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Metastasis remains to be a huge challenge in cancer therapy. The mechanism underlying
cervical cancer metastasis is not well understood and needs to be elucidated. Recent
studies have highlighted the diverse roles of non-coding RNAs in cancer progression and
metastasis. Increasing numbers of miRNAs, lncRNAs and circRNAs are found to be
dysregulated in cervical cancer, associated with metastasis. They have been shown to
regulate metastasis through regulating metastasis-related genes, epithelial-mesenchymal
transition, signaling pathways and interactions with tumor microenvironment. Moreover,
miRNAs can interact with lncRNAs and circRNAs respectively during this complex
process. Herein, we review literatures up to date involving non-coding RNAs in cervical
cancer metastasis, mainly focus on the underlying mechanisms and highlight the
interaction network between miRNAs and lncRNAs, as well as circRNAs. Finally, we
discuss the therapeutic prospects.
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INTRODUCTION

Cervical cancer is a common gynecological cancer which ranks fourth for both incidence and
mortality in women worldwide (1). Over the last few decades, there has been a decline in incidence
and mortality rates in many populations worldwide, owing to the screening techniques and
application of HPV vaccines (2). However, in some developing countries, cervical cancer ranks
second or remains the most frequently diagnosed cancer and the leading cause of cancer death
among women (3). Furthermore, the prognosis is very poor for patients with advanced or metastatic
cervical cancer, whereas current treatment is rather limited (4–6). Therefore, there is an urgent need
to decipher the mechanism of metastasis and find new therapeutic targets. Clinically, cervical cancer
cells usually invade adjacent tissues and metastasis through lymphatic or blood vessels to distant
sites. Over the last decades, studies on mechanisms underlying cervical cancer metastasis focused
mainly on oncogenes and protein-related signaling pathways (7, 8). However, the leading regulator
of this process is still not well understood. Metastasis is a complex process including several steps
and large amounts of molecular interactions (9). Cancer cells need to undergo phenotype changes
during this complicated process. In recent years, our understanding of the non-coding transcripts
has been largely advanced through high-throughput sequencing technology. Increasing evidence is
pointing toward non-coding RNAs as important regulators in many aspects of cancer metastasis
(10, 11).
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Non-coding RNAs (NcRNAs) are transcripts that do not code
for proteins, which can be roughly divided into small non-coding
RNAs (smaller than 200 nt) and long non-coding RNAs
(lncRNAs, longer than 200 nt) (12, 13). NcRNAs account for
the majority of transcriptome, interestingly the amount of
ncRNAs correlates with organismal complexity (14). Emerging
evidence showed that ncRNAs have regulatory roles in diverse
cellular processes both in biological and pathological conditions
including cancer (15). Their roles in cancer progression and
metastasis are being appreciated (16, 17). Among them,
microRNAs (miRNAs), lncRNAs and circular RNAs
(circRNAs) are actively studied in recent years. Research is
accelerating to decipher the underlying mechanism of ncRNA-
regulated cervical cancer metastasis (18, 19). In this review, we
summarize the recently identified ncRNAs in cervical cancer
metastasis, describe the mechanism of action and discuss their
therapeutic perspectives. Particularly, we show the interaction
networks between miRNAs and lncRNAs, as well as circRNAs.
We hope to provide insights into the aspect of ncRNAs-regulated
metastasis and their potential as therapeutic targets.
MICRORNAs IN CERVICAL CANCER
METASTASIS

