp), hy‐
pertrophic cardiomyopathy preserved ejection fraction (HCMpEF), 
hypertrophic cardiomyopathy reduced ejection fraction (HCMrEF), 
dilated cardiomyopathy (DCM) and ischaemic cardiomyopathy (ICM). 
The baseline of samples is available on https ://www.nature.com/
artic les/ s41591‐018‐0046‐2#Sec33. Proteomic data of these pa‐
tients can be publicly downloaded from proteomeXchange (http://
www.prote omexc hange.org/,PXD00 8934). The flow chart of the 
current study is provided in Figure S1.

2.2 | Study subjects for whole exome sequencing

The Institutional Ethics Committee of Tongji Hospital approved this 
study, which followed the principles of the declaration of Helsinki. 
All subjects gave written informed consents before enrolment. At 
the cut‐off time in November 2017, 1000 patients (787 patients with 
dilated cardiomyopathy 15 and 213 patients with ischaemic dilated 
cardiomyopathy with left ventricular volume >60 mm and EF < 50%) 
from Cardiology Division of Tongji Hospital were enrolled. According 
the follow‐up protocol, all enrolled patients underwent face‐to‐face 
interviews or/and phone call interviews. Next, there was physical 
examination of clinic and ward patients by outpatient and attending 
physicians, respectively. The primary endpoint was defined as heart 
transplantation or cardiovascular death10,16 that was confirmed using 
hospital death certificates or electronic medical records. Secondary 
endpoints were defined as heart failure readmission, discharge 
composites, and all‐cause mortality. Patients were followed up by 
specialized staff and the anthropometric measurements data, clini‐
cal characteristics and clinical events were electronically recorded 
via clinic visits and telephone calls. Baseline demographic and fam‐
ily history of all study participants were obtained via standardized 
questionnaires. All the laboratory examinations were executed using 
the Rocha modular DPP system according to standard procedures 
at the Department of Clinical Chemistry, Tongji Hospital. The rate 
of follow‐up compliance was 99.8% (998/1000), with 2% loss. The 
patients had a mean age of 57 years (57.0 ± 14.3), of which 25.7% 
were females. The clinical characteristics of individuals are summa‐
rized in Table 1. The risk factors were defined as follows: gender, age, 
hypertension, hyperlipemia, diabetes mellitus and current smoking. 
Meanwhile, β‐blocker taking as an adjusted factor was collected in 
different time points. Inclusion and exclusion criteria and the details 
of data processing and quality control are provided in Appendix S1.

TA B L E  1   Baseline characteristics of whole exome sequencing 
population

Characteristics

Sequencing DCM 
population
cohort (n = 1000)

Men 743 (74.30%)

Age, y 57.00 ± 14.19

NYHA

II 296 (29.6%)

III 411 (41.10%)

IV 216 (21.60%)

LVEF (%) 34.55 ± 12.40

NT‐proBNP (pg/mL) 3750 (1555, 8645)

Glucose, mmol/L 6.80 ± 2.89

TC, mmol/L 3.91 ± 1.31

TG, mmol/L 1.40 ± 1.13

HDL, mmol/L 1.08 ± 3.33

LDL, mmol/L 2.42 ± 0.87

SBP, mm Hg 128.48 ± 40.62

DBP, mm Hg 80.65 ± 17.12

Hypertension 392 (39.20%)

Diabetes 175 (17.50%)

Hyperlipidemia 50 (5.00%)

Current smoking 390 (39.00%)

β‐blocker use 435 (43.50%)

Abbreviations: DBP, diastolic blood pressure; HDL‐C, high‐density 
lipoprotein cholesterol; LDL‐C, low‐density lipoprotein cholesterol; SBP, 
systolic blood pressure; TC, total cholesterol; TG, triglyceride.

https://www.nature.com/articles/
https://www.nature.com/articles/
http://www.proteomexchange.org/,PXD008934
http://www.proteomexchange.org/,PXD008934
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2.3 | Whole exome sequencing and 
bioinformatics workflow

