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Abstract
Pseudomonas aeruginosa is a Gram-negative, metabolically versatile opportunistic pathogen

that elaborates a multitude of virulence factors, and is extraordinarily resistant to a gamut of

clinically significant antibiotics. This ability, in part, is mediated by two-component regulatory

systems (TCS) that play a crucial role in modulating virulence mechanisms and metabolism.

MifS (PA5512) and MifR (PA5511) form one such TCS implicated in biofilm formation. MifS is

a sensor kinase whereas MifR belongs to the NtrC superfamily of transcriptional regulators

that interact with RpoN (σ54). In this study we demonstrate that themifS andmifR genes

form a two-gene operon. The close proximity ofmifSR operon to poxB (PA5514) encoding a

ß-lactamase hinted at the role of MifSR TCS in regulating antibiotic resistance. To better

understand this TCS, clean in-frame deletions were made in P. aeruginosa PAO1 creating

PAOΔmifS, PAOΔmifR and PAOΔmifSR. The loss ofmifSR had no effect on the antibiotic

resistance profile. Phenotypic microarray (BioLOG) analyses of PAOΔmifS and PAOΔmifR
revealed that these mutants were unable to utilize C5-dicarboxylate α-ketoglutarate (α-KG), a

key tricarboxylic acid cycle intermediate. This finding was confirmed using growth analyses,

and the defect can be rescued bymifR ormifSR expressed in trans. ThesemifSRmutants

were able to utilize all the other TCA cycle intermediates (citrate, succinate, fumarate, oxalo-

acetate or malate) and sugars (glucose or sucrose) except α-KG as the sole carbon source.

We confirmed that themifSRmutants have functional dehydrogenase complex suggesting a

possible defect in α-KG transport. The inability of the mutants to utilize α-KG was rescued by

expressing PA5530, encoding C5-dicarboxylate transporter, under a regulatable promoter. In

addition, we demonstrate that besides MifSR and PA5530, α-KG utilization requires func-

tional RpoN. These data clearly suggests thatP. aeruginosaMifSR TCS is involved in sensing

α-KG and regulating its transport and subsequent metabolism.
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Introduction
Pseudomonas aeruginosa is a metabolically versatile, Gram-negative opportunistic pathogen
that is well known for its extensive spatio-temporal distribution [1]. It is a dominant nosoco-
mial pathogen capable of causing acute and chronic infections in immunocompromised and
immunosuppressed patients [2,3]. In particular, patients with AIDS, severe burn wounds, cys-
tic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis and
neutropenia are predisposed to P. aeruginosa infections [1,4–7]. P. aeruginosa chronic pulmo-
nary infections are characterized by intensive bronchial neutrophilic inflammation resulting in
respiratory failure [8,9], a major cause of fatality in CF patients [10]. Moreover, P. aeruginosa
is associated with keratitis [11] and chronic suppurative otitis media [12] leading to visual
impairment and deafness [13,14]. P. aeruginosa possess numerous virulence factors, both cell-
surface associated and secretory, which significantly contribute to its pathogenesis [15]. Effec-
tive treatment of P. aeruginosa infections is impeded by its extraordinary intrinsic and acquired
resistance to numerous clinically important antibiotics [16]. Thus, antibiotic resistance and
expression of multi-determinant virulence factors are two critical hallmarks in P. aeruginosa
infections that make it an intimidating pathogen.

Successful infection and disease progression depends significantly on the ability of any path-
ogen to effectively utilize available nutrients that are essential for its growth and survival. P.
aeruginosa is renowned for its extraordinary ability to utilize wide range of organic compounds
such as carbohydrates, amino acids, fatty acids, mono- and polyalcohols, di- and tri-carboxylic
acids as sources of carbon, nitrogen and energy [1]. However, unlike other bacteria where glu-
cose is the preferred carbon source [17,18], P. aeruginosa preferentially utilizes tricarboxylic
acid (TCA) cycle intermediates [19,20], specifically, C4-dicarboxylates of the TCA cycle such as
malate, fumarate and succinate [19–21].

The TCA cycle is an amphibolic pathway that serves two main purposes: energy-generation
in aerobic organisms (catabolism), and the generation of intermediates to serve as biosynthetic
precursors for fatty acid, amino acid and carbohydrate synthesis (anabolism) [22]. The
metabolic intermediates of the TCA cycle consist of a group of organic anions that include
C4-dicarboxylates (succinate, fumarate, malate and oxaloacetate), C5-dicarboxylates (alpha-
ketoglutarate (α-KG)) and C6-tricarboxylates (citrate, isocitrate) [23,24]. However, the role of
TCA cycle intermediates is not restricted to energy metabolism or to serve as biosynthetic pre-
cursors. In the recent years, TCA cycle intermediates, in-particular, succinate and/or α-KG
have gained significant importance as biological signaling molecules in variety of organisms
including, bacteria [25], animals [26] and plants [27].

Sensing the available nutrients is a prerequisite for mobilizing the uptake systems. Bacterial
two-component systems (TCSs), involving a membrane-bound histidine sensor kinase (HK)
and a cytoplasmic response regulator (RR) play an integral part in bacteria’s ability to sense
physiological cues. In response to stimuli, the sensor autophosporylates at a conserved histidine
residue at the C-terminus, and subsequently the phosphate is transferred to an aspartate
residue at the N-terminus of the RR [28–30]. TCSs in Bacillus subtilis, Corynebacterium gluta-
micum, Escherichia coli, Klebsiella pneumoniae, Rhizobium meliloti and Rhizobium legumino-
sarum have been shown to regulate extracellular C4-dicarboxylates and tricarboxylates
transport [28,31–36]. Of these, DctB-DctD in R.meliloti is an extensively studied TCS, which
in coordination with sigma factor RpoN(σ54) regulates the extracellular transport of C4-dicar-
boxylates succinate, fumarate and malate [37,38].

Three TCS protein pairs in P. aeruginosa namely, PA5165/PA5166 (DctB/DctD), PA5512/
PA5511 (MifS/MifR) and PA1336/PA1335 have been identified to be homologous to the Rhi-
zobium C4-dicarboxylate transport regulatory DctB/DctD [39]. Amongst the three, very little is
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known of PA1336/PA1335. The PA5165/PA5166 (DctB/DctD) TCS has been demonstrated to
regulate the transport of C4-dicarboxylates, succinate, fumarate and malate in coordination
with the sigma factor RpoN (σ54) [39]. The SK MifS (65.3 kDa) and RR MifR (49.6 kDa) share
51% and 69% sequence identity to the R.meliloti DctB and DctD, respectively [40]. The RR
MifR is involved in regulating the maturation stage of P. aeruginosa biofilm formation asmifR
deficient mutants fail to form microcolonies [41]. Later studies reported the interdependence
of pyruvate fermentation and functional MifR in supporting microcolony formation [42].
However, the mechanism by which MifR is activated in this process remains obscure and no
relation with HKMifS has been established. Using clean in-frame deletion mutants of themifS,
mifR andmifSR genes we show that MifSR TCS regulates P. aeruginosa α-KG transport and
requires functional RpoN.

Results

mifS andmifR are a part of a two-gene operon
In eubacteria, the genes that encode a HK and its cognate RR are often linked and are co-
transcribed [30]. Our sequence analysis of P. aeruginosa PAO1 genome revealed thatmifS
(PA5512) andmifR (PA5511) are adjacent to each other, in the same orientation. The predicted
translation start site ofmifR ORF overlaps withmifS translation termination codon indicating
that they are cotranscribed (Fig 1A and 1B). To determine if these two genes form an operon,
cDNA across the intergenic regions spanningmifS andmifR was amplified using GDT_co-
transF1-R1 and GDT_cotransF2-R2 primers (see Materials and Methods). As expected, 200 bp
and 100 bp products were detected when using primers that span the overlapping region (Fig
1C, Lane 3 and Lane 4). These results confirm thatmifS andmifR are a part of a two-gene
operon. As controls, themifSR genes were also amplified (Fig 1C, Lane 2).

Loss ofmifS andmifR did not affect antibiotic resistance
To identify the role of MifSR TCS, clean in-frame deletion mutants ofmifS,mifR and mifSR
were constructed in the prototypic P. aeruginosa PAO1. Henceforth they will be referred to as
PAOΔmifS, PAOΔmifR and PAOΔmifSR, respectively. For complementation studies, recombi-
nant plasmids containing the entiremifR,mifS andmifSR genes were constructed. The comple-
menting plasmids with the genes are called pMifS, pMifR and pMifSR. These plasmids were
introduced into the respective mutant strains.

