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Abstract: This study presents a radar-based remote measurement system for classification of human
behaviors and falls in restrooms without privacy invasion. Our system uses a dual Doppler radar
mounted onto a restroom ceiling and wall. Machine learning methods, including the convolutional
neural network (CNN), long short-term memory, support vector machine, and random forest methods,

check for

ek are applied to the Doppler radar data to verify the model’s efficiency and features. Experimental
updates

results from 21 participants demonstrated the accurate classification of eight realistic behaviors,
Citation: Saho, K.; Hayashi, S.;

including falling. Using the Doppler spectrograms (time—velocity distribution) as the inputs, CNN
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] ] showed the best results with an overall classification accuracy of 95.6% and 100% fall classification
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accuracy. We confirmed that these accuracies were better than those achieved by conventional
restroom monitoring techniques using thermal sensors and radars. Furthermore, the comparison
results of various machine learning methods and cases using each radar’s data show that the higher-
order derivative parameters of acceleration and jerk, and the motion information in the horizontal
direction are the efficient features for behavior classification in a restroom. These findings indicate that

o daily restroom monitoring using the proposed radar system accurately recognizes human behaviors
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Publisher’s Note: MDPI stays neutral 1. Introduction

with regard to jurisdictional claims in Aging is a global phenomenon responsible for various problems related to shortened

health expectancy and the sudden death of elderly people [1]. Therefore, monitoring
systems for early detection of accidents and abnormal behaviors in elderly adults, such as
falling, have recently been developed based on sensors and Internet-of-Things technolo-
gies [2]. However, such systems are not used inside restrooms due to privacy concerns. The
early detection of falls and abnormal behaviors in restrooms is important because it is one
of the dangerous spaces in the home where elderly people are likely to fall [3]. Even though
accelerometry-based approaches for fall detection in restrooms have been proposed [4,5],
they require the subjects to wear the sensor devices.

Few studies have investigated camera-based approaches for the remote monitoring of
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investigations of restroom monitoring have been limited. Even though infrared, thermal,
sensor-based posture estimation in restrooms has been proposed [9,10], its measurement
accuracy depends on the temperature of the toilet and of the subject’s clothing.

Radar technology is a promising candidate method for solving the above-described
problems because it does not invade privacy during measurement and is not affected by
temperature conditions or clothing. Therefore, radar-based motion recognition and fall
detection are active research areas. Various approaches based on machine learning of radar
images, such as time-Doppler, time-range, or range-Doppler images, have been proposed
and demonstrated in realistic situations [11-13]. However, research on the use of radar in
restrooms is quite limited. Though the detection of falls in restrooms using radar systems or
the classification of normal and abnormal behaviors by range (distance) information [14,15]
have been studied based on classical signal detection or discriminant analysis methods, it
is difficult to determine what is happening in a restroom because only abnormal behaviors,
such as falls, are detected. Moreover, their accuracy and practicality were both insufficient.
To solve these problems, our recent paper reported the long short-term memory (LSTM)-
based classification of eight types of behaviors and falls in a restroom with approximately
80% accuracy using the Doppler radar-measured velocity time series [16].

As a significant extension of our previous study [16], this study presents a more
accurate classification using the convolutional neural network (CNN)-based approach
and investigates the accurate classification of human behavior in restrooms via various
machine-learning methods. The contributions of this study are as follows:

e  The efficient implementation of Doppler radars and experimental examples for privacy-
protected restroom monitoring were provided for the realistic environment; this is
a significant contribution because there are only several limited reports on realistic
restroom monitoring.

e  [Efficient classification models and types of their input data for the radar-based
restroom-monitoring system were clarified via the thorough comparison of the radar-
based motion recognition approaches.

o  The classification of human behaviors and falls in a restroom with above 95% was
demonstrated. This result shows significant improvement over other conventional
studies on radar-based restroom monitoring [14-16].

This paper is an extended version of our conference paper [17] that simply presented
the results for the CNN-based approach. In this study, we added the results for the
comparison with other various machine learning-based classification methods, the details
of the implementation of the classification methods, comparison with other conventional
studies, and investigation to elucidate the efficient features.

2. Related Work

The machine learning-based human motion classification has been widely investigated
in various sensing technologies such as cameras, depth sensors, and accelerometers [18-21].
For various applications, the practicality and versatility of various machine-learning mod-
els [22-24] have been demonstrated.