MiRNAs are a class of conserved small endogenous RNAs
defined as single-stranded RNAs of ~22 nucleotides in length
with no protein-coding potential. Thousands of miRNAs have
been identified and annotated among different species (20). Since
the discovery of miRNAs over two decades ago, the biology of
miRNAs has been extensively reviewed. Most miRNA genes are
transcribed by RNA polymerase II (Pol II) and processed in the
nucleus, then cleaved in the cytoplasm and incorporated into
Argonaute protein, formulating the RNA-induced silencing
complex (miRISC) containing the mature miRNA strand (21).
MiRNAs are critical regulators of gene expression, they can guide
miRISCs to target mRNAs by base pairing with the 3′
untranslated regions (UTRs) of mRNAs, resulting in
degradation or translational repression of the mRNA targets
(22). Both the 5’ and 3’ regions of miRNA provide information
for the specific target recognition (23). Computational
approaches to predict miRNA targets revealed that a single
miRNA can target several mRNAs and a single mRNA can be
regulated by different miRNAs (20). Since the early finding in
2004 revealed that nearly one-half of miRNA genes are located in
fragile sites or in caner-associated genomic regions (24), a great
number of miRNAs have been reported to be dysregulated in
cancer with pro- or anti-tumor potential (25). Over the past
decade, a series of miRNAs have been found to be aberrantly
expressed in cervical cancer and correlate with metastasis
(Table 1).

MicroRNAs Regulate Metastasis-Related
Genes
Detection of circulating miRNAs in serum of cervical cancer
patients found that miR-21 was related to lymph node
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metastasis by inhibiting RASA1 (26). Subsequent in vivo study
also found that miR-21 could promote lymph node metastasis in
orthotopic xenograft mouse model of cervical cancer (27).
Thrombospondin-2 (THBS2) is a matricellular protein with
antiangiogenic activity, which can modulate extracellular matrix
assembly (43), and correlates with cancer metastasis (44). In
cervical cancer, miR-221-3p was found to be upregulated by the
transcription factor twist2, and promote lymph node metastasis
via targeting THBS2 (28). Another miRNA 199b-5p was reported
to promote metastasis in cervical cancer by downregulating
kallikrein-related peptidase 10 (KLK10) (29). Metastasis-
inhibiting miRNAs have also been documented, such as miR-
29a inhibits invasion and metastasis of cervical cancer through
modulating methylation of suppressor of cytokine signaling
protein 1 (SOCS1) (30), and miR-543 inhibits cervical cancer
metastasis by targeting transient receptor potential melastatin 7
(TRPM7) (31).

MicroRNAs Regulate Metastasis-Related
Signaling Pathways
TGF-b signaling pathway has been reported to correlate with
lymph node metastasis in cervical cancer (45). Recently, miR-
106b was found to be involved in TGF-b-induced cell migration
by targeting disabled homolog 2 (DAB2) in cervical carcinoma
(32). Smad 7 is a negative regulator in TGF-b signaling pathway.
Study showed that miR-519d facilitates progression and
metastasis of cervical cancer through targeting smad7 (33). A
recent study based on bioinformatic analysis found that miR-
218-5p could inhibit cervical cancer cell metastasis via targeting
LYN/NF-kB signaling pathway (34).

MicroRNAs Regulate Epithelial-
Mesenchymal Transition
Epithelial-mesenchymal transition (EMT) is a plastic and
dynamic biological process orchestrating cell morphological
changes, the reverse program of this process is called
mesenchymal-epithelial transition (MET) (46). The roles of
TABLE 1 | Roles of miRNAs in cervical cancer metastasis.

MiRNAs Function in
metastasis

Mechanism of action Reference

miR-21 Promote Targe RASA1 (26, 27)
miR-221-3p Promote Target THBS2 (28)
miR-199b-5p Promote Target KLK10 (29)
miR-29a Inhibit Modulate methylation of SOCS1 (30)
miR-543 Inhibit Target TRPM7 (31)
miR-106b Promote Target DAB2 (32)
miR-519d Promote Target Smad7 (33)
miR-218-5p Inhibit Target LYN/NF-kB signaling

pathway
(34)

miR-200b Inhibit Inhibit EMT (35)
miR-484 Inhibit Target ZEB1/SMAD2 (36)
miR-145 Inhibit Inhibit EMT via targeting SIP1 (37)
miR-211 Inhibit Inhibit EMT via targeting MUC4 (38)
miR-183 Inhibit Target MMP9 (39)
miR-124 Inhibit Inhibit angiogenesis via targeting