Genomic DNA was extracted from peripheral blood leukocytes 
using Tiangen commercially available kit (Tiangen). Experimental 
workflow, sample preparation and sequencing were performed 
as protocol. All gDNA were of high quality and were determined 
through spectrophotometric and electrophoretic analyses. We frag‐
mented genomic DNA to 300 bp sizes, and we used SureSelectXT 
exon V6 kit (Agilent) to capture target regions, repair fragments ends 
and ligate adapters. Following standard Illumina protocol, Illumina 
HiSeq X Ten sequencer was used to sequence the amplicons. Reads 
were aligned to hg19 human reference genome (GRCh37 Genome 
Browser) using Burrows‐Wheeler Alignment Tool (BWA) 0.7.17. The 
picard (http://picard.sourc eforge.net) was used in removing dupli‐
cated reads. Insertions and deletions were recalibrated using GATK 
version 3.4. The variants exclusion criteria were low coverage (<20×), 
low quality score (<20) and low average quality (<3). Qualified sam‐
ples were defined as variants of over 80% of the individuals that 

reached the read coverage of 20×. We used ANNOVAR to annotate 
the variants.

2.4 | Data processing and quality control

The WES data were stored with Variant Call Format (VCF). The 
VCFtools (https ://github.com/vcfto ols/vcftools) was used to per‐
form data analysis, and invalid data were eliminated before estab‐
lishing available data pools. Considering the repeatability of data 
processing, we employed appropriate quality control procedures 
to suit the whole exome sequencing summary statistics adapted 
for minor allele frequency. PLINK16 was used to control imputation 
quality and Hardy‐Weinberg equilibrium. Genetic principal compo‐
nents (PCs)17 was used for cohort structure quality control.

2.5 | Construction of GRS

A detailed description is offered in Appendix S1. Briefly, (a) we built 
a GRS based on mass spectrometry of human myocardial tissue and 

F I G U R E  1   Combining mass 
spectrometry and whole exome 
sequencing to screen for target genes. A, 
Venn diagram to analyse the overlapping 
protein of using mass spectrometry of 
human myocardial tissue (Normal N = 7, 
ICM N = 6, HCMpEF N = 4, HCMrEF 
N = 5, DCM N = 6), 319 proteins were 
detected in more than three groups. B, 
Principal component analysis (PCA) of 
whole exome sequencing was performed 
to populations construction defined by 
Eigenstrata, the result demonstrated 
the consistency of the study (loadings of 
intermediates in PC1 and PC2 are shown 
in blue). C‐F, Volcano plot of genes used to 
build GRS in different phenotype of Mass 
spectrometry

http://picard.sourceforge.net
https://github.com/vcftools/vcftools
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exome sequence data from CHF subjects. (b) included loci of GRS 
were filtrated by Kaplan‐Meier analysis and the weighted sum of 
the risk allele(0/1/2) was supplied by Samuli Ripatti 18 and (c) logistic 
regression and C‐index (https ://www.medca lc.org/ Medcalc‐version 
18.11.3)19 were used for assessment of GRS.

2.6 | Statistical analysis

To test the association of HF susceptibility variants with the prognosis 
of CHF risk factors, we used a combination of linear and logistic regres‐
sion adjusting for age at first visit, gender, SNPs and conventional risk 
factors. These analyses were based on additive models. We consid‐
ered the significant of SNP risk factor association threshold of P < 0.05. 
We analysed individual SNPs and tertiles of genetic risk score, which 
were adjusted using conditional logistic regression of GRS for age, gen‐
der and conventional risk factors, and the significance of the differ‐
ence in the receiver operating characteristic (ROC) curves was tested 
with C‐index approach. Linkage disequilibrium (LD) was calculated by 
Haploview version 4.1. Data are expressed as mean ± SEM of experi‐
ments. Volcano plots (differential expression of genes for construction 
of GRS) were plotted by the R package ‘ggplot2.’ Data analyses were 
performed using SPSS 24.0 (SPSS, Inc) for Windows (Microsoft Corp).