For the field of radar technology, the machine learning methods that have been estab-
lished for the abovementioned studies have also been applied to human motion recognition
using the Doppler and/or range information obtained via radar sensing [11,25,26]. For
example, radar-based fall detection has been widely studied [27,28] and various efficient
methods using machine learning techniques have been proposed [29,30]. In recent years,
accurate fall detections using radars have been achieved with machine learning methods
such as CNN [12,31-34], LSTM [13,34], random forest (RF) [35], and support vector machine
(SVM) [36]. These classification techniques are properly selected based on the features of
the problem and the objectives of the radar data analysis. The CNN-based classification
technique has achieved the accurate classification of human motion using Doppler radar
spectrograms [11,12,35,37]. Additionally, the LSTM-based technique has achieved better
accuracy for the continuous classification problem [13,37,38]. Although these techniques
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can achieve relatively accurate classifications, the mechanisms and/or factors of the classi-
fications are generally unclear. Thus, the classical motion parameter-based approaches are
still important in contemporary radar technology for developing the motion recognition
system whose mechanism and performance are guaranteed [29,37,39,40]. The methodology
for the design of the radar-based motion recognition system using these various machine
learning approaches is being established for various types of experimental data.

However, as stated in the Introduction, most studies on motion recognition and fall
detection studies using radar have not considered their application to the restroom. Thus,
there are only several studies on radar-based restroom monitoring [14-16]. For example,
in [15], the classification accuracy of seven types of behaviors and falls was approximately
60%. The low accuracy of conventional radar systems may be due either to the use of
range information or to the use of classical detection/classification methods. Thus, the
efficient machine learning methods that are suitable for radar-based restroom monitoring
and their appropriate input data have not been investigated at all. For this purpose,
our previous study [16] achieved accurate classification of eight human behaviors and
falls in the restroom. This study aimed to extend this previous study with respect to
the classification accuracy and to clarify the efficient models and features for behavior
classification in radar-based restroom monitoring.

3. Experiments for Dataset Generation
3.1. Doppler Radar Experiments

Figure 1 shows the experimental site and outline of the measurement system. Twenty-
one healthy young men (age: 22.4 £ 1.1 years, height: 173.8 £ 5.1 cm) consented to
participate in this study and were instructed regarding the testing procedures prior to
the experiments. Informed consent was obtained from all participants. Each participant
performed the following eight types of behaviors three times: (a) opening the toilet lid,
(b) pulling down the pants, (c) sitting, (d) taking the toilet paper, (e) standing, (f) pulling up
the pants, (g) closing the toilet lid, and (h) falling. Falling is defined as the motion of falling
forward from a seated position, which is one of the realistic falling motions in restrooms [6].
For example, a person seated on the toilet falls when leaning forward slowly.

B | (}eiling radar
Ceiling radar ]
' Wall 5
Wall radar radar\

Pgrticipant %03‘ L

(a) (b)

Figure 1. Doppler radar sensing system for measuring behaviors in a restroom. (a) Experimental site
and (b) measurement setup.

We used 24 GHz continuous-wave radars (ILT office, BSS-110) with +14° plane di-
rectivity mounted as shown in Figure 1. The radars were installed above (ceiling radar)
and behind (wall radar) the participant. The ceiling and wall radars measured the motion
along the vertical and horizontal directions, respectively. The Doppler radar transmitted
a 24 GHz sinusoidal wave with an effective isotropic radiated power of 40 mW to each
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participant. The demodulated in-phase/quadrature radar signal s(f) was obtained using
a quadrature detector and an analog-to-digital converter with a sampling frequency of
600 Hz, and a measurement velocity range of —1.875-1.875 m/s.

3.2. Generation of Spectrogram Dataset

Similar to our previous study [41], the short-time Fourier transforms (STFT) of the
received signals were calculated to generate the spectrogram images (time—velocity—power
distribution images) as follows. First, we removed the zero-Doppler frequency components
from the received signals using a one-dimensional Butterworth high pass filter with a cutoff
frequency of 30 Hz to eliminate echoes from static objects such as walls and toilet seats.
The STFT of s(t) was calculated as S(t, fq) = [s(T)w(t — t)exp(—j27fqT)dT, where ¢ is the
time, f4 is the Doppler frequency, and w(t) is the window function. For w(t), the Hamming
window function, with a length of 213.3 ms (corresponding to the frequency resolution
Afq=1/(213.3 x 1073) = 4.69 Hz) and overlap length of 211.6 ms, was empirically used
for the STFT process. Doppler velocity vq4 was calculated with vq = cf 4/(2f¢), where f is the
frequency of the transmitting signal (24.0 GHz) and c is the speed of light (2.999 x 108 m/s).
Using this equation, we obtained the spectrogram | S(t, v4) | 2 (based on the above setting,
the resolution of v4 in the spectrogram was Avg = cAf4/(2fg) = 0.0293 m/s). Finally, we
removed the components with a received power density of less than 0 dB/Hz, assuming
that these components corresponded to random noises.