AmotL1
(40)

miR-221-3p Promote Promote angiogenesis via
targeting THBS2/MAPK10

(41, 42)
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EMT plasticity in cancer metastasis have been actively studied
and extensively reviewed (47, 48). EMT may contribute to the
early stage of metastasis by conferring upon epithelium-derived
cancer cells the capacity of migration and invasion, while MET is
thought to be important for colonization of the disseminated
cancer cells at distant sites (48). MiRNAs are emerging as crucial
regulators of EMT by targeting multiple components of this
program. The miR-200 family (miR-200a, -200b, -200c, -141 and
-429) has been recognized as tumor suppressor miRNAs by
inhibiting EMT (49, 50). MiR-200b has been reported to
suppress cervical cancer cell invasion and metastasis through
inhibiting EMT (35). Some other miRNAs have also been
reported to modulate EMT and metastasis in cervical cancer.
MiR-484 (36), miR-145 (37) and miR-211 (38) have recently
been reported to inhibit EMT and invasion of cervical cancer
cells via targeting ZEB1/SMAD2, SMAD-interacting protein 1
(SIP1) and mucin 4 (MUC4), respectively.

MicroRNAs Regulate Tumor
Microenvironment
The tumor microenvironment includes numerous types of
stroma cells and the extracellular matrix. The reciprocal
interactions between tumor cells and tumor microenvironment
during tumor initiation and progression have long been
recognized (51). Moreover, miRNAs have been revealed to
regulate tumor microenvironment through different aspects
(52). Matrix metalloproteinases (MMPs) are prominent
extracellular proteinases which can influence the primary
tumor invasion and metastasis (53). Research in cervical
cancer found that miR-183 can target MMP-9 and then inhibit
cellular invasion and metastasis (39). The induction of
angiogenesis is indispensable for growth and metastasis of
solid tumors in the tumor microenvironment (54). Research
has reported that miR-124 could target angiomotin-like protein
AmotL1 and then represses vasculogenic mimicry and cell
motility in cervical carcinoma cells (40). Recent data shows
that cancer-derived exosomes can transport miRNAs to
regulate angiogenesis and invasion in cervical cancer. Cervical
squamous cell carcinoma-secreted exosomal miR-221-3p has
been shown to promote angiogenesis by targeting THBS2 (41).
Additionally, another report implicated that the exosomal miR-
221-3p promotes invasion, migration and angiogenesis in
cervical cancer by decreasing MAPK10 (42).
LONG NON-CODING RNAS IN CERVICAL
CANCER METASTASIS

LncRNAs are defined as transcripts longer than 200nt with no
significant open reading frames and encode no proteins (55). The
biogenesis of lncRNAs is much like mRNAs. Many lncRNAs are
transcribed by RNA polymerase II, polyadenylated, spliced and
5′-capped, but tend to be shorter than mRNAs (56). Moreover,
lncRNAs are expressed at relatively low levels compared with
mRNAs, but show more cell-type and tissue-type specificity (56).
LncRNAs can be roughly divided into five classes according to
Frontiers in Oncology | www.frontiersin.org 3
their location in the genome where they are transcribed,
including long intergenic noncoding RNAs (lincRNAs), natural
antisense transcripts, pseudogenes, long intronic ncRNAs and
the ncRNAs produced from the transcription start sites, such as
promoter-associated RNAs and enhancer RNAs (57).