3  | RESULTS

3.1 | Differential gene expression analysis

In the online file (PXD008934), 3764 genes per group were available 
for analysis, and we filtered meaningful genes of P < .05 per group. The 
above conditions were for genes that were in more than three groups 
for HCMpEF, HCMrEF, DCM and ICM. Using Venn diagram to analyse 
the overlapping gene (Figure 1A), ultimately, 319 genes were chosen 
(details seen in Table S1). Baseline data for these samples are listed in 
https ://www.nature.com/artic les/s41591‐018‐0046‐2#Sec33 .

3.2 | Whole exome sequencing

Seventy seven thousand, two hundred and eighty seven variants of 
Minor Allele Frequency (MAF) > 0.05 were identified in the whole 

exome sequencing from 1000 CHF objects, with 45 125 LD‐prune 
variants, which were used for the stratification of population 
(Figure 1B).

3.3 | Differential gene loci and prognosis of patients 
with heart failure

To confirm the association between genetic alterations of common 
genes in the MS of heart failure tissues and the prognosis of CHF pa‐
tients, 441 SNPs harboured in differentially expressed genes (Table 
S2) were identified by scanning the whole exome sequencing data‐
base consisting of 1000 CHF Chinese Han population. The primary 
outcomes occurred in 260 patients (26.0%). We selected only the 
lead SNP from each locus. In addition, we included SNP associated 
with the prognosis of HF, P < 0.05 if primary endpoints were the lead 
trait (most strongly associated) in Kaplan‐Meier analysis. Ten SNPs 
were identified among 441 variants in the additional model associ‐
ated with the prognosis of HF (P < 0.05). After the identification of 
loci linkage (Figure S2), eight SNPs were verified to be associated 
with the prognosis HF (P < 0.05; Table 2, Table S7). The following 
genes AGT, SLC25A13, HRG, APOB, SOD3, SYNM and TLN2 were in‐
cluded in the GRS study. In addition, volcano plot was used to display 
the variance of candidate genes among the different types of failing 
hearts (Figure 1C‐F).

3.4 | Predictive effect of GRS on the 
prognosis of HF

For each individual, we calculated CHF‐specific genetic scores using 
the weighted sum of the risk allele (zero, one, or two for risk alleles 
at each locus; Figure 2A). These scores were weighted according to 
the size effect reported in the endpoints studies. Genetic risk score 
was strongly associated with the prognosis of CHF by univariable 
analysis (HR = 1.28, 95% CI 1.19‐1.37, P = 5.16 × 10−11) and mul‐
tivariable analysis including adjusted traditional risk factors and β 
blocker taking (HR = 1.28, 95% CI 1.18‐1.37, P = 2.19 × 10−10) by Cox 
Proportional Hazard Analyses (Table 3).

The tertiles of GRS were utilized in establishing model 1 (orig‐
inal risk), model 2 (age and gender) and model 3 (age, gender and 

TA B L E  2   Association between SNPs and outcomes of heart failure

SNP Gene Chromosome OMIM Risk allele MAF P Value HR (95% CI)

rs4273214 AGXT 2:240878862 604285 C 0.23 0.006 1.37 (1.09‐1.71)

rs33958047 AGXT 2:240878862 604285 G 0.18 0.005 1.36 (1.10‐1.68)

rs2301629 SLC25A13 7:96171508 603859 A 0.41 0.031 1.21 (1.02‐1.43)

rs1042464 HRG 3:186677783 142640 A 0.21 0.003 1.37 (1.11‐1.68)

rs679899 APOB 2:21028042 107730 G 0.15 0.045 1.26 (1.00‐1.59)

rs2536512 SOD3 4:24799693 185490 A 0.33 0.006 1.31 (1.08‐1.58)

rs3134587 SYNM 15:99 130 073 606087 T 0.30 0.009 1.28 (1.07‐1.54)

rs1320191 TLN2 15:62717605 603859 G 0.06 0.037 0.62 (0.39‐0.97)