Previous studies in our lab postulated that the MifSR TCS system, found 81-bp upstream of
the pox operon, may contribute to P. aeruginosa ß-lactam resistance [43] as the genes regulated
by TCS tend to be co-located on the chromosome [30]. However, MIC analyses using E-test
and micro-dilution methods showed that the loss of these genes did not affect the antibiotic
resistance profile when compared to the parent strain, P. aeruginosa PAO1(Data not shown).
Further, qRT-PCR studies showed that deletion ofmifS,mifR andmifSR had no effect on the
expression of poxB compared to the parent PAO1 (Fig 2).

mifS,mifR andmifSRmutants failed to grow in the presence of α-KG
The PAOΔmifS, PAOΔmifR and PAOΔmifSRmutants exhibited no discernible phenotype
compared to the parent PAO1 when tested for growth, swimming, swarming, twitching motil-
ity (LB media), pyocyanin production (LB & King’s A media), pyoverdine production (LB &
King’s B Media), congo red binding assay (CR media) and antibiotic resistance (MHmedia)
(Data not shown). Hence, a comparative phenotypic microarray analysis was performed with
the wild-type PAO1, PAOΔmifR and PAOΔmifSmutants (BioLOG Inc.). Out of approximately
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2000 metabolic and chemical sensitivity assays tested, PAOΔmifR exhibited four gain-of-func-
tion and 29 loss-of-function phenotypes whereas PAOΔmifS exhibited two gain-of-function
and 23 loss-of-function phenotypes (Fig 3A). A single gain of function phenotype shared

Fig 1. Genome organization of themifSR gene locus. In P. aeruginosa PAO1 themifR (PA5511) ORF has a translation start codon (ATG) overlapping the
mifS (PA5512) termination codon (TGA), denoted in red (B), suggesting that themifS andmifR genes are physically linked. The cDNA amplification of the
intergenic region spanning themifS andmifR genes using GDT_cotrans F1-R1 and GDT_cotrans F2-R2 primers (Table 1) confirm that the two genesmifS
andmifR are co-transcribed and form an operon (C).

doi:10.1371/journal.pone.0129629.g001
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between PAOΔmifS and PAOΔmifR, was the ability to utilize L-methionine. When metabolism
and chemical sensitivity were compared, the mutants appear more sensitive to various antibiot-
ics (Fig 3B). However, none of these were reproducible in the lab in the MHmedia. The loss of
mifS andmifR resulted in differential phenotype in the presence of six metabolites, amongst
which, two were common to bothmifS andmifRmutants (Fig 3B). The shared metabolic phe-
notypes involved the utilization of L-methionine and α-KG (Fig 3C). Compared to the parent
PAO1, the mutants did not exhibit any growth increase when provided with L-methionine
(Fig 4). This could be simply due to the difference in culture conditions and BioLOG proprie-
tary media.

Fig 2. Expression of poxB (PA5514) inmifSRmutants. Expression of poxB (PA5514) was tested inmifSRmutants relative to PAO1. Data was normalized
to expression in PAO1. Bars above or below the line represents up- and down-regulation, respectively and the bars indicate standard errors. The clpX gene
(PA1802) was used as the housekeeping control. There was no statistically significant difference (p-value > 0.05) between the wild type PAO1 andmifSR
mutant strains as determined by one-way ANOVA and student’s unpaired t test.

doi:10.1371/journal.pone.0129629.g002
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The inability to utilize α-KG by PAOΔmifS (Fig 5A) and PAOΔmifR (Fig 5B) in the BioLOG
assay was reproduced in M9 minimal media supplemented with 30 mM α-KG (Fig 5C). In fact,
all three mutant strains, PAOΔmifR, PAOΔmifS and PAOΔmifSR failed to grow in the presence
of α-KG (Fig 5C). To rule out potential toxicity, the wild-type P. aeruginosa PAO1 and the
mutants were cultured in M9 minimal media with varying concentrations of α-KG, ranging
from 1 to 80 mM (Fig 6). The mutants exhibited no growth in the presence α-KG after 24 h at
37°C, whereas the wild-type PAO1 exhibited an increase in growth that was proportional to α-
KG concentration (Fig 6B). All subsequent experiments were done with 30 mM α-KG. The

Fig 3. mifS andmifR dependent phenotypes. To identify the role of P. aeruginosa mifSR TCS, comparative phenotypic microarray of PAOΔmifS,
PAOΔmifRmutants and wild-type PAO1 strain was performed at BioLOG Inc. (Hayward, CA, USA). Venn diagram of differentially regulated phenotypes of
the mutants compared to their isogenic parent PAO1, showing gain of function or loss of function phenotypes (A). Phenotypic differences were further
classified based on metabolic and chemical sensitivity properties (B). The phenotypes common to bothmifS andmifRmutants are listed (C).

doi:10.1371/journal.pone.0129629.g003
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growth defect exhibited by PAOΔmifS, PAOΔmifR and PAOΔmifSR could be restored to the
wild-type levels by introducingmifR andmifSR genes into the respective mutants (Figs 5D and
7A).

mifSRmutants exhibit α-KG dependent growth defect
α-KG is a key TCA cycle intermediate (Fig 8) and plays an important role in regulating carbon
and nitrogen metabolism [44]. It has been previously shown that P. aeruginosa preferentially
utilizes TCA cycle intermediates as a carbon source over other compounds [20,21,45]. To test
if the growth defect exhibited by the loss ofmifS andmifR is restricted to α-KG utilization, the
mutants and the complementing strains were grown in the presence of TCA cycle intermedi-
ates citrate, succinate, fumarate, malate and oxaloacetate at 30 mM each. No difference in
growth was observed between wild type PAO1 and its isogenic mutants in the presence of
other TCA cycle intermediates except for α-KG (Table 1). This is not surprising as P. aerugi-
nosa can use the glyoxylate shunt pathway to bypass the need for α-KG (Fig 8) [46]. Further-
more, no difference in the growth profile of the wild type PAO1 andmifSRmutants was

Fig 4. Growth curve analysis in the presence to methionine.Growth curves of P. aeruginosa wild-type PAO1 andmifSRmutants in M9 minimal media
supplemented with glucose (30 mM) and methionine (5 mM) as carbon and nitrogen source.

doi:10.1371/journal.pone.0129629.g004
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observed when grown in the presence of sugars, glucose and sucrose (30 mM each) (Data not
shown). To reconfirm that the presence of α-KG is not toxic, the cells were grown in the pres-
ence of citrate and succinate combined in equal concentration with α-KG. The mutants and
the wild type shared similar early exponential growth (Fig 9). However, the mutants reached
stationary phase earlier as compared to the parent strain PAO1. This suggests that the presence
of excess carbon source in the form of α-KG further contributes to the growth of PAO1. These
analyses indicate thatmifSRmutants are only defective in α-KG utilization.

mifSRmutants are defective in α-KG transport
The absence of growth in the presence of exogenous α-KG could be due to either failure to
enter the cells or loss of the mutants’ ability to convert α-KG to succinate. The latter is likely if
the mutants failed to express a functional α-KG dehydrogenase complex. The ability ofmifSR
mutants to grow effectively in the presence of citrate and succinate suggests that these mutants
are likely to harbor a functional α-KG dehydrogenase complex, unless the mutants bypass it
using the glyoxylate shunt (Fig 8). The former is likely as qPCR analysis of genes encoding

Fig 5. Phenotypic microarrays of PAOΔmifS and PAOΔmifRmutants. The loss ofmifS andmifR results in a growth deficient phenotype in the presence
of α-KG as a sole carbon source, as depicted by BioLOG plate PM1, well D6 (A and B). Loss of growth phenotype was confirmed by growing PAO1,
PAOΔmifS, PAOΔmifR and PAOΔmifSRmutants in M9 minimal media with α-KG (30 mM) for 18 to 24 h at 37°C (C). The growth defect was rescued by
expressingmifR andmifSR genes (D) and the gene encoding the α-KG specific transporter PA5530 (E) in trans.

doi:10.1371/journal.pone.0129629.g005

MifS-MifR Dependent α-Ketoglutarate Utilization

PLOS ONE | DOI:10.1371/journal.pone.0129629 June 26, 2015 8 / 31



isocitrate dehydrogenase (idh, icd) and α-KG dehydrogenase complex (sucA, sucB, lpd3)
revealed no difference in the expression levels in the wild-type PAO1 andmifSRmutants (Fig
10).