Increasing numbers of lncRNAs have been identified, but
only a small fraction of them have been functionally
characterized (58). Unlike miRNAs which function
predominantly in the cytoplasmic compartment, lncRNAs are
found both in the nucleus and the cytoplasm (59), indicating that
lncRNAs may function through diverse mechanisms. LncRNAs
have been shown to regulate gene expression at different levels,
and they can regulate gene expression either in cis or in trans (14,
60). Cis-acting lncRNAs can regulate the expression or
chromatin state of nearby genes through three common
mechanisms: (1) sequence-dependent lncRNA regulation, the
lncRNA transcript can recruit regulatory factors to specific gene
loci (Figure 1A) (61); (2) transcription or splicing-dependent
regulation, the act of lncRNA transcription rather than the
transcript itself can affect gene expression (Figure 1B) (62);
and (3) the cis-acting DNA elements within lncRNA loci can also
regulate adjacent gene expression (Figure 1C) (63). While, the
trans-acting lncRNAs can leave the site of transcription and
regulate gene expression at independent sites (60). For example,
they can regulate gene expression at distant sites by interacting
with promoters, enhancers or proteins binding with these sites
(Figure 2A) (64), or modulating chromatin states (65) and RNA
polymerase activities (Figure 2B) (66). Moreover, some lncRNAs
may affect nuclear architecture to influence gene expression
(Figure 2B) (67). Additionally, some trans-acting lncRNAs can
bind to and regulate the activity or abundance of proteins or
RNAs by function as decoys or competing endogenous RNAs
(ceRNAs) (Figure 2C) (68, 69). In consideration of the diverse
functions of lncRNAs, recent studies have highlighted the
significant roles of lncRNAs in cancer progression (70, 71). A
series of lncRNAs have been revealed to play crucial roles in
cervical cancer metastasis (Table 2).
Long Non-Coding RNAs Regulate
Epithelial-Mesenchymal Transition
Some lncRNAs have been found to regulate EMT-related genes
and EMT-transcription factors. Metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1) is a highly conserved
and abundant lncRNA, which was originally described to play
crucial roles in lung cancer metastasis (93). It has also been
reported to associate with metastasis of many other tumors (94).
In cervical cancer, study showed that MALAT1 promotes
invasion and metastasis of cervical cancer cells via inducing
EMT (72). Another lncRNA EBIC which can bind to enhancer of
zeste homolog 2 (EZH2) in cervical cancer has been reported to
promote cell invasion by repressing E-cadherin (75). Taurine-
upregulated gene 1 (TUG1) is an oncogenic lncRNA in multiple
human cancers (95). It has been found to regulate cervical cancer
cells migration and invasion by promoting EMT (76). A novel
lncRNA CTS identified from the lncRNA microarray database
March 2021 | Volume 11 | Article 646192
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was found to promote metastasis and EMT of cervical cancer by
regulating miR-505/ZEB2 axis (77).

Long Non-Coding RNAs Regulate
Metastasis by Interacting With MicroRNAs
The vast majority of transcripts in the genome can interact with
each other through different mechanisms (96, 97). For example,
lncRNAs can act as competing endogenous RNAs (ceRNAs) to
sequester miRNAs, regulating the abundance and activity of
miRNAs, leading to derepression of genes targeted by
corresponding miRNAs (98, 99). The ceRNA network is also
implicated in cancer progression (100).