Abbreviations: HR, hazard ratio; OMIM, Online Mendelian Inheritance in Man (http://www.omim.org/); SNP, single nucleotide polymorphism.

https://www.medcalc.org/
https://www.nature.com/articles/s41591-018-0046-2#Sec33
http://www.omim.org/
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traditional risk factors20) with details provided in Table S3. The con‐
sistency of estimates for the models did not change when adjustment 
for traditional risk factors was compared with the original risk only. 
Participants in the top tertiles of genetic risk score were estimated 
to have 3.56‐times increased risk of primary outcomes compared 
with those in the bottom tertiles (95% CI 2.36‐5.37, P = 1.34 × 10−9). 
After adjustment for age, gender and traditional risk factors, the HRs 
remained the same, with 3.68‐times expansion (95% CI 2.40‐5.65, 
P = 2.47 × 10−10; Figure 2B, Table S4).

When the genetic risk score was divided into quartiles as pre‐
vious tertiles, results were consistent and associated with the 

prognosis of CHF; details are provided in Table S3. The top quartile 
of the genetic risk score has 6.96 times increased risk compared with 
those in the bottom quartiles of the original risk (95% CI 3.30‐14.68, 
P = 3.44 × 10−7). After we adjusted the traditional risk factors and 
the β‐blocker taking, HR acquired 6.76 times expansion (95% CI 
3.21‐14.28, P = 5.27 × 10−7; Figure 2C, Table S4).

To compare GRS predictive validity to traditional risk factor, we 
constructed a risk prediction model that included gender, age, hy‐
pertension, hyperlipemia, diabetes mellitus and current smoking. By 
employing binary logistical regression to analyse the traditional risk 
factors, a predictive indicator was taken for the receiver operating 

F I G U R E  2   The distribution of GRS and combined effects of risk alleles on the prognosis of HF in prospective cohort study (A). For 
each	subject,	the	number	of	risk	alleles	of	eight	replicated	loci	was	summed	to	represent	an	individual's	genetic	risk	score	(range,	−3	to	7).	
Individuals in each risk allele category are shown along the X‐axis, and Y‐axis on left represents the frequency of each genetic risk score 
category. (B, C) Cox proportional hazards model analysis after adjusted for gender, age, hypertension, hyperlipemia, diabetes mellitus, 
current smoking and β‐blocker treatment, showed the association of GRS with cardiovascular deaths or cardiac transplantation in the tertiles 
of genetic risk score (B, HR = 3.68, 95% CI 2.40‐5.65, P = 2.47 × 10−10) and quartiles (C, HR = 6.76, 95% CI 3.21‐14.28, P = 5.27 × 10−7)

Variables

Univariable analysisa Multivariable analysisb

HR 95% CI P value HR 95% CI P value

Gender 1.35 1.04‐1.76 0.03 1.23 0.93‐1.62 0.15

Age 1.03 1.02‐1.04 1.18 × 10−8 1.02 1.01‐1.03 4.54 × 10−4

Hypertension 1.10 0.86‐1.41 0.46 1.19 0.91‐1.55 0.20

Diabetes 0.77 0.57‐1.03 0.07 0.76 0.56‐1.04 0.09

Hyperlipidemia 0.95 0.74‐1.21 0.66 0.95 0.75‐1.19 0.63

Current smoking 1.09 1.01‐1.17 0.02 1.09 1.00‐1.18 0.05

β‐blocker use 5.82 4.03‐8.40 5.43 × 10−21 5.48 3.78‐7.93 2.07 × 10−19

Genetic risk 
score

1.28 1.19‐1.37 5.16 × 10−11 1.28 1.18‐1.37 2.19 × 10−10

aHR, Hazard ratios and P value were calculated with univariate cox proportional hazard model. 
bHR, Hazard ratios and P value were calculated with the use of cox proportional hazard model ad‐
justed gender, age and traditional risk factor: hypertension, hyperlipemia, diabetes mellitus, current 
smoking. 