α-KG is a hub for anaplerotic reactions, a process for replenishing TCA cycle intermediates.
In this process glutamate, glutamine, proline and arginine act as precursor molecules for α-KG
synthesis [47]. Growth studies in the presence of these amino acids would serve as another
indirect measure to test the functionality of α-KG dehydrogenase complex inmifSRmutants.
To test this hypothesis, PAO1, PAOΔmifR, PAOΔmifS and PAOΔmifSRmutants were cultured
in the presence of glutamate, glutamine, proline and arginine (Table 2). The parent PAO1 and
the isogenic mutants exhibited similar growth phenotype. From the expression studies and
growth analyses we deduce that themifSRmutants are impaired in α-KG transport.

mifSR TCS genes regulate extracellular α-KG transport
In a recent study using transposon mutagenesis; PA5530 was identified as the functional α-KG
transporter [48]. To confirm the role of P. aeruginosa PA5530 in α-KG uptake and identify the
role ofmifSR genes, the gene was amplified and subcloned downstream of the inducible PlacUV5
promoter. The plasmid pPA5530 was introduced into PAO1 and themifSRmutants. Expres-
sion of PA5530 in trans in PAOΔmifS, PAOΔmifR, PAOΔmifSRmutants restored their growth
to a level similar to the wild-type PAO1 in M9 minimal media with α-KG (30 mM) as the sole
carbon source (Fig 7B). Expression of an extra copy of PA5530 gene in the wild-type PAO1 did
not affect its growth (Fig 5E). This finding suggests that expression of PA5530 is likely regu-
lated by MifSR and/or α-KG. In fact, expression of PA5530 is regulated by α-KG, as seen
in qRT-PCR analysis when PAO1 was grown in M9 media with varying amounts α-KG

Fig 6. Growth profile in the presence of varying concentrations of α-KG. PAO1 and its isogenicmifSRmutants, PAOΔmifS, PAOΔmifR and
PAOΔmifSRwere grown in M9 minimal media with varying concentrations of α-KG (1 to 80 mM) as the sole carbon source. Growth was monitored by
measuring absorbance at 600 nm (OD600) over a period of 24 h at 37°C. OD600 at 0 h (A) and 24 h (B) is plotted against α-KG concentration. Results shown
are mean with standard deviation of three biological replicates. Statistically significant difference between the wild type and mutants as determined by one-
way ANOVA with Bonferroni’s post-hoc test, ** p-value < 0.001.

doi:10.1371/journal.pone.0129629.g006
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(Fig 11A). The loss ofmifS,mifR andmifSR results in a significant decrease in PA5530 expres-
sion as compared to the wild type PAO1 in the presence of α-KG (Fig 11B). Thus, α-KG-
dependent PA5530 expression requires MifS and MifR.

RpoN (σ54) is required for α-KG utilization
The closest P. aeruginosaMifS and MifR homologs are R.meliloti DctB and DctD [40]. In fact,
MifR is 69% similar to R.meliloti DctD that belongs to the Sigma 54 (σ54) dependent NtrC
family of transcriptional regulators [39,40]. Thus, it is likely that MifR has the conserved
domains found among NtrC family of regulators, an N-terminal regulatory, a central σ54 acti-
vation and a C-terminal DNA binding domains [49,50]. MifR analysis using the simple modu-
lar architecture research tool (SMART) [51] and InterPro [52] revealed the presence of three
domains: CheY-homologous receiver/regulatory, a central AAA+ region required for σ54 acti-
vation, and the DNA binding helix-turn-helix domains (Fig 12A). The central AAA+ domain
contains seven conserved regions designated C1 to C7 [50] that are characteristic of σ54-
dependent transcriptional regulators. Sequence analysis of MifR revealed the presence of all the
seven conserved regions in the AAA+ domain between amino acid residues 144 to 373 (Fig
12B).

Since MifR exhibits high identity to σ54-dependent transcriptional regulators, we hypothe-
sized that P. aeruginosa rpoNmutants should exhibit a α-KG-dependent phenotype, similar to
themifSRmutants. To verify this hypothesis, we tested the ability of PAOΔrpoNmutant to
grow in the presence of α-KG (30 mM) (Table 3). As expected, PAOΔrpoN failed to grow in

Fig 7. Rescue of α-KG-dependent growth phenotype ofmifSRmutants.Growth curves of P. aeruginosa wild-type PAO1,mifSR single and double
deletion mutants and its complimenting clones (A) and in the presence of pPA5530 (B) in M9 minimal media with α-KG (30 mM).

doi:10.1371/journal.pone.0129629.g007
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Fig 8. Tricarboxylic acid (TCA) cycle and its related reactions. Enzymes converting iso-citrate to α-KG (iso-citrate dehydrogenase: Icd, Idh), α-KG to
succinyl-coA (α-KG dehydrogenase complex: SucA, SucB, Lpd3) and those involved in the glyoxylate shunt (isocitrate lyase (AceA) and malate synthase G
(GlnB)) are shown in bold. Green boxes indicate the amino acid biosynthetic precursors of α-KG involved in the anaplerotic reaction.

doi:10.1371/journal.pone.0129629.g008

Table 1. Growth properties ofmifSRmutants in presence of TCA cycle intermediates.

Carbon Source PAO1 ΔmifR ΔmifS ΔmifSR

Pyruvate +++ +++ +++ +++

Oxaloacetate +++ +++ +++ +++

Citrate +++ +++ +++ +++

Succinate +++ +++ +++ +++

Fumarate +++ +++ +++ +++

Malate +++ +++ +++ +++

α-Ketoglutarate +++ - - - - - - - - -

+++, growth;- - -, no growth

Growth of the wild type PAO1 and mifSR mutants was tested in M9 minimal media supplemented with different TCA cycle intermediates at 30 mM each,

as the sole carbon source. Cells were cultured for 18 to 24 h at 37°C and their growth was monitored by measuring the absorbance at 600 nm. No

difference was observed in the growth rate of mifSR mutants compared to the parent PAO1 strain. Data is represented in terms of growth and no growth

phenotype.

doi:10.1371/journal.pone.0129629.t001
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the presence of α-KG (Table 3). The growth of the rpoNmutant was restored in PAOΔrpoN::
rpoN complementing strain. Further, in trans expression ofmifR andmifSR in PAOΔrpoN
mutant failed to restore their growth in the presence of α-KG (Table 3). This data confirms
that MifR regulatory function requires functional RpoN (σ54).

The small 81-bpmifSR promoter has no obvious RpoN sigma factor -12/-24 consensus
sequence: 5’-TGGCACG-N4-TTGCW-3’ in which W stands for either A or T (Fig 13A) [53].
In fact, it appears to have a potential -10 (consensus: TATAAT) but lacked -35 (consensus:
TTGACA) for sigma-70 promoter (Fig 13A) [54]. On the other hand, the promoter region of
PA5530 is 315-bp long with strong -12 and -24 boxes upstream of the predicted transcription
start site (Fig 13B). We hypothesized that the inability of rpoNmutant to utilize α-KG can be
rescued by expressing PA5530 under a regulatable promoter PlacUV5. As expected, the growth
of the rpoNmutant was restored when the plasmid harboring the transporter PA5530 was
expressed in trans (Table 3). This suggests that expression of PA5530 requires both MifSR TCS
and RpoN.

The presence of a common motif, GATCGGCGGATt/gTCC, in the PmifS and PPA5530 (Fig
13A and 13B) suggest that these two operons share some common regulatory mechanism. In
addition, both promoters possess multiple motifs: PmifS has two sets of large overlapping
inverted repeats, and PPA5530 has three sets of direct repeats (Fig 13A and 13B). However, the
role of these motifs remains to be elucidated.