As mentioned previously, MALAT1 is involved in cervical
cancer metastasis. Recent study showed that MALAT1 can
sponge miR-429 to promote cervical cancer metastasis and
progression both in vitro and in vivo (73). Another study also
found that MALAT1 can promote invasion of cervical cancer
cells through sponging miR-202-3p and upregulating expression
of periostin (74). HOX transcript antisense intergenic RNA
(HOTAIR) is a trans-acting lncRNA which was originally
found to promote metastasis in breast cancer by reprograming
chromatin state (101). In cervical cancer, HOTAIR was reported
to enhance metastatic potential by sponging miR-23b and
modulating the expression of MAPK1 (78). Xist is a well-
Frontiers in Oncology | www.frontiersin.org 4
known lncRNA derived from XIST gene which can regulate X-
chromosome inactivation (102), and recognized as a tumor
promoter in various malignant tumors (103). It has been
revealed to promote cervical cancer cell invasion and migration
via competitively binding miR-889-3p and upregulating SIX1
(81). LncRNA 799 is a lncRNA identified from microarray
analysis, which has been shown to promote metastasis of SiHa
cells via competing for miR-454-3p and upregulating
transducing b-like protein1-related protein (TBL1XR1) (82).
Another microarray-identified lncRNA XLOC_006390 was
found to facilitate metastasis as a ceRNA against miR-331-3p
and miR-338-3p in cervical cancer (83). A novel lncRNA TTN-
AS1 was found to promote metastasis of cervical cancer cells via
sponging miR-573 and regulating E2F3 (84). LncRNA Zinc
finger protein 667-antisense RNA 1 (ZNF667-AS1) was
revealed to suppress metastasis in cervical cancer by sponging
miR-93-3p and upregulating PEG3 (85). Another cancer-related
lncRNA DANCR was found to act as a ceRNA for miR-665 and
promote metastasis of cervical cancer through the ERK/SMAD
pathway (86).

Besides, lncRNAs can regulate expression of miRNAs
through epigenetic regulation. PVT1 is an oncogenic lncRNA
involved in a variety of cancer types, correlates with the copy
number of the MYC oncogene (104). Increased PVT1 expression
A

B

C

FIGURE 1 | LncRNAs regulate gene expression in cis. (A) sequence-dependent regulation, the lncRNA transcript can recruit regulatory factors to specific gene loci.
(B) transcription or splicing-dependent regulation, the act of lncRNA transcription rather than the transcript itself can affect gene expression. (C) the cis-acting DNA
elements within lncRNA loci can also regulate adjacent gene expression.
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in cervical cancer contributes to cancer phenotype and associates
with poor prognosis (105). Further studies showed that PVT1
could contribute to cervical cancer progression and metastasis
through epigenetically silencing miR-200b (87) and miR-195
(88) respectively and modulating EMT. Growth arrest-specific
transcript 5 (GAS5) is down-regulated in several cancers and
recognized as a tumor suppressing lncRNA. The antisense
transcript of GAS5 (GAS5-AS1) has been reported to suppress
metastasis of cervical cancer by modulating GAS5 epigenetically
and increasing its stability (89).

Long Non-Coding RNAs Regulate
Metastasis-Related Signaling Pathways
LncRNAs have also been revealed to drive different cancer
phenotypes through regulating the intracellular signaling
networks (106). HOTAIR has been revealed to target the
Notch signaling pathway (79) or synergize with STAT3 (80) to
promote metastasis of cervical cancer cells. DGCR5 (Digeorge
syndrome critical gene 5, also known as linc00037) is a lncRNA
downregulated in Huntington’s disease neurodegeneration,
which has also been implicated in cancer progression. It has
been demonstrated that DGCR5 suppressed migration and
invasion of cervical cancer cells by targeting WNT signaling
Frontiers in Oncology | www.frontiersin.org 5
(90). Additionally, ANRIL knockdown inhibits cell proliferation
and metastasis in vitro, and its inhibition guides inactivation of
the PI3K/Akt pathway in cervical cancer (91, 92).

Other Long Non-Coding RNAs Involved in
Cervical Cancer Metastasis
Recent findings add to a growing list of lncNRAs associated with
cervical cancer metastasis, pending further mechanistic
investigation. For example, Colon cancer associated lncRNA
(CCAT1) was found to be highly expressed in cervical cancer,
and silencing of CCAT1 led to suppression of metastasis of Hela
cells (107). LncRNA ATB is a lncRNA activated by TGF-b,
originally identified in hepatocellular carcinoma with critical
roles in invasion-metastasis cascade (108). Later, a series of
studies revealed that ATB could promote metastasis in other
cancers (109, 110). Study in cervical cancer showed that ATB is
upregulated in cervical cancer tissues and cell lines, and
correlates with lymph node metastasis and poor prognosis
(111). LncRNA small nucleolar RNA host gene 1 (SNHG1) is
enriched in nuclear and found to regulate gene transcription
either in cis or in trans (112). Recently, SNHG1 was reported to
be highly expressed in cervical cancer and knock-down of
SNHG1 decreased migration and invasion of cancer cells (113).
A