Figures 2 and 3 show examples of the generated spectrograms for all behaviors of
the ceiling and wall radars, respectively. The motion toward the ceiling and back of
the subject is positive for the ceiling and wall radars that measure the head and torso,
respectively. For example, we confirmed the significant negative velocity components in
Figures 2f and 3f that correspond to the fall forward motion for behavior (f). Similarly,
the motion characteristics of each of the other behaviors could also be confirmed. For
behaviors (d) and (f), no characteristic velocity components were obtained because they
did not involve large motions compared with the other behaviors. Although the different
features of each behavioral spectrogram were confirmed to some extent, some behaviors
were difficult to classify. For example, the spectrograms of the behaviors (b) and (e) in
Figure 2 have relatively similar characteristics. Therefore, this study aimed to classify the
behaviors using various machine learning methods.
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Figure 2. Examples of spectrograms measured with the ceiling radar. (a) Opening the toilet lid,
(b) pulling down the pants, (c) sitting, (d) taking the toilet paper, (e) standing, (f) pulling up the
pants, (g) closing the toilet lid, and (h) falling.
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Figure 3. Examples of spectrograms measured with the wall radar. (a) Opening the toilet lid,
(b) pulling down the pants, (c) sitting, (d) taking the toilet paper, (e) standing, (f) pulling up the
pants, (g) closing the toilet lid, and (h) falling.

4. Implementation of the Machine Learning-Based Classification Methods

This study implemented three types of classification methods and compared their
accuracy to determine the most efficient method and investigate the features for efficiently
classifying behaviors and falls in a restroom.

4.1. Spectrogram Image-Based Method Using CNN

This method (CNN method) directly uses the generated spectrogram images as the
CNN input. Figure 4 shows the process and structure of the network. The spectrogram
PNG images of size 168 x 218 generated from the two radars were input into the CNN.
CNN has a structure similar to AlexNet [22]. However, to avoid overfitting, we used the
batch normalization layer instead of the dropout layer. To fuse the two images obtained
from the dual radars, we constructed two similar CNNs and combined their outputs using
the concatenate layer that was then used in the fully-connected layer to determine the
output class. A stochastic gradient descent with a momentum optimization algorithm was
used for the network optimization. We trained for 100 epochs with a learning rate of 0.01
and batch size of 8. In addition, to compare the classification accuracy with the single and
dual radars, the input from a single spectrogram image was fed into the CNN structure
without the concatenate layer.

This classification method using spectrogram images and CNN is known as the most
efficient method for various applications of radar motion classification [11]. Although
the efficient input data and CNN structure depend on the applications, many studies
demonstrated the best accuracy with the CNN-based method compared to the use of other
classifiers. However, existing studies fail to explain the classification mechanism or to
determine the efficient features. Therefore, this study compared the proposed CNN method
with other methods to determine the efficient features and reasons for classification.

4.2. Spectrogram Envelope-Based Method Using LSTM

The LSTM method uses the velocity time-series spectrogram envelopes, as shown in
Figure 5, for classification [16]. We extracted three types of envelopes from the spectrograms
with the same process as in [41]: the upper envelope vy(t), lower envelope vi(t), and power-
weighted mean velocity v, (t). These extracted envelopes were then input into the LSTM as
outlined in Figure 6. The data length of each envelope was 102 points, and the dimensions
of the input data for the single and dual radar fusion were 102 x 3 and 102 x 6, respectively.
We empirically optimized the hyperparameters using an Adam optimizer [23]. Thus, the
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number of hidden layers was 100, batch size was 64, learning rate was 0.001, and number
of epochs for the training was 300.
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Figure 4. Process and structure of the CNN method.
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Figure 5. Example of extraction of spectrogram envelopes.
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Figure 6. Process and structure of the LSTM method.