Discussion
P. aeruginosa pathogenicity relies significantly on its metabolic flexibility. However, establish-
ment of successful infection and its progression requires more than just meeting nutritional

Fig 9. Growth curves in presence of α-KG in combination with succinate and citrate. To determine if α-KG is toxic to the cells, wild-type PAO1 and
mifSRmutants were grown in the presence of α-KG in combination with succinate (A) and citrate (B) at 30 mM each. In comparison to the wild-type PAO1,
mifSRmutants shared a similar exponential phase but reached stationary phase earlier, suggesting that it has depleted usable C-source. This suggests that
PAO1 can efficiently utilize excess carbon source in the form of α-KG contributing to its increased growth.

doi:10.1371/journal.pone.0129629.g009
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demands. Precision in sensing environmental signals concomitant with a quick and appropri-
ate response is the key to efficient bacterial adaptation and survival. An arsenal of TCSs
encoded in its genome has furnished P. aeruginosa with a sophisticated capability to regulate
diverse metabolic and virulence processes, ensuring its success as a pathogen [55–57]. P. aeru-
ginosa genome encodes one of the largest groups of TCS proteins identified in any sequenced
bacterial species [57,58]. Bacterial TCS’s sense and respond to a variety of external cues such as

Fig 10. Quantification of rpoN, acnA, idh, icd, sucA, and Ipd3mRNA by qRT-PCR. RNA was isolated from cells grown in M9 minimal media
supplemented with citrate (30 mM), reverse transcribed to cDNA and the presence of specific transcripts was analyzed by qPCR using gene-specific primers
(Table 5). The expression of genes encoding aconitate hydratase 1 (acnA (PA1562)) isocitrate dehydrogenase (idh (PA2623)) isocitrate dehydrogenase, α-
KG dehydrogenase complex (icd (PA2623)), sucA (PA1585) and lpd3 (PA4829), and σ54 (rpoN (PA4462)) were analyzed inmifSRmutants relative to PAO1
(log10 RQ = 1). Bars above or below the line represents up- and down-regulation, respectively and the bars are standard errors. The clpX (PA1802) gene was
used as the housekeeping control. Statistically significant difference between the wild type and mutants as determined by one-way ANOVAwith Bonferroni’s
post-hoc test. Difference in the expression levels of genes is not statistically significant at p-value < 0.05.

doi:10.1371/journal.pone.0129629.g010

Table 2. Growth profile analysis of themifSRmutants in presence of amino acids.

Carbon Source PAO1 ΔmifR ΔmifS ΔmifSR

Glutamate +++ +++ +++ +++

Glutamine +++ +++ +++ +++

Proline +++ +++ +++ +++

Arginine +++ +++ +++ +++

+++, growth;- - -, no growth

Cells were grown in the M9 minimal media with the indicated amino acids (30 mM each). Data is

represented in terms of growth and no growth phenotype.

doi:10.1371/journal.pone.0129629.t002
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nutrient availability, osmolarity, redox state, temperature, and concentrations of other extracel-
lular molecules [59]. However, very few TCS signaling molecules have been identified to date.
In this study we suggest that the P. aeruginosaMifSR TCS exclusively senses α-KG, a C5 dicar-
boxylate and a key component of TCA cycle.

P. aeruginosa antibiotic resistance is independent of MifSR TCS
A common feature of bacterial genomes is a close association between the functionally related
genes and their location on the chromosome [60,61]. Typically, genes encoding functionally
related HKs and RRs are often physically linked and are co-transcribed as an operon [30,62].
Indeed, our in silico analysis (Fig 1A and 1B) and cDNA amplification (Fig 1C) reveled that
mifS-mifR genes are co-transcribed and form an operon. This also suggests that HK-MifS and
RR-MifR are functionally related and work as a TCS pair. In addition, TCS proteins are known
to regulate expression of genes in their immediate vicinity [30]. ThemifSR genes are 81 bp
upstream of the two-gene poxAB (PA5513-5514) operon. Due to the proximity ofmifSR to
poxB which encodes for a β-lactamase, we postulated thatmifSR TCS regulates antibiotic resis-
tance. However, our initial results nullified this hypothesis in which comparative MIC’s (Data

Fig 11. Expression of PA5530 in response to α-KG. PA5530 gene expression was determined in the wild type PAO1 with varying concentrations of α-KG
(1 h) (A). In addition, the expression of PA5530was tested inmifSRmutants relative to PAO1, with cells exposed to 30 mM α-KG for 1 h (B). Data was
normalized to expression in PAO1 under the respective conditions. Bars above or below the line represents up- and down-regulation, respectively and the
bars indicate standard errors. The clpX gene (PA1802) was used as the housekeeping control. Statistically significant difference between the wild type and
mutants as determined by one-way ANOVA with Bonferroni’s post-hoc test, ** p-value < 0.001.

doi:10.1371/journal.pone.0129629.g011
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not shown) and qRT-PCR data (Fig 2) showed no difference in antibiotic resistance profiles or
poxB expression between the wild-type PAO1 andmifSR single and double deletion mutants.

MifSR TCS regulates P. aeruginiosa α-KG utilization
A previous transcriptome study of the wild-type PAO1 and amifR deletion mutant cultivated
under biofilm-specific conditions showed significant alteration in the expression of genes
involved in regulating P. aeruginosametabolism, small molecule transport and amino acid bio-
synthesis [42]. The majority of the changes observed in phenotypic microarrays of themifS
andmifRmutant strains cultivated under planktonic conditions were associated with chemical

Fig 12. P. aeruginosaMifR domain organization and sequence alignment. (A) MifR domain organization determined using the Simple Modular
Architecture Research Tool (SMART) [51]. MifR is a sigma-54 dependent transcriptional activator [57]. There are three functional domains, N-terminal
receiver with the conserved aspartate residue at position 53 (Asp-53) (Purple), central AAA+ ATPase, characteristic of sigma-54 dependent activation
proteins (Green), and the C-terminal helix-turn-helix (HTH) DNA binding (Red) domains. (B) Sequence alignment of MifR with P. aeruginosa DctD (PA5166),
NtrC (PA5125) and R.melilotiDctD. Vertical bars indicate conserved residues, asterisk (*) indicate residues are identical at that position. Key residues of the
central AAA+ domain (C1 to C7) are well conserved amongst sigma-54 dependent transcriptional activators. The horizontal arrow bars indicate HTH domain.
Asp-53 indicates the conserved phosphorylation site of P. aeruginosaMifR. The alignment was generated using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/
clustalw2/).

doi:10.1371/journal.pone.0129629.g012
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sensitivity and not with metabolism (Fig 3B). Only 12–16% of phenotypic changes were associ-
ated with metabolism. This confirms the significant metabolic differences in the rich plank-
tonic versus anaerobic mode of biofilm growth in P. aeruginosa [63].

Petrova et al. (2012) have also demonstrated that genes involved in energy metabolism,
including anaerobic metabolism and fermentative pathways using arginine (arcDABC) and pyru-
vate, were expressed significantly less in ΔmifRmutant biofilms as compared to its parent PAO1
[42]. Though pyruvate is needed for biofilm formation, it cannot compensate for the loss ofmifR
[42]. Interestingly, the biofilm phenotype associated with the loss ofmifR can be complemented
by ldhA encoding D-lactate dehydrogenase to wild type levels of biomass accumulation and
microcolony formation [42]. These findings suggest that MifR somehow regulates expression of
ldhA, a second gene in a three-gene operon gacS-ldhA-PA0926 [57]. Importantly, analyses of the
promoters reveal the presence of a shared motif in PmifS (GATCCGCCGATGTCC) and PPA5530
(GATCGGCGGATTTCC) (Fig 13) and PgacS (AATCCGCCGGGCTGC) suggesting a possible
coordinate regulation, and that need to be verified.

Our phenotypic microarray analyses and growth experiments suggested that P. aeruginosa
α-KG utilization requires MifS and MifR (Figs 5 and 7A). The ability of PAOΔmifR, PAOΔmifS
and PAOΔmifSR to grow in the presence of α-KG was restored by in trans expression ofmifR
andmifSR (Fig 7A). Interestingly, the PAOΔmifS was complemented by pMifR and pMifSR
(Fig 5D) but not by pMifS alone. To rule out that gene expression may have been compro-
mised, themifS gene was cloned downstream of the inducible PlacUV5 promoter. Though the
expression of stable protein was visible in a protein gel, it failed to complement PAOΔmifS
mutant (data not shown). This suggests that cis-expression ofmifS andmifR is critical for
MifS-function. Other researchers have encountered similar problems involving histidine
kinases [64]. Moreover, complementation of the PAOΔmifS with pMifR suggests that either
phosphorylation is not required or there is a potential crosstalk between MifR and other non-
cognate HKs. Alternatively, phosphorylation of MifR can occur through small molecule phos-
phor-donors, like acetyl phosphate, carbamoyl phosphate and phosphoramidate [65]. Such
phenomenon is observed with other TCS RRs [66–68]. However, this has to be verified.