B

C

FIGURE 2 | LncRNAs regulate gene expression in trans. (A) lncRNAs regulate gene expression at distant site by interacting with promoters, enhancers or proteins
binding with these sites. They can also regulate RNA polymerase activities. (B) lncRNAs affect nuclear architecture to influence gene expression. (C) lncRNAs can
bind to and regulate the activity or abundance of proteins or RNAs by function as decoys or competing endogenous RNAs (ceRNAs).
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Another nuclear-enriched transcript lncRNA NEAT1 is an
essential component of paraspeckle, correlates with p53
activation and chemosensitivity (114). Study in cervical cancer
showed that high expression of NEAT1 predicted poor prognosis
and promoted migration and invasion of cervical cancer cells
(115). Upregulation of lncRNA CCHE1 in cervical cancer is
correlated with advanced FIGO stage, larger tumor size, lymph
node metastasis, invasion of the uterine corpus and poor
prognosis (116). Further study is needed to identify the
underlying mechanism of the lncRNAs discussed above.
CIRCULAR RNAs IN CERVICAL CANCER
METASTASIS

Circular RNAs (circRNAs) are newly identified class of ncRNAs,
different from linear RNAs, they are covalently closed and lack
polyadenylation (117). CircRNAs can arise from exons or
introns within precursor mRNAs (pre-mRNAs), formed by
backsplicing or intronic lariats (118, 119). Interestingly,
genome-wide analyses have shown that many circRNAs are
abundant, highly stable and evolutionarily conserved in
mammalian cells (120, 121). However, biological functions of
circRNAs still need further investigation. It has been suggested
that circRNAs can function as miRNA or protein sponges,
Frontiers in Oncology | www.frontiersin.org 6
regulate transcription of parental genes in cis, even under some
circumstances circRNAs can be translated (119, 122). In recent
years, roles of circRNAs in cancer are emerging (123). In cervical
cancer, several circRNAs have been implicated in cancer
metastasis (Table 3).

High-throughput sequencing technology has been employed
to explore circRNA expression profile in cervical cancer tissues
and cell lines. A couple of circRNAs have been reported to
regulate metastasis through EMT and interaction with signaling
pathways. Circ-0000745 was found to be upregulated in cervical
cancer tissues, associated with poor differentiation and vascular/
lymphatic invasion. Inhibition of circ-0000745 led to down
regulation of E-cadherin and reduced migration and invasion
(124). Circ-000284 was found to be upregulated in cervical
cancer cells. Loss of function assay showed that circ-000284
can promote proliferation and invasion of cervical cancer via
sponging miR-506 and regulating Snail-2 (125). Another
upregulated circRNA circ-NRIP1 was reported to be relevant
to lymphovascular space invasion. Mechanistic investigation
showed that circ-NRIP1 can promote migration and invasion
of cervical cancer by sponging miR-629-3p and targeting the
PTP4A1/ERK1/2 pathway (126). Circ-0003204 was identified by
RNA sequencing, which was also upregulated in cervical cancer,
found to promote proliferation, migration and invasion of
cervical cancer cells through regulating MAPK pathway (127).
Recently, the roles of circUBAP2 have been implicated in
different cancers. In cervical cancer, it was found to be
upregulated and contribute to tumor growth and metastasis by
modulating miR-361-3p/SOX4 axis (128). Roles of circRNAs in
cervical cancer metastasis remain largely unknown and research
is increasing.
CONCLUSIONS AND PERSPECTIVES

The improvement in sequencing technology led to exploding
increase in different types of ncRNAs. NcRNAs are emerging as
active regulators of cellular process in cancer. MiRNAs are well
studied over the past decade, lncRNAs are actively studied for
their diverse roles in gene expression regulation, circRNAs are
recently identified and their functions need further investigation.
Besides, the ncRNAs themselves can interact with each other,
such as lncRNAs and circRNAs can sponge miRNAs. The RNA
molecules sharing miRNA response elements (MREs) can act as
ceRNAs and crosstalk with each other, indicating an enormous
TABLE 2 | Roles of lncRNAs in cervical cancer metastasis.