4.3. Motion Parameter-Based Methods

These methods use kinematic parameters extracted using the spectrogram envelopes
for classification and can directly obtain efficient motion-feature parameters for behavior
classification, as shown in Figure 7. First, we extracted the three envelopes vy (t), vi(t), and
um(t), as with as the LSTM method. We calculated four representative values of mean,
maximum, minimum, and standard deviation with respect to time for each envelope. Then,
we calculated the time derivative of the envelopes to obtain the acceleration and jerk time
series. For example, for vy (t), we calculated the acceleration time series am () = dom(t)/dt
and jerk time series jim(f) = dam(t)/dt. Empirically designed, moving-average low pass
filters with an average length of 0.15 s were used to remove small errors in each time series.
Similar to the velocity time series, we also calculated the four representative values of am(t)
and jm(f). The same process was also applied to vy(t) and v;(t). Thus, we extracted 4 (param-
eters) x 3 (envelopes) x 3 (time series of velocity, acceleration, and jerk) = 36 parameters
for each radar. For dual radar fusion, 36 x 2 = 72 parameters were obtained as candidate
feature parameters for classification. From these parameters, efficient feature parameters for
each classifier were automatically selected using the filter method [24]. The filter method
determines the relevance of each parameter for classification, and the top 20% is selected.
We selected the widely used random forest (RF) and support vector machine (SVM) as the
classifiers in this study. Their hyperparameters were optimized using a grid search, and
the Gaussian kernel was used for the SVM.

Vm(?) d/dt m(?)

Jm(®

d/ df
V(D) v(?)
|
| Calculatlon of ave., standard dev., max. and min. Values |

. = . =

Automatic parameter selection using filter method

. 2

Classification using RF or SVM

Same

process
of v, ()

Figure 7. Outline of the RF and SVM methods using the motion parameters.
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5. Evaluation and Discussion
5.1. Main Evaluation Results

We evaluated and compared the classification accuracy of the four classification meth-
ods in Section III using hold-out validation. For all of the methods, we also compared the
accuracy for three cases: only ceiling radar data, only wall radar data, and fused data from
the two radars. The classification model was first trained using 80% of the data for each
case and then tested with the remaining 20%. We performed 30 trials of the test processes
by randomly varying the training data.

Table 1 summarizes the mean and standard deviation of classification accuracies from
the 30 test trials for the four classification methods. The CNN method achieved the best
accuracy of 95.6%, indicating that the spectrogram images were more effective than the
spectrogram envelope [16] or motion parameter-based approach for human behavior and
fall classification in restrooms. However, other classification methods also achieved moder-
ate accuracy, making it possible to obtain efficient motion information and/or parameters
necessary for classification. This is discussed in the next subsection.

Table 1. Summary of Classification Results.

Method Ceiling Radar Data Wall Radar Data Both Radars
RF 41.5 +4.82% 55.2 £ 3.80% 63.8 £3.72%
SVM 60.4 £ 5.37% 62.4 £ 4.31% 63.4 £ 4.27%
LSTM [16] 72.3 +4.96% 82.6 + 4.24% 83.2 + 3.93%
CNN 90.3 £ 2.66% 91.5 £ 3.07% 95.6 £ 2.28%

Furthermore, better accuracy was obtained when using dual radar data than by using
the ceiling or wall radar data only. In particular, a significant improvement was obtained
for the CNN and RF methods when dual radar data were used. Therefore, we conclude
that the motions in both upward and horizontal directions included the differences in the
assumed behaviors and falls.

The results from the CNN method based on the convergence curve are shown in
Figure 8, and the confusion matrix is further discussed to validate its performance. No
overfitting was observed in either test or training processes. The accuracy in the test process
converged in less than 50 epochs. Table 2 shows the confusion matrices for the data from
the ceiling, wall, and dual radars. The classification accuracies of “(f) pulling up the pants”
and “(b) pulling down the pants” are worse for the ceiling and wall radar data, respectively.
However, the classification accuracy of (f) improves when the fused data are considered
whereas that of (b) is not improved. The classification accuracy of “(h) falling” is 100% in
all cases, and is the most important function for the practical use of fall detection.