The C5-dicarboxylate α-KG is an important intermediate in the energy-generating TCA
cycle (Fig 8) and plays a key role in regulating carbon and nitrogen metabolism [44]. Similar to
other bacteria [69], TCS’s in P. aeruginosa have been reported to regulate transport and utiliza-
tion of TCA cycle intermediates such as succinate, fumarate, malate and citrate [39,56]. The R.
meliloti DctB/DctD system is a well-characterized TCS that controls the transport of TCA
cycle C4-dicarboxylates succinate, fumarate and malate [69]. Though P. aeruginosaMifS/MifR
proteins are homologous to R.melilotiDctB/DctD TCS proteins, themifSRmutants efficiently

Table 3. Growth properties of PAO1ΔrpoN and its derivatives in the presence of α-KG and LB.

Strain Plasmid α-KG LB

PAOΔrpoN - - - - +++

Vector - - - +++

pRpoN +++ +++

pMifR - - - +++

pMifSR - - - +++

pPA5530 +++ +++

+++, growth;- - -, no growth

Growth of PAO1ΔrpoN mutant and its derivatives was tested in the M9 minimal media supplemented with

α-KG (30 mM) and in the LB media at 37°C for 24h.

doi:10.1371/journal.pone.0129629.t003
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utilized citrate, succinate, fumarate, malate, oxaloacetate, sucrose and glucose but exclusively
failed to grow in the presence of α-KG (Table 1). This was further supported by another paral-
lel study that shows that α-KG utilization requires MifR [48]. Thus, the P. aeruginosaMifSR
TCS is specifically and uniquely involved in C5-dicarboxylate α-KG utilization.

MifSR TCSmodulates P. aeruginosa α-KG transport
The inability to utilize α-KG suggested that themifSRmutants either have a defective α-KG
dehydrogenase complex (inability to convert α-KG to succinyl-coA, Fig 8), or they are deficient
in the transport of α-KG into the cell. The former was ruled based upon multiple findings:
unchanged expression levels of genes encoding α-KG dehydrogenase, lpd3 (PA4829) and sucA
(PA1585) (Fig 10); the ability to use C4 and C6 dicarboxylates (Table 1) and C5 family of amino

Fig 13. In silico analysis ofmifS (PmifS) and PA5530 (PPA5530) promoter sequences.Motif search was done using the ensemble learning method SCOPE
and GLAM2 (Gapped Local Alignment of Motifs) [113,114]. (A) Sequence analysis of the 81-bp (PmifS) (black) indicates a putative σ70-dependent -10
consensus (TATAAT). However, it lacks the -35 consensus (TTGACA) for σ70 promoter [80]. Arrows represent the long 17-bp direct and inverted repeats in
PmifS with a consensus GGAt/cAGCGACATCGGCG. (B) The 315-bp promoter region of PA5530 showing strong -12 and -24 σ54-dependent promoter like
element and the proposed transcription start site (+1). Dashed line (blue) depicts a commonmotif in PmifS and PPA5530 suggesting a common regulatory
mechanism (A and B). The three pairs of direct repeats in PPA5530 are represented by green, blue and orange arrows. PPA5530 possess the signature
sequence (AAc/uAAc/uAA) for catabolite repression control (Crc) protein (brown box) [90]. The uncharacterized small antisense RNA (asRNA) identified in
the PPA5530 region [91] is indicated by marked line.

doi:10.1371/journal.pone.0129629.g013
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acids such as arginine, proline, glutamine, and histidine (Table 2). The C5 family of amino
acids act as biosynthetic precursors of glutamate that ultimately are converted to α-KG by a
transamination reaction or through the action of glutamate dehydrogenase [70]. These findings
strongly argued that themifSRmutants were defective in their ability to transport α-KG into
the cell.

To date, among the identified carboxylate transporters, the C4-dicarboxylate transporters
have been reasonably well characterized. Based on protein sequence similarity analysis,
bacterial C4-dicarboxylate transporters are classified into five families, namely, dicarboxylate
transport (DctA); dicarboxylate uptake (DcuAB), (DcuC) and (CitT) and the tripartite ATP-
independent periplasmic (TRAP) families [69]. Amongst these, DctA transporters, a subgroup
of the dicarboxylate/amino acid:cation symporter (DAACS) family [71–73], are extensively
studied and are implicated in the transport of C4-dicarboxylates in Echerischia coli [74], Bacil-
lus subtilis [28], Rhizobium meliloti [38,75], Rhizobium leguminosarum [37,76] and Corynebac-
terium glutamicum [77]. As we were trying to identify the MifSR-dependent transporter
Lundgren et al., reported that PA5530 is involved in α-KG transport [48]. As predicted, in
trans expression of PA5530 was able to restore the ability ofmifR,mifS andmifSRmutants to
grow in α-KG (Fig 5E). This is further confirmed by the increase in PA5530 expression in
PAO1 in the presence of α-KG (Fig 11A). PA5530 shares no homology with the P. aeruginosa
C4-dicarboxylate transporter PA1183 (DctA). However, it does have conserved protein domain
family PRK10406 implicated in α-KG transport and shares ~70% homology to E. coli and
Erwinia spp. α-KG permease KgtP [78,79]. A common feature in the transport of C4-dicarbox-
ylates and other carbon sources in different bacteria is the involvement of TCS mediated regu-
latory mechanism. Involvement of TCSs, a stimulus-response coupled mechanism, in the
transport of C5-dicarboxylates suggests a more profound role of α-KG as a signaling molecule.

P. aeruginosa α-KG transport requires functional RpoN (σ54)
P. aeruginosa RpoN (σ54) is involved in a myriad of functions including expression of virulence
factors and nutrient uptake [80]. Functional RpoN is reported to be critical for maintaining a
carbon-nitrogen balance in Pseudomonads [56,81–84]. Sequence analysis of MifR indicated a
requirement of functional RpoN in modulating P. aeruginosa α-KG utilization. Our study con-
firms that α-KG utilization in P. aeruginosa PAO1 requires functional RpoN (Table 3). This
phenotype is not strain-specific as phenotypic microarray profiling (BioLOG) of P. aeruginosa
PA14 rpoNmutant exhibited a similar phenotype, a significant difference in the ability to uti-
lize α-KG as a carbon source as compared to the wild-type PA14 [85]. An RpoN-dependent
phenotype was also observed with citrate and 4-hydroxyphenylacetate utilization [85]. Simi-
larly, utilization of C4-dicarboxylates succinate, fumarate and malate in R.meliloti and P. aeru-
ginosa also requires the sigma factor RpoN (σ54) [37,39,86].

The need for RpoN (σ54) to utilize α-KG in P. aeruginosa can be bypassed by expressing
PA5530 encoding for the transporter under a regulatable promoter but not MifS and MifR.
Consistent with the need for RpoN (σ54), the promoter for PA5530 has the requisite signature
sequences (Fig 13). Like most complex RpoN-dependent promoters [87], the region is long
with multiple motifs that include a signature sequence (AAc/uAAc/uAA) for catabolite repres-
sion control (Crc) protein, a post-transcriptional inhibitor that binds the mRNA preventing
translation [88–90]. Expression of crc is in-turn regulated by RpoN-dependent non-coding
RNA CrcZ [90] whose absence in rpoNmutant can also lead to reduced expression of PA5530.
Also, analysis of P. aeruginosa PA14 transcripts indicates that the PA5530 promotor is under a
small non-coding antisense RNA (asRNA) regulation [91]. Though the role of Crc, CrcZ and
the asRNA in α-KG transport has to be verified experimentally, it suggests an additional layer
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of regulation superimposed on the need for MifS and MifR on the expression of the C5-dicar-
boxylate transporter PA5530.

Conclusion
In eukaryotic cells, the mitochondria serve as a hub and reservoir of the TCA cycle and its
intermediates, respectively. Bacterial pathogens can be highly virulent intruders of the host tis-
sue, causing significant damage leading to cellular aberrations and injury. Mitochondrial dys-
function, a consequence of cell injury, results in efflux of TCA cycle intermediates leading to an
increase in their extracellular concentrations [92]. It is known that TCA cycle intermediates
(C4, C5, and C6 dicarboxylates) are present at micromolar (μM) concentrations in blood that
increase with tissues damaged [26,92]. α-KG can also act as a reactive oxygen species scaven-
ger, especially for hydrogen peroxide, protecting both host and pathogen [93]. For pathogenic
bacteria such as P. aeruginosa, efficient uptake of TCA intermediates from the host is crucial
for its survival, especially when it is bombarded with host reactive oxygen species, and requires
the activity of bacterial carboxylate transport proteins. The transport proteins could be specific
for C4, C5, and C6 intermediates and may use a cognate TCS. This study suggests a complex
regulatory cascade in modulating P. aeruginosa C5-dicarboxylate, α-KG uptake involving the
PA5530 transporter, the MifS/MifR TCS and the sigma factor RpoN (Fig 14). It appears that
MifS senses the presence of α-KG and signals MifR. The activated MifR in concert with RpoN
initiates the transcription of α-KG-specific transporter gene PA5530. Analyses of the published
data suggests that the PA5530 promoter is under several layers of regulation including catabo-
lite repression mediated by Crc/CrcZ [90] and the small non-coding asRNA [91]. Though the
asRNA has been identified [91], it has not been characterized. It is not surprising that the
PA5530 expression is potentially regulated by Crc, as it would allow control of transporter(s) in
response to the presence of carbon sources in the environment.