LncRNAs Function in
metastasis

Mechanism of action Reference

MALAT1 Promote Induce EMT (72)
Promote Sponge miR-429 (73)
Promote Sponge miR-202-3p and

upregulate periostin
(74)

EBIC Promote Bind to EZH2 and repress E-
cadherin

(75)

TUG1 Promote Promote EMT (76)
CTS Promote Promotie EMT via miR-505/

ZEB2 axis
(77)

HOTAIR Promote Sponge miR-23b and
upregulate MAPK1

(78)

Promote Target Notch signaling pathway (79)
Promote Synergiz with STAT3 (80)

Xist Promote Sponge miR-889-3p and
upregulate SIX1

(81)

799 Promote Sponge miR-454-3p and
upregulate TBL1XR1

(82)

XLOC_006390 Promote Sponge miR-331-3p and miR-
338-3p

(83)

TTN-AS1 Promote Sponge miR-573 and regulate
E2F3

(84)

ZNF667-AS1 Inhibit Sponge miR-93-3p and
upregulate PEG3

(85)

DANCR Promote Sponge miR-665 (86)
PVT1 Promote Epigenetically silence miR-200b/

miR-195
(87, 88)

GAS5-AS1 Inhibit Increase GAS5 stability by
epigenetic modulation

(89)

DGCR5 Inhibit Target WNT signaling pathway (90)
ANRIL Promote Target PI3K/Akt pathway (91, 92)
TABLE 3 | Roles of circRNAs in cervical cancer metastasis.

LncRNAs Function in
metastasis

Mechanism of action Reference

Circ-0000745 Promote Regulate E-cadherin (121)
Circ-000284 Promote Sponge miR-506 and regulate

Snail-2
(122)

circ-NRIP1 Promote Sponge miR-629-3p and targe
PTP4A1/ERK1/2 pathway

(123)

Circ-0003204 Promote Regulate MAPK pathway (124)
circUBAP2 Promote Modulate miR-361-3p/SOX4 axis (125)
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and complex regulatory network orchestrating cellular process.
As described above, a lot of ncRNAs are dysregulated in cervical
cancer, exhibiting either metastasis-promoting or -inhibiting
roles through different ways. These findings give insights into
target therapy based on RNAs.

Given the diverse roles of ncRNAs in cervical cancer
metastasis and their highly expression specificity, therapeutics
targeting these regulatory ncRNAs may be appreciated.
Overexpression and knock-down approaches used in
experimental studies to modulate gene expression and
metastasis have shown promising results. Indeed, therapeutic
approaches targeting RNAs such as small interfering RNA
(siRNA) and antisense oligonucleotide (ASO) have been
exploited for many years, as reviewed elsewhere (129–131).
Progress is gratifying for more than 100 RNA-targeted therapies
have reached clinical development and some have been approved
for commercial use in rare disease or chronic disease (132, 133).
At present, some phase 1 clinical trials of ASO-based drugs in
Frontiers in Oncology | www.frontiersin.org 7
advanced metastatic cancer treatment are undergoing (e.g.,
NCT00466583, NCT01120288 and NCT00471432).

The field of ncRNAs in cancer metastasis is promising, which
is progressing rapidly for the new classes of ncRNAs are
emerging. Large amount of experimental work is still needed
to decipher the mechanisms underlying metastasis and fully
assess their therapeutic potential. With the development of
nucleic acid therapeutics, we hope to identify ncRNAs which
can be targeted in advanced and metastatic cervical
cancer patients.
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