1.0

ot
o0

Accuracy
o
[=)}

e
~

¢ Training
— Test

&
o

0 20 40 60 80 100
Epochs

Figure 8. Sample learning curve of the CNN method using the dual radar data.
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Table 2. Confusion matrix of the CNN method.
Predicted Label
(a) (b) (c) (d) (e) (f) (g) (h)
0.90/ 0/ 0/ 0/ 0/ 0/ 0.10/ 0/
(a) 0.93/ 0/ 0/ 0/ 0/ 0/ 0.07/ 0/
1 0 0 0 0 0 0 0
0/ 0.85/ 0/ 0.15/ 0/ 0/ 0/ 0/
(b) 0/ 0.77/ 0/ 0/ 0/ 0/ 0.23/ 0/
0 0.79 0 0 0 0 0.21 0
0.08/ 0/ 0.92/ 0/ 0/ 0/ 0/ 0/
(c) 0/ 0/ 1/ 0/ 0/ 0/ 0/ 0/
0 0 1 0 0 0 0 0
0/ 0/ 0/ 1/ 0/ 0/ 0/ 0/
True Label () 0/ 0/ 0/ 0.9/ 0.1/ 0/ 0/ 0/
0 0 0 1 0 0 0 0
0/ 0/ 0/ 0/ 0.92/ 0.08/ 0/ 0/
(e) 0/ 0/ 0/ 0/ 1/ 0/ 0/ 0/
0 0 0 0 1 0 0 0
0/ 0/ 0/ 0.22/ 0.06/ 0.72/ 0/ 0/
® 0/ 0/ 0/ 0/ 0/ 092/  0.08/ 0/
0.07 0 0.07 0 0 0.86 0 0
0.08/ 0/ 0/ 0/ 0/ 0/ 0.92/ 0/
(g) 0/ 0/ 0/ 0/ 0/ 0/ 1/ 0/
0.08 0 0 0 0 0 0.92 0
0/ 0/ 0/ 0/ 0/ 0/ 0/ 1/
(h) 0/ 0/ 0/ 0/ 0/ 0/ 0/ 1/
0 0 0 0 0 0 0 1

Each cell represents the results for ceiling/wall/dual radars.

5.2. Discussion on Efficient Features

This section discusses the efficient features measured with each radar when classifying
human behaviors in restrooms. First, we discuss the effectiveness of the data from each
radar and the fused data. Tables 3-5 show the confusion matrices for the LSTM, RF, and
SVM methods, respectively. As indicated in the confusion matrices of the CNN (Table 2)
and LSTM methods, all behaviors and falls are accurately classified using deep learning
methods. However, we can see the different classification accuracies for some classes. For
example, as indicated in Table 2, the classification accuracy of the classification of behaviors
(b) and (g) was worse in the results of the CNN method with the ceiling radar. In contrast,
these were accurately classified with the LSTM method with the ceiling radar data as
shown in Table 3. These results indicate that some of the behaviors accurately classified by
these methods varied because of the differences in the included features in the spectrogram
images and envelopes. In addition, for the motion parameter-based methods (the RF and
SVM methods), behaviors (b) and (g) were classified with better accuracy, as indicated in
Tables 4 and 5, even though the overall accuracies were significantly worse than the CNN
method. Because the motion parameters were extracted from the envelopes that were also
used in the LSTM method, the efficient features for the classification might be included in
the spectrogram envelopes extracted from dual radars. In the following, we discuss the
efficient features and factors of our results.
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Table 3. Confusion matrix of the LSTM method.
Predicted Label
(a) (b) (o) (d) (e) (f) (g) (h)
0.71/ 0/ 0/ 0/ 0/ 0.29/ 0/ 0/
(a) 0.90/ 0/ 0/ 0/ 0/ 0/ 0.10/ 0/
0.62 0 0 0 0 0.31 0.077 0
0.091/ 0.27/ 0.091/ 0.18/ 0/ 0/ 0.36/ 0/
(b) 0/ 0.6/ 0.2/ 0/ 0.067/ 0.067/ 0/ 0.067/
0 0.83 0.083 0.083 0 0 0 0
0/ 0.083/ 0.83/ 0/ 0/ 0/ 0/ 0.083/
(c) 0.11/ 0/ 0.89/ 0/ 0/ 0/ 0/ 0/
0.07 0 0.93 0 0 0 0 0
0/ 0.071/ 0/ 0.86/ 0/ 0/ 0.071/ 0/
True Label (d)  0.083/ 0/ 0/ 0.92/ 0/ 0/ 0/ 0/
0 0 0 1 0 0 0 0
0/ 0/ 0.11/ 0/ 0.78/ 0.056/ 0/ 0.056/
(e) 0/ 0/ 0/ 0/ 0.94/ 0.06/ 0/ 0/
0 0 0 0 0.78 0.11 0.11 0
0.25/ 0.13/ 0/ 0/ 0/ 0.38/ 0.25/ 0/
(f) 0.11/ 0/ 0.11/ 0/ 0/ 0.78/ 0/ 0/
0.08 0 0.07 0 0.17 0.75 0 0
0/ 0.16/ 0/ 0.077/ 0/ 0.077/ 0.62/ 0.077/
(g) 0/ 0.17/ 0/ 0/ 0/ 0.083/ 0.75/ 0/
0 0.14 0.07 0 0 0 0.79 0
0.059/ 0/ 0/ 0/ 0/ 0/ 0/ 0.94/
(h) 0/ 0/ 0/ 0/ 0/ 0/ 0/ 1/
0 0 0.08 0 0 0 0 0.92
Each cell represents the results for ceiling/wall/dual radars.
Table 4. Confusion matrix of the RF method.
Predicted Label
(a) (b) (c) (d) (e) (f) (g) (h)
0.64/ 0.091/ 0/ 0.18/ 0.091/ 0/ 0/ 0/
(a) 0.45/ 0.27/ 0.091/ 0/ 0/ 0.11/ 0/ 0/
0.62 0.23 0 0 0 0.15 0 0
0/ 0.21/ 0.14/ 0.21/ 0.21/ 0.071/ 0.071/ 0.071/
(b) 0/ 0.78/ 0.11/ 0/ 0/ 0.11/ 0/ 0/
0 0.71 0 0.14 0 0.071 0 0.071
0/ 0/ 0.45/ 0/ 0.45/ 0/ 0/ 0.091/
(¢) 0.059/ 0.059/ 0.59/ 0.18/ 0.059/  0.059/ 0/ 0/
True Label 0.1 0 0.65 0 0.25 0 0 0
0.083/ 0/ 0/ 0.5/ 0.083/ 0.17/ 0.083/  0.083/
(d) 0/ 0/ 0/ 0.78/ 0.22/ 0/ 0/ 0/
0 0 0.2 0.6 0.067 0.067 0.067 0
0/ 0/ 0.1/ 0.1/ 0.6/ 0.1/ 0.1/ 0/
(e) 0/ 0/ 0.091/ 0.45/ 0.27/ 0/ 0.091/ 0.091/
0 0 0 0 1 0 0 0
0.31/ 0/ 0/ 0.15/ 0.077/ 0.23/ 0.15/ 0.077/
(f) 0.043/ 0.26/ 0/ 0.043/ 0.26/ 0.35/ 0.043/ 0/
0.091 0 0.091 0.091 0.18 0.27 0.27 0
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Table 4. Cont.