In addition to MifSR (PA5512/PA5511), PA1336/PA1335 have been identified to be homol-
ogous to the Rhizobium C4-dicarboxylate transport regulatory DctB/DctD TCS [39,40]. How-
ever, the role of PA1336/PA1335 remains to be elucidated. The P. aeruginosa genome also
encodes 19 other paralogs of PA5530 dicarboyxlate transporters, most of which have share less
than 50% similarity except for PA0229 (PcaT). PA0229 and PA5530 have 73% similarity.
Future studies will determine if the transporters are preferentially or hierarchically upregulated
depending on the carbon source. It is also important to note that much of bacterial physiology,
particularly of pathogens such as P. aeruginosa remains a mystery. Metabolic versatility,
expression of virulence factors and antibiotic resistance together makes P. aeruginosa an por-
tentous pathogen. Thus, understanding the physiological cues and regulation would provide a
better stratagem to fight the often indomitable infections.

Materials and Methods

Strains, media and growth conditions
P. aeruginosa wild-type PAO1 [40] and its derivatives PAOΔmifS, PAOΔmifR, PAOΔmifSR
and PAOΔrpoN or Escherichia coli strain DH5α were used in this study (Table 4). Saccharomy-
ces cerevisiae strain InvSC1 (Invitrogen, Life Technologies, Carlsbard, CA, USA) was used for
in vivo homologous recombination [94]. Briefly, all bacterial cultures were grown in Luria Ber-
tani (LB) broth (5 g tryptone, 10 g sodium chloride, and 5 g yeast extract per liter) or agar (LB
broth with 1.5% agar) (Difco, NJ, USA) or M9 minimal Media (64 g Na2HPO4-7H2O, 15 g
KH2PO4, 2.5 g NaCl, 5.0 g NH4Cl, 20 mMMgSO4, 1 mM CaCl2 per liter) [95] at 37°C, unless
specified otherwise. Yeast extract-peptone-dextrose media (YEPD: 20 g Bacto Peptone, 10 g
yeast extract, 20 g dextrose per liter) was routinely used to culture S. cerevisiae and synthetic
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Fig 14. Proposedmodel for α-KG utilization in P. aeruginosa. HK-MifS senses the extracellular α-KG to undergo phosphorylation. The phosphate is
transferred to the RR-MifR. The phosphorylated MifR in coordination with RpoN (σ54) activates the expression of α-KG specific transporter gene PA5530.
PA5530 thus enables the influx of α-KG to meet the metabolic and energy demands of the cells. PA5530 promoter (PPA5530) region has a Crc binding site (Fig
13), suggesting that it is under the catabolite repression control by Crc/CrcZ. The PPA5530 also shows the presence of another uncharacterized small non-
coding asRNA indicating a multilayered and complex regulation of the α-KG transport system.

doi:10.1371/journal.pone.0129629.g014
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define agar-uracil media was used as selection media for pMQ30 yeast transformants [96]. P.
aeruginosa competent cells were prepared as previously described [97]. For growth curve and
complementation studies M9 minimal media supplemented with glucose, sucrose or TCA
cycle intermediates including citrate, α-KG, succinate, fumarate, malate or oxaloacetate were
used as a sole carbon source at 30 mM each unless specified otherwise. Motility assays were
performed in LB media (Difco, NJ, USA). For pyocyanin and proverdine production strains
were cultivated in King’s A medium (Difco, NJ, USA) and King’s B medium [98]. Cation-
adjusted Mueller Hinton broth and agar (Difco, NJ, USA) was used in MIC assays. For plasmid
maintenance, antibiotics were added to growth media when appropriate, at the specified con-
centrations: E. coli: ampicillin (Ap) 100 μg/ml, gentamycin (Gm) 15 μg/ml, kanamycin (Km)
20 μg/ml, P. aeruginosa: Gm 75 μg/ml.

Table 4. Strains and plasmids used in this study.

Strain ID Strain/Plasmid
Background

Relevant characteristics Source

Escherichia coli

DH5α E. coli F- Φ80lacZΔM15Δ (lacZYA-argF)U169 deoR recA1 endA1 hsdR17 (rk- mk+) phoA
supE44 λ- thi-1 gyrA96 relA1

New England
Biolabs

Saccharomyces cerevisiae
INVSc1 S. cerevisiae MATa his3D1 leu2 trp1-289 ura3-52 Invitrogen

Pseudomonas aeruginosa
PAO1 Prototypic wild type [40]

PKM900 PAO1 ΔmifS (PA5512) PAOΔmifS; This
study

PKM901 PAO1 ΔmifR (PA5511) PAOΔmifR; This
study

PKM902 PAO1 ΔmifSR (PA5511-PA5512) PAOΔmifSR;This
study

PAOΔrpoN PAO1 ΔrpoN (PA4462) [99]

PAO1ΔrpoN::
rpoN

PAO1 ΔrpoN att Tn7::rpoN_aacC1 [99]

Plasmids

pCR2.1 TOPO ApR, KmR; colE1 f1 ori lacZα Invitrogen

pRK600 CmR; colE1 tra+RK2 mob+ [100]

pRK2013 KmR; colE1 tra+ RK2 mob+ [101]

pEXG2 GmR; colE1, oriT mob+ sacB+ [102]

pMQ30 GmR; colE1, oriT [96]

pPSV37 GmR; colE1 oriT lacIq PlacUV5 [103]

pGDT001 pCR2.1 TOPO ApR; A ~1.7-kb NheI-XbaI fragment containing mifS ORF (PA5512) amplified from PAO1
genome using HK_mifSF1 and HK_mifSR1 primers and cloned into pCR 2.1 TOPO

This study

pGDT002 pCR2.1 TOPO ApR; A ~1.3-kb NheI-SacI fragment containing mifR (PA5511) ORF amplified from PAO1
genome using GDT_mifRF1 and GDT_mifRR1 primers and cloned into pCR 2.1 TOPO

This study

pGDT003 pPSV37 GmR; The mifS ORF subcloned from pGDT001 as an NheI-XbaI fragment into pPSV37 pMifS: This study

pGDT004 pPSV37 GmR; The mifR ORF subcloned from pGDT002 as an NheI-SacI fragment into pPSV37 pMifR: This study

pGDT005 pPSV37 GmR; A ~3.0-kb NheI-SacI fragment containing mifSR (PA5511-PA5512) ORFs amplified
from PAO1 genome using HK_mifSF1 and GDT_mifRR1 primers and cloned directly into
NheI-SacI-cut in pPSV37

pMifSR: This
study

pGDT006 pPSV37 GmR; A ~1.3-kb NheI-SacI fragmentcontaining PA5530 ORF amplified from PAO1
genome using GDT_PA5530F1 and GDT_PA5530R1 primers and cloned directly into
NheI-SacI-cut in pPSV37

pPA5530: This
study

doi:10.1371/journal.pone.0129629.t004
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Genetic manipulations
Genetic manipulations were carried out using standard techniques [95]. Primers were synthe-
sized by Integrated DNA Technologies, Inc. (Coralville, IA, USA) and are listed in Table 5.
Plasmid DNA isolation was carried out using PureLink Hipure Plasmid Miniprep Kit (Invitro-
gen, Life Technologies, Carlsbard, CA, USA) and agarose gel fragments were purified using
Wizard SV Gel and PCR Clean-Up System (Promega, Madison, WI, USA). RNA and cDNA
was made using RNeasy Mini Kit (Qiagen Inc. Venio, Limburg, Netherlands) and SuperScript
III First-Strand Synthesis System (Invitrogen, Life Technologies, Carlsbard, CA, USA). Restric-
tion endonucleases were from New England Biolabs (Ipswich, MA, USA) and DNA sequencing
was carried out at Florida International University (FIU) DNA core and at GENEWIZ Inc
(South Plainfield, NJ, USA). All other chemicals were purchased from SIGMA-ALDRICH
(St. Louis, MO, USA), AMRESCO (Solon, OH, USA) and Fisher Scientific (Waltham, MA,
USA).