TA B L E  3   Results of univariable and 
multivariable cox proportional hazard 
analyses for cardiac events
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characteristic (ROC) curves. The N‐terminal B‐type natriuretic pep‐
tide (NT‐proBNP) was built as a contrast scale, which has been widely 
recognized as an important prognostic indicator of heart failure.21‐23 
NT‐proBNP in GRS of tertiles and quartiles showed no differenti‐
ation with ANVOA (P = 0.895; P = 0.704; Table S8). In Cox regres‐
sion of prognosis of CHF, models based on age had higher C‐index 
(C = 0.626; 95% CI: 0.595‐0.656) than any of the individual conven‐
tional risk factors, with the second‐best model being GRS on assess‐
ment (C = 0.620; 95% CI: 0.589‐0.650; Figure 3A and 3). A model 
combining these seven traditional risk factors (TRA), (C = 0.648; 
95% CI: 0.610‐0.684) had only slightly better performance than GRS 
(P	=	0.592;	95%	CI:	−0.0486‐0.852).	Combining	the	GRS	with	TRA	
resulted in a model with C‐index of 0.690 (95% CI: 0.653‐0.725), an 
increase of 4.9% over the model consisting of only TRA, and a signifi‐
cant difference (P	=	0.017;	95%	CI:	−0.00759‐0.0773).	A	model	com‐
bining TRA, GRS and NT‐proBNP (C = 0.773; 95% CI: 0.740‐0.804) 
has better predictive ability, and an increase of 7.2% (P = 0.0016; 
95% CI: 0.0198‐0.0847), compared with the use of only NT‐proBNP 
model (C = 0.721; 95% CI: 0.685‐0.755). The result showed an am‐
plification of 3.34%, with significant difference (P < 0.0001; 95% CI: 
0.0488‐0.118) for the combination of TRA, NT‐proBNP and GRS 
models compared with combined models of TRA and NT‐proBNP 
(C = 0.748; 95% CI: 0.713‐0.781; Figure 3B and C, Tables S5 and S6).

4  | DISCUSSION

Genetic counselling is recommended for CHF patients and their fam‐
ily members.24 It has always been of clinical focus to foresee the 
risk of heart failure via genetic background characteristics. GRS was 

used to identify patients with Mendelian and complex disease25 pat‐
terns known as loci for HF risk factors, such as CAD, Cardiometabolic 
Disease,8,26 Blood Pressure9 and atrial fibrillation.27 Heart failure 
has similar or worse prognosis when compared to most cancers.28 
Traditional risk factors20 have been used in risk prediction. However, 
obtaining GRS to predict the prognosis of HF remains challenging. 
Here, we made an effort to incorporate genetic risk scores into clini‐
cal practice for determining the outcome of CHF.

In analysing the data from case‐control mass spectrometry of 
human left ventricle tissue in this cohort study, 441 genes were 
used to search for common variant loci (P > 0.05), and whole exome 
sequencing was performed for 1000 Chinese Han population with 
HF. We aimed to validate differentially expressed genes to estimate 
the association of outcomes with the magnitude of risk conferred 
by these genetic risk factors in the population setting. Seven genes 
were used for GRS construction: Alanine–glyoxylate and serine–py‐
ruvate aminotransferase (AGXT), Solute carrier family 25 member 
13 (SLC25A13), Histidine‐rich glycoprotein (HRG), Apolipoprotein 
B (ApoB), SOD3, Synemin (SYNM) and TLN2. AGXT are mostly lo‐
calized in the peroxisomes, and may be associated with primary 
hyperoxaluria type 1.29 SLC25A13 encodes aspartate/glutamate 
carrier isoform 2 (AGC2) and involves in numerous metabolic path‐
ways including energy metabolism pathway and cell functions.30 
HRG has two cystatin‐like domains, located in 3q27 on the chromo‐
some 3 by binding different ligands to modulate various biological 
processes including angiogenesis, coagulation and immune func‐
tion.31 ApoB refers to heart and vascular diseases, having a prod‐
uct of primary apolipoprotein of chylomicrons and VLDL, and it is 
the primary organizing protein component of the particles.32 SOD3 
encoding a member of superoxide dismutase (SOD) protein family 