Predicted Label
(a) (b) (c) (d) (e) (f) (g) (h)

0.15/ 0.15/ 0.15/ 0/ 0.15/ 0/ 0.15/  0.077/
(g) 0/ 0.36/ 021/  0.071/ 0.071/ 0/ 0.29/ 0/
0 0.29 0.071 0 0.071 0.071 0.43 0.071

0.24/ 0/ 0.29/ 0.059/ 0.12/ 0.059/ 0/ 0.24/
M) 0/ 0/ 0/ 0/ 0/ 0/ 0/ 1/
0 0 0 0 0 0 0 1

Each cell represents the results for ceiling/wall/dual radars.

Table 5. Confusion matrix of the SVM method.

Predicted Label
(a) (b) (c) (d) (e) (f) (g (h)
0.6/ 0/ 0/ 0.1/ 0/ 0.2/ 0/ 0.1/
(a) 0.57/ 0.071/ 0/ 0.14/ 0/ 0.14/ 0/ 0.071/
0.7 0 0.085 0 0 0.085 0.13 0
0.17/ 0.33/ 0.083/ 0/ 0.17/ 0/ 0.25/ 0/
(b) 0.077/ 0.38/ 0/ 0/ 0.077/ 0.15/ 0.23/ 0.077/
0.071 0.5 0 0 0.071 0.21 0.071 0.071

0.067/ 0/ 0.33/ 0/ 027/ 0.067/ 0/ 0.27/
() 0.077/ 0/ 0.077/  0.46/ 0.15/ 0/ 0.077/ 015/