Construction of P. aeruginosa ΔmifRmutant
An unmarkedmifR clean in-frame deletion mutant of P. aeruginosa was generated by gene
splicing [104]. Upstream and downstream flanking regions ofmifR were amplified by PCR
(GC Rich PCR System, Roche, Indianapolis, IN, USA), using primers listed in Table 5. A
754-bp P1 and a 720-bp P2 were amplified using upstream primersmifRUF1-EcoRI and
mifRUR1-NheI and the downstream primersmifRDF1-NheI andmifRDR1-HindIII (Table 5),
respectively from PAO1 genomic DNA. After sequencing to ensure fidelity, P1 and P2 were
spliced together to obtain a 1474-bp deletion fragment with a deletion ofmifR containing stop
codons at its junction (inserted as part of NheI site in the primer). This was then sequenced
and subcloned into a P. aeruginosa non-replicative plasmid pEXG2 [102] as a EcoRI-HindIII
fragment and moved into the wild-type PAO1 strain by allelic replacement [105] using
pRK600 and pRK2013 as the helper plasmids [100,101]. Clones were screened for Gm sensitiv-
ity (75 μg ml−1) and sucrose resistance (8% sucrose) corresponding to a double cross-over
recombination event and replacement of the target gene with the deletion product. The pres-
ence of the deletion in PAOΔmifR (PKM901) was confirmed by PCR amplification and
sequencing of the deletion product (data not shown).

Construction of P. aeruginosa mifS andmifSRmutants
The unmarkedmifS and mifSR deletion in PAO1 was generated by using the yeast system of
double-stranded gap repair and homologous recombination [106]. Briefly, themifS andmifSR
upstream and downstream flanking regions were amplified by PCR using primers listed in
Table 5. To create amifSR deletion, an upstream 933-bp P1 and a downstream 1115-bp P2
were amplified using primer pairsmifSRUF1-mifSRDF1 andmifSRUR1-mifSRDR1, respec-
tively. Similarly, to createmifS deletion, an upstream 703-bp P1 and a downstream 653-bp
were amplified using primer pairs HKmifSUF-HKmifSDF and HKmifSUR-HKmifSDR, respec-
tively. HKmifSUF andmifSRUF1 primers had stretches of homologous DNA, 5’-GGAATTGT
GAGCGGATAACAATTTCACACAGGAAACAGCT-3’ and 5’-CCAGGCAAATTCTGTTT
TATCAGACCGCTTCTGCGTTCTGAT-3’, respectively, to target recombination of the
amplicons with pMQ30 vector. These primer pairs also had complementing sequences at the 3’
end to facilitate joining to create the P3 fragment, as well as stop codons (CTAGTTAGCTAG)
to prevent any run off translation. The pMQ30 vector has double selection markers URA3 for
yeast and gentamycin for E. coli [96]. Yeast cells were transformed with the P1, P2 and linear-
ized pMQ30 (BamHI digested) using standard protocols [106] and colonies were selected on
sucrose-uracil plates.
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Table 5. Primers used in this study.

Primer Name Sequence

HKmifSUF 5’-GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTTCAGCTCGACTCCGCCGTCG-3’

HKmifSUR 5’-GACGAAGATCACCTGGTCGCCTAGTTAGCTAGCATCGGCGGATCGAAACGGC-3’

HKmifSDF 5’-GCCGTTTCGATCCGCCGATGCTAGCTAACTAGGCGACCAGGTGATCTTCGTC-3’

HKmifSDR 5’-CCAGGCAAATTCTGTTTTATCAGACCGCTTCTGCGTTCTGATACCGCTCTCATGACCGAA-3’

mifRUF1 5’-TTTGAATTCGCCTGGTCGAGCAGCGCA-3’

mifRUR1 5’-TTTGCTAGCTCGCTCATGTCG-3’

mifRDF1 5’-TTTAAGCTTCTCGGCTTCGACGCCCAT

mifRDR1 5’-TTTGCTAGCTCGCGAGGCGTC-3’

mifSRUF1 5’- GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTGCGAGCACCAGCGCGCCACT-3’

mifSRUR1 5’-TCTCTGACGCCTCGCGAGGGCTGCTCTAGTTAGCTAGCATCGGCGGATCGAAACGGCGGC-3’

mifSRDF1 5’-GCCGTTTCGATCCGCCGATGCTAGCTAACTAGAGCAGCCCTCGCGAGGCGTCAGAGA-3’

mifSRDR1 5’-CCAGGCAAATTCTGTTTTATCAGACCGCTTCTGCGTTCTGATTACGTGTTCAGCGCGCTG-3’

HK_mifSF1 5’-GCTAGCAGAAGGAGATATACCATGTCCTTGTCCCGTCCGCTG-3’

HK_mifSR1 5’-TTTTCTAGATCATGTCGTTACGCTCGTGTC-3’

GDT_mifRF1 5’-GCTAGCAGAAGGAGATATACCATGAGCGACCAGGTGATCTTCGTCGAC-3’

GDT_mifRR1 5’-TTTGAGCTCTGCTTCAGGCCGGCTCTTCGC-3’

GDT_PA5530F1 5’-GCTAGCAGAAGGAGATATACCATGGAAAGCGCCAAC-3’

GDT_PA5530R1 5’-TTTGAGCTCTCAATCGGTCGTGATCTTCGAGTGC-3’

GDT_cotransF1 5’-GGTGTTCAGCCTGATCCTGCCGG-3’

GDT_cotransR1 5’-CCGCTTCGCGGATCGTCGCTTC-3’

GDT_cotransF2 5’-GGATCGTCCACGAACTCGGCGGC-3’

GDT_cotransR2 5’-CAGGCGCACCTCGAAGCCGGAC-3’

GDT_p37_SeqF 5’-GACCCGTTTAGAGGCCCCAA-3’

GDT_p37_SeqR 5’-CGTGCTTTACACTTTATGCTTCCGG-3’

mifR_seqF 5’-TGGTGCTGGAGAACCGGC-3’

mifR_seqR 5’-GCAGTTCAGCGCCACGAAC-3’

mifS_SeqF 5’-ATCTGGAACGGCAGTGGAACC-3’

mifS_SeqF2 5’-ATCGACGGCGAGTTGCAGCA-3’

PA5530_seqF 5’-TCGCGGCATGGAAGAGAC-3’

PA5530_seqR 5’-CATGCCGCGACGCAG -3’

DBS_qRT_clpXF 5'- TGCGATTACGATGTGGAGA -3'

DBS_qRT_clpXR 5'- CCCTCGATGAGCTTCAGCA -3'

GDT_qRT_PA5530F 5'-CGCAACGCATCAAGTCGAT-3'

GDT_qRT_PA5530R 5'-AGTCGTACCACTCGACCAGGTT-3'

qRT_rpoNF 5'-AAATGCGAAAAAGCCATTGAG-3'

qRT_rpoNR 5'-CCCTGTGCCTCCAGTAAACC-3'

qRT_icdF 5'-GCGACCGGTGACAAAATCAC-3'

qRT_icdR 5'-GGGTTCTTCGGTACGCTCAA-3'

qRT_idhF 5'-GGCGATGATCCGCAACTC-3'

qRT_idhR 5'-GCATTACCGCCTTGGTGTCT-3'

qRT_sucAF 5'-CTGCAGCCAGCATCACATG-3'

qRT_sucAR 5'-CGAGATTGAGGCCCTTCTTG-3'

qRT_lpd3F 5'-CATGCGGCGGAGATGAAC-3'

qRT_lpd3R 5'-ACTTCCGGCTGGGTGTAGATG-3'

qRT in the primer name indicates that the primer was designed for qPCR. Broken and continuous lines below the primer sequence indicate ribosome

binding and restriction sites respectively.

doi:10.1371/journal.pone.0129629.t005
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The yeast colonies were checked for the presence of P3 constructs formifS andmifSR dele-
tions by amplification using upstream forward (mifSRUF1 and HKmifSUF, respectively) and
downstream reverse (mifSRDR1 and HKmifSDR, respectively) primers. Yeast DNA was iso-
lated from the positive colonies as described earlier [106]. E. coli was transformed with the
recombinant pMQ30 plasmids containing P3s and screened for gentamycin resistance. The
amplified P3s from the recombinant plasmids were sequenced to ensure fidelity. The con-
structs were then moved into PAO1 strain using tri-parental mating and screened for single
and double crossovers using counter selection with sucrose and gentamycin as described earlier
[107,108]. The presence of the gene deletions in all the mutants were confirmed using standard
molecular methods (PCR and DNA sequencing of the locus). These strains are henceforth
referred to as PAOΔmifS (PKM900) and PAOΔmifSR (PKM902).