F I G U R E  3   Predictive outcomes of HF using the GRS and conventional risk factors. A and B, Receiver operating characteristic (ROC) 
analyses were performed to individual of traditional risk factors, and compound factors. C, C‐index for Cox regression of incident HF with 
individually traditional risk and in combination factors was illuminated that the model, traditional risk combining NT‐proBNP and GRS, has 
better predictive ability compared with others
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is an antioxidant enzyme that catalyses the conversion of superox‐
ide radicals into hydrogen peroxide and oxygen, which may protect 
the heart from oxidative stress.33 SYNM is an intermediate filament 
(IF) family member, which primarily functions as mechanical stress, 
maintains structural, and related to smooth muscle cell cytoskele‐
ton of the heart, with its absence causing ventricular dysfunction in 
mice.34 TLN2 belonging to the talin protein family is a cytoskeletal 
protein, which is highly expressed in cardiac muscle when loss of 
talin‐1 and talin‐2 leads to dilated cardiomyopathy and cardiac dys‐
function in mice.35 Clinicians have a growing need for tools to assess 
the prognosis of heart failure accurately in the individual patient, 
especially to obtain credible information regarding the prognosis 
in the early stage and not just collecting clinical characteristics of 
symptoms and the results of invasive test in the acute exacerbation 
stage. SNPs as factors of the innate genetic background are involved 
in the pathophysiological processes of heart failure. This is a new 
attempt to build a genetics risk score consisting of SNPs to predict 
the outcomes of heart failure. We found that genetic risk score in‐
cluding eight SNPs (rs4273214, rs33958047, rs2301629, rs1042464, 
rs679899, rs2536512, rs3134587 and rs1320191) harboured seven 
genes were associated with heart failure (even after we have ac‐
counted traditional risk factors and β blocker taking). In addition, the 
top 1/3 of individuals of Chinese Han ancestry who had the most 
risk alleles have roughly 3.87 times risk to develop the incidence of 
cardiac death and heart transplantation compared with those in the 
lowest tertiles. The GRS of HF had a very good predicting ability to 
categorize individual patients in separate risk strata.

Several ways have been widely accepted to estimate the progno‐
sis of heart failure. The Seattle prediction model used common clin‐
ical characteristics to predict accurately the survival of heart failure 
patients with large samples. ROC curve of the model was 0.729 (95% 
CI, 0.714‐0.744), but it was limited by multivariable and without NT‐
proBNP.36 CHARM‐model including 21 predictor variants has a similar 
performance with C‐index of 0.74 and 0.76 for cardiovascular death 
in low and the preserved left ventricular EF populations.37 Its high‐
lights showed non‐invasive indicators and accuracy of stratify risk to 
classify participators. However, previously mentioned model did not 
utilize orthodox biochemical markers such as NT‐proBNP or BNP to 
construct risk model. The MUSIC risk score is a high accuracy model 
with preserved LVEF cases,38 including NT‐proBNP and other 10 risk 
factors which have strong discrimination to predict total mortality; 
cardiac mortality and C‐indices were 0.77 and 0.78. The advantages 
of MUSIC model are simple operation and identification of high‐risk 
patients; however, it has reduced LVEF patients and traditional pre‐
dictors, which could impede the application to general patients.