0.18 0 0.46 0 0.36 0 0 0
023/ 023/ 0077/ 038/ 0/ 0077/ 0/ 0/

True Label () 0/ 0o/ 023/ 069/ 0/ 0/ 0/ 008/
0 0 0.1 0.9 0 0 0 0

0/ 0/ 0.4/ 0o/ 033/ 0/ 0o/ 027/

© 0/ 0/ 0o/ 055/ 0091/ 0/ 018/ 018/

0 0 0.3 0 0.4 0.2 0 0.1

0067/ 013/ 013/ 02/ 0/ 02/ 013/ 013/

() 028/ 011/ 0/ 006/ 017/ 028/ 011/ 0/

014 006 0 0 0 0.6 0.2 0

011/ 011/ 0/ 0/ 011/ 0033/ 022/ 011/

() 012/ 012/ 0/ 0o/ 012/ 012/ 05/ 0/

0.077 0 015 0077 015 0077 038 0077

017/ 0/ 0.083/ 0/ 0.083/ 0/ 0.083/  0.58/
(h) 0/ 0/ 0/ 0/ 0/ 0/ 0/ 1/
0 0 0 0 0 0 0 1

Each cell represents the results for ceiling/wall/dual radars.

Next, we discuss the effectiveness of using dual radar data. Similar to the results for
the CNN method, better performance was observed with the wall radar data than with
the ceiling radar data. These results indicate that the motion information in the horizontal
direction obtained with the wall radar includes significant information for classifying the
assumed human behaviors. Another reason is that the wall radar received the data for
the whole body, whereas the ceiling radar mainly obtained the motion of the head. The
confusion matrices further confirm the differences between the two radars’ results for the
classified behaviors. In particular, the confusion matrices of the RF and SVM methods in
Tables 4 and 5 indicate that the combination of the data from the two radars significantly
improves the classification accuracy because the data from the two radars complement each
other. Similar accuracy improvements based on the fusion of dual radar data also can be
confirmed from the confusion matrices of other methods, further verifying the effectiveness
of the dual radar data.
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We now discuss the efficient features included in the spectrograms. Because the
classification accuracy of the eight behaviors with RF and SVM methods was above 60%,
we consider the selected feature parameters for these methods. Table 6 shows the selected
features for the RF and SVM methods using the filter method. The acceleration and jerk
parameters were selected for all radar cases. These results indicate that the detailed motion
parameters of acceleration and jerk were more effective than the velocity parameters
obtained directly from Doppler radar measurements. However, the LSTM and CNN
methods performed better than the RF and SVM methods using the motion parameters.

Table 6. Selected feature parameters for the RF and SVM methods.

Radar

Selected Parameters

Ceiling radar

Uc-u-stds Ac-u-max, Ac-u-std, #c-m-max, Jc-u-mean, Jc-u-mean, Jc-u-std, Jc-m-max

Wall radar

Uw-m-max, Aw-u-min, #w-u-mean, Aw-u-std, ?w-m-max, Jw-m-max, /w-m-min, Jw-l-max

Dual radar

Uw-u-mins Yw-u-mean, Uw-u-std, #c-u-max, w-u-min, #w-u-mean, Aw-u-std, #w-m-max, #w-m-min, #w-m-mean, @w-I-min, /c-u-std,

jw—m—max, jw-l—max, ] c-l-std

v, a, and j denote velocity, acceleration, and jerk, respectively. The subscript “X-Y-Z” indicates radar type-envelope
operation, X can be ceiling (c) or wall (w) radars. Y can be u, 1, or m, indicating upper, lower, or power-weighted
mean velocity, respectively; the parameter was extracted from vy (t), vm(t), and v|(t). Z indicates the calculation for
the envelopes (std is standard deviation).

We conclude that deep learning can grasp the detailed information in the spectrograms
corresponding to higher-order derivative parameters. In addition, because the CNN
method had better accuracy than the LSTM method, detailed motion information was
obtained from the main components extracted as the spectrogram envelopes and from
other components corresponding to the micromotion of the various body parts.

The findings regarding the efficient features for the classification of human behaviors
and falls in restrooms are summarized as follows:

e  The wall radar that measured motion in the horizontal direction was more effective
than the ceiling radar that measured motion in the vertical direction.

e  The accurately classified classes for the two radars were different. Hence, a fusion of
the two radars was effective.

e  The proposed method effectively used the detailed higher-order derivative parameters
of acceleration and jerk.

e  Detailed motion information was diffused across the whole of the spectrograms and
was not limited to the main components, and was efficiently extracted via the CNN.

However, as the limitation of this study, the concrete clarification of the efficient
parameters and/or factors for our classification problem was difficult. To achieve this,
we have to find the features that indicate clear divergence of the assumed behaviors in
restrooms based on other various approaches (e.g., using principal component analysis,
application of other classification algorithms and comprehensive comparison with the
results of this study, and data acquisition from a larger number of participants).