Construction of complementing plasmids
DNA fragments from P. aeruginosa PAO1 withmifS (~1.77 kb) andmifR (~1.35 kb) were PCR
amplified using primer pairs HK_mifSF1-HK_mifSF1R1, GDT_mifRF1-GDT_mifRR1, respec-
tively. In order to ensure expression of the genes, the primers are designed such that the ORF
will juxtapose against a strong ribosome binding site [70]. The PCR amplified products were
cloned into pCR2.1 TOPO (Invitrogen, Life Technologies, Carlsbard, CA, USA) using manu-
facturers protocol to generate plasmids pGDT001 and pGDT002, respectively. The fidelity of
the PCR amplified product was confirmed by sequencing. The fragments carryingmifS and
mifR were moved into a broad host range pPSV37-Gm plasmid [103] as a NheI-SacI fragments,
downstream of an inducible PlacUV5 promoter to generate plasmids pGDT003 and pGDT004,
respectively. Henceforth, these plasmids are referred to as pMifS and pMifR.

DNA fragments from PAO1 withmifSR (~3.12 kb) and PA5530 (~1.3 kb) were PCR ampli-
fied using primer pairs HK_mifSF1-GDT_mifRR1 and GDT_PA5530F1-GDT_PA5530R1
(Table 5), respectively. The PCR amplified products were cloned directly into pPSV37-Gm
plasmid as NheI-SacI fragments, downstream of an inducible PlacUV5 promoter to generate
plasmids pGDT005 and pGDT006, respectively. Sequence fidelity was confirmed by sequenc-
ing using the primers GDT_p37_SeqF-R,mifR_seqF-R,mifS_seqF-F2 and PA5530_seqF-R
(Table 5). Henceforth, these plasmids are referred to as pMifSR and pPA5530.

These expression plasmids were then introduced into wild-type PAO1, PAOΔmifS, PAOΔ-
mifR, PAOΔmifSR and PAOΔrpoN deletion mutants by electroporation [97] and gentamycin
resistant colonies were selected.

Phenotypic microarray
Comparative phenotypic microarray profiles of wild-type PAO1 with PAOΔmifR and PAOΔ-
mifSmutant were performed at BioLOG Inc. (Hayward, CA, USA). Phenotypic profiling was
carried out in triplicate and data analyses was done using OmniLog PM software.

Growth curves
P. aeruginosa PAO1 and its derivatives were grown overnight at 37°C in LB broth with or with-
out antibiotics. Overnight cultures were washed with sterile 0.85% NaCl (wt/vol) solution to
remove spent and residual media. Cultures were diluted in fresh M9 minimal media to obtain
equal optical densities (OD600) of 0.025. Growth of the cultures was assessed in LB broth and
in M9 minimal media supplemented with glucose (30 mM), sucrose (30 mM) or TCA cycle
intermediates including citrate, α-KG, succinate, fumarate, malate or oxaloacetate (at 30 mM,
unless specified otherwise) as a sole carbon source in 48 and 96 well plates (Falcon). Growth
was monitored by determining absorbance at 600 nm using BioTek Synergy HT (Winooski,
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VT, USA) plate reader for 18–24 h at 37°C. All experiments were performed multiple times in
triplicate.

Pyocyanin and pyoverdine production
Extracellular pyocyanin was quantified by extracting the pigment from culture supernatants
using the chloroform-HCL method as described previously [109]. Briefly, 5 ml culture super-
natants from stationary-phase cultures (*18 h) grown in King’s A medium was extracted with
3 ml chloroform. Pyocyanin was then re-extracted into 1 ml of 0.2 N HCl, resulting in a pink
color, indicating the presence of pyocyanin that was read at 520 nm. The concentration is
expressed as μg of pyocyanin produced per ml of culture (μg/ml), by multiplying the optical
density OD520 by 17.072 [109].

To measure pyoverdine production, cells were grown overnight at 37°C in King’s B medium
[98]. Pyoverdine in the supernatant was read at 405 nm and normalized to the initial cell den-
sity (OD600). Pyoverdine levels were expressed as a ratio of OD405/OD600 [110].

Minimum Inhibitory Concentration
MICs were determined using the E-test as per the manufacturers protocol (BioMerieux, USA)
and/or by standard broth microdilution method [111]. The assays were performed in triplicate,
each with technical triplicate, for each antibiotic in cation-adjusted Mueller Hinton broth.

RNA isolation, cDNA synthesis and qRT-PCR
RNA was isolated from P. aeruginosa wild-type PAO1, PAOΔmifR, PAOΔmifS and PAOΔ-
mifSR strains grown in LB broth followed by 1 h treatment with 30 mM α-KG. Briefly, over-
night cultures grown in LB broth at 37°C were washed with sterile 0.85% saline solution to
remove spent media and were subcultured at 37°C, 200 rpm in LB media. LB broth was used as
a carbon source for initial growth of cultures since PAOΔmifR, PAOΔmifS, PAOΔmifSR and
PAOΔrpoN strains exhibit growth defects in the presence of α-KG alone. When the cells
reached an optical density at 600 nm (OD600) of 0.6–0.7 all the cultures were treated with 30
mM α-KG for 1 h. Post treatment, RNA was stabilized by addition of phenol-ethanol mixture
[112]. Stabilized RNA was then isolated using RNeasy Mini Kit (Qiagen, Inc Venio, Limburg,
Netherlands) as per manufacturer’s protocol. Residual genomic DNA contamination was
removed using RQ1 Rnase-free DNase (Promega, Madison, WI, USA) and RNA was repurified
using Rneasy Mini Kit (Qiagen, Inc Venio, Limburg, Netherlands). Quality of purified RNA
was assessed on a denaturing agarose gel (NorthernMax Gly, Ambion, Life Technologies,
Carlsbard, CA, USA) and quantified at 260 nm (BioTEK, Synergy HT, Winooski, VT, USA).
cDNA was then synthesized by annealing NS5 random primers to total purified RNA and sub-
sequent extension was carried out using SuperScript III reverse transcriptase (Invitrogen, Life
Technologies, Carlsbard, CA, USA).

qRT-PCR to study expression levels of PA5530 under α-KG induction was performed using
Applied Biosystems Step One cycler and detection system with PowerSYBR Green PCR Mas-
terMix with ROX (Applied Biosystems, Life Technologies, Carlsbard, CA, USA). In addition
RNA was isolated from PAO1, PAOΔmifR, PAOΔmifS and PAOΔmifSR strains grown in M9
Minimal media supplemented with citrate (30 mM) without α-KG treatment, as described pre-
viously. qRT-PCR to study expression levels of genes encoding sigma-54 rpoN (PA4462), iso-
citrate dehydrogenase (idh (PA2623) and icd (PA2624)), α-KG dehydrogenase complex (sucA
(PA1585) and lpd3 (PA4829)) were done essentially as described above. The cycling conditions
used were 95°C/2 minutes (holding); 40 cycles of 95°C/15 sec, 60°C/1 min (cycling); 95°C/15
sec, 60°C/1 min, 95°C/15 sec (0.6°C ramp) (melt curve). Expression was normalized to clpX
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(PA1802), whose expression was determined to remain constant between the samples and con-
ditions tested [107].

Bioinformatic Analyses
Sequence analyses and domain organization studies were performed using the Simple Modular
Architecture Research Tool (SMART) [51] and InterPro domain prediction database [52].
mifS (PmifS) and PA5530 (PPA5530) promoter analyses and motif search was done using the
ensemble learning method SCOPE and GLAM2 (Gapped Local Alignment of Motifs)
[113,114]. Multiple sequence alignment was generated using ClustalW2 (http://www.ebi.ac.uk/
Tools/msa/clustalw2/) and www.pseudomonas.com [57].

Statistical Analyses
All data were analyzed for statistical significance using the Student’s t-test on GraphPad or
Analysis of Variance (ANOVA) with post-hoc testing when appropriate, on IBM SPSS Statis-
tics 22.0 statistical analysis software. Differences were considered to be significant at p-
values< 0.05.
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