Because of the poor outcomes and changing risks in different 
phases of HF, clinicians might draw differential predictions from the 
information of patient characteristics that were not readily available 
and alterable with the stage and severity of HF. Meanwhile, the risk 
factors used to build classical prediction models, usually included 
over 10 risk factors of clinical test and clinical characters, which have 
restriction in assessing doctors and hospitals. However, our clinical 
predictive model only needs one gene panel, numerous of traditional 

cardiovascular risk factors to make predictions and has better per‐
formance when combined with NT‐proBNP. We evaluated the 
performance of GRS validation in the Chinese Han heart failure pop‐
ulation. Genetics risk score was strongly associated with the prog‐
nosis of CHF by univariable and multivariable in Cox Proportional 
Hazard Analyses (HR = 1.28, 1.28; P = 5.16 × 10−11, P = 2.19 × 10−10). 
The C‐index was 0.620. GRS model combined with NT‐proBNP and 
traditional risk factors was highly discriminatory and improved spec‐
ificity and accuracy in identifying HF patients with worse prognosis 
(C‐index is 0.773). The predictive power of GRS + TRS + NT‐proBNP 
model is not inferior to the classical models.

The following conclusions can be drawn from our findings. First, 
we reported a series of findings that attempted to stratify individu‐
als with HF using genomic information prognosis in general popula‐
tions, an approach that leverages the fixed nature of germline DNA 
over the life course to anticipate different lifelong trajectories of 
CHF. Second, the variants from case‐control differentially expressed 
genes appeared to affect the outcomes, including those from whole 
exome sequencing prospective cohorts. Third, further adjustment 
for traditional risk factors had no effect on the risk estimates be‐
cause of the genetic risk score. Finally, genetic risk score combined 
with traditional risk factors improved risk discrimination when as‐
sessed with the C‐index (P = 0.017), and this is strongly associated 
with the outcomes of HF.

Overall, this is a challenge to any single risk factor to predict 
prognosis of CHF via complex traits. Our combined results showed 
much powerful risk discriminations between the tails of genetic 
risk scores. The differences cannot be accounted by NT‐proBNP 
as they are similar for each score in our study. Hence, higher ge‐
netic risk indicating individuals that have more genetic risk alleles 
has worse prognosis even if they have the same level of NT‐proBNP. 
Subdividing patients can help us identify high‐risk individuals more 
accurately. For clinical practice, providing precise interventions for 
variants subjects in early stage of CHF (stage A or B) would improve 
benefits. This potential value of using genetic risk score and optimiz‐
ing the use of scarce resources for the estimation of the endpoint of 
CHF would be revalidated in further studies.

4.1 | Study limitations

First, the SNPs used for GRS panel construction should be enriched. 
For example, more potential differential genes can be obtained after 
augmenting the sample size of MS control‐case. Meanwhile, exten‐
sive whole exome sequencing cohort potential candidate variants 
will unfold with GRS. Second, there are racial differences between 
mass spectrometry (MS) samples and whole exome sequencing 
population. Another population or other ancestries are needed to 
verify the results. However, the potential clinical use of GRS can be 
predicted. Third, the expansion of the sample size of CHF popula‐
tion is needed, and future studies on large multiethnic cohorts will 
validate GRS. Fourth, other widely accepted heart failure prognostic 
risk scores, such as Seattle heart failure model should be included as 
control in subsequent studies. Fifth, we did not include the index of 
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family history in traditional risk. The information about disease and 
its direct relations is often vague, which may be related to the level 
of medical care in the past.

5  | CONCLUSION

We developed and assessed a genetic score based on eight SNPs in 
the current study, and we demonstrated that it was associated with 
the first event of heart failure endpoint. We attempted the concept 
of engaging genomic information to stratify individuals for CHF prog‐
nostic risk and to improve risk reclassification for participants, and 
we demonstrated a hypothesis to predict the outcomes of genomic 
screening to complement conventional risk and NT‐proBNP.
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