5.3. Comparison with Conventional Studies

In this section, we compare our method with the conventional remote sensor-based
monitoring methods for restrooms. Table 7 outlines the comparison of the experimental
studies aimed at detecting abnormal, dangerous behaviors in restrooms. The proposed
method achieved the best performance in terms of the classification accuracy, number of
classified behaviors, number of participants, and detection accuracy of the human fall.
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Table 7. Comparison of studies on restroom monitoring.

Study Sensor Problem No. of Participants Performance
[6] Camera Detection of dangerous situation 10 N A .(Secure d etection of dangerous
situation continues for 60 s)
[9] Thermal Sensor r%?rsr?;ﬁi/c?ﬂlo ga(’ig 8 Accuracy over 95% (2-class classification)
[10] Thermal Sensor Claisgéi/c?atho gaotier;?lgmal 10 Accuracy: 97.8% (2-class classification)
[14] Radar Detection of dangerous state 3 Detection rate: 95%
(such as falls)
Classification of B Acct{rgcy:. 62.5% (7-class
[15] Radar normal/abnormal behaviors 10 clasmﬁca’glpn) .
(including falls) - Fall classification rate: 83.3%
) - Accuracy: 83.2% (8-class
Our previous Radar ) Classification of 21 classification)
study [16] eight behaviors (including falls) _ Fall classification rate: 92.0%
o . ) - Accuracy: 95.6% (8-class
This study Radar Classification of eight behaviors 1 classification)

(including falls) - Fall classification rate: 100%

Due to privacy issues, the number of studies on restroom monitoring using cameras is
quite limited. Reference [6] is one of the few studies that report on camera-based monitoring
of restrooms to detect dangerous situations to protect the elderly. However, because
sensors without privacy issues are more suitable for restroom monitoring, approaches
using infrared-based thermal sensors and radars have been recently studied. However,
most studies classify situations as normal or dangerous behaviors [9,10]. Although thermal
sensors show a sufficiently accurate classification, detailed behaviors were not classified
because the sensors cannot detect the motion information directly. By contrast, radar
techniques can acquire motion velocity information and classify it into multiple behaviors
as carried out in [14,15]. However, the accuracy achieved in [15] was insufficient because
only the simple feature parameters related to distance and signal information and the RF
method were used. Therefore, our previous study [16] proposed the LSTM method that
used the rich velocity information obtained via spectrogram envelopes. While both our
previous research and the present study can classify the behaviors into eight categories, the
proposed method was carried out using CNN and showed higher classification accuracy,
including 100% fall detection. In addition, the present study used a relatively large dataset
generated from a larger number of participants, and the spectrogram images utilized the
rich velocity information included in the Doppler radar signals.

6. Conclusions

This study used Doppler radar technology to classify the behaviors and falls in a
restroom based on machine learning approaches. The CNN, LSTM, SVM, and RF meth-
ods were applied and compared to determine the most efficient method and features for
restroom monitoring. Furthermore, dual radars mounted on the ceiling and wall of a re-
stroom collected motion information in horizontal and vertical directions. The experimental
results revealed that the CNN method using the spectrogram images as input achieved the
best accuracy of 95.6% when classifying the eight behaviors of 21 participants. In addition,
the classification rate of the fall and other behaviors was 100%. These results indicate that
the proposed Doppler radar system can accurately recognize behaviors and detect falls in
a restroom without any privacy concerns. In addition, we identified efficient features in
the motions by comparing the four machine learning methods using single and dual radar
data. The motion information corresponding to the higher-order derivative parameters
of acceleration and jerk in the horizontal direction was efficient, and the corresponding
features were extracted via the CNN method.
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However, this study had the following limitations. The motion features of the efficient
classification were insufficiently revealed in this study, as discussed in Section 5.2. In
addition, only young people participated and eight limited behaviors were assumed.

Thus, further experiments are needed to address the above limitations of this study.
In the future, more studies are needed with elderly participants. Other behaviors and
falls, such as using a smartphone or falling sideways, should be considered. In addition,
combining multiple models, such as LSTM and CNN, may improve classification accuracy
because some of the behaviors accurately classified by the LSTM and CNN methods
varied. The model combination also may lead to the clarification of the efficient features for
behavior classification in restrooms. Furthermore, the use of multiple radars (more than
two) is an important future study area.
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