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ABSTRACT Human rotavirus (HRV) infection is a major cause of gastroenteritis in
children worldwide. Broad-spectrum antibiotic-induced intestinal microbial imbalance
and the ensuing immune-metabolic dysregulation contribute to the persistence of
HRV diarrhea. Escherichia coli Nissle 1917 (EcN), a Gram-negative probiotic, was
shown to be a potent immunostimulant and alleviated HRV-induced diarrhea in
monocolonized gnotobiotic (Gn) piglets. Our goal was to determine how EcN modu-
lates immune responses in ciprofloxacin (Cipro)-treated Gn piglets colonized with a
defined commensal microbiota (DM) and challenged with virulent HRV (VirHRV).
Cipro given in therapeutic doses for a short term reduced serum and intestinal total
and HRV-specific antibody titers, while EcN treatment alleviated this effect. Similarly,
EcN treatment increased the numbers of total immunoglobulin-secreting cells, HRV-
specific antibody-secreting cells, activated antibody-forming cells, resting/memory
antibody-forming B cells, and naive antibody-forming B cells in systemic and/or in-
testinal tissues. Decreased levels of proinflammatory but increased levels of immu-
noregulatory cytokines and increased frequencies of Toll-like receptor-expressing
cells were evident in the EcN-treated VirHRV-challenged group. Moreover, EcN treat-
ment increased the frequencies of T helper and T cytotoxic cells in systemic and/or
intestinal tissues pre-VirHRV challenge and the frequencies of T helper cells, T cyto-
toxic cells, effector T cells, and T regulatory cells in systemic and/or intestinal tissues
postchallenge. Moreover, EcN treatment increased the frequencies of systemic and
mucosal conventional and plasmacytoid dendritic cells, respectively, and the fre-
quencies of systemic natural killer cells. Our findings demonstrated that Cipro use
altered immune responses of DM-colonized neonatal Gn pigs, while EcN supplemen-
tation rescued these immune parameters partially or completely.

IMPORTANCE Rotavirus (RV) is a primary cause of malabsorptive diarrhea in children
and is associated with significant morbidity and mortality, especially in developing
countries. The use of antibiotics exacerbates intestinal microbial imbalance and
results in the persistence of RV-induced diarrhea. Probiotics are now being used to
treat enteric infections and ulcerative colitis. We showed previously that probiotics
partially protected gnotobiotic (Gn) piglets against human RV (HRV) infection and
decreased the severity of diarrhea by modulating immune responses. However, the
interactions between antibiotic and probiotic treatments and HRV infection in the
context of an established gut microbiota are poorly understood. In this study, we
developed a Gn pig model to study antibiotic-probiotic-HRV interactions in the con-
text of a defined commensal microbiota (DM) that mimics aspects of the infant gut
microbiota. Our results provide valuable information that will contribute to the
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treatment of antibiotic- and/or HRV-induced diarrhea and may be applicable to other
enteric infections in children.

KEYWORDS probiotics, human rotavirus infection, innate immunity, adaptive
immunity, ciprofloxacin, gnotobiotic pigs, commensal microbiota

Human rotavirus (HRV) is a leading cause of malabsorptive diarrhea in children and
causes significant morbidity and mortality, especially in developing countries

(1–3). The frequent use of antibiotics exacerbates intestinal microbial imbalance and
often correlates with the persistence of HRV-induced diarrhea (4). Therefore, alternative
strategies are needed to ameliorate infectious viral diarrhea.

Probiotics have been shown to enhance immune responses to oral vaccines (5, 6)
and have been used to treat enteric infections (7) and ulcerative colitis (8) in children.
Furthermore, they inhibit Helicobacter pylori growth (9), prevent cancer (10–12),
decrease gut inflammation (13), and prevent allergies (14, 15). The Gram-negative pro-
biotic Escherichia coli Nissle 1917 (EcN) has been widely used in the treatment of ulcer-
ative colitis in humans (16). EcN can become established in the gut microbiome (17).
We have shown previously that EcN partially protected gnotobiotic (Gn) piglets against
HRV infection and decreased the severity of diarrhea by modulating innate and adapt-
ive immunity and protecting the intestinal epithelium by binding HRV particles via
histo-blood group antigen-like bacterial glycans (18–20).

Gn pigs are immunocompetent at birth but immunologically immature (21). HRV-
infected Gn pigs exhibit diarrhea, transient viremia, and intestinal lesions mimicking
natural human rotavirus infection in children (22, 23). Gn pigs are caesarian derived
and housed in sterile isolators to ensure their germfree status, permitting studies of
gut colonization with single bacteria or a defined or fecal microbiota. Thus, Gn pigs are
a unique model to study host metabolism, neonatal immune responses, enteric viral
infections, or oral vaccines without confounding the microbiota (24, 25). Although Gn
pig models have been used to study the effects of vaccines and probiotic treatments
in HRV-challenged pigs, studies examining the interactions between these treatments
and HRV infection in the context of the microbiota are limited. We developed a simpli-
fied model that mimics the infant gut microbiota by transplanting Gn pigs with a
defined commensal microbiota (DM) (20, 26). The DM, with a composition similar to that
of the modified Schaedler flora used in mice, consists of seven bacterial species of swine
origin (Bifidobacterium adolescentis, Bifidobacterium longum, Bacteroides thetaiotaomicron,
Enterococcus faecalis, Lactobacillus brevis, Streptococcus bovis, and Clostridium clostridio-
forme) (27).

These bacterial species are predominant in neonates (28–30). Hence, our DM-Gn pig
model mimics major infant gut microbiota for investigating natural human HRV infection
and the interactions between antibiotics, probiotics, and intestinal commensals (20, 26).
Our previous study focused on the use of DM-transplanted Gn pigs treated concurrently
with ciprofloxacin (Cipro) and EcN and infected with HRV. EcN treatment affected the in-
testinal epithelium by increasing the gene expression of enteroendocrine and enterocyte
cells, maintaining the absorptive function, and thus ameliorating HRV diarrhea severity
aggravated by Cipro treatment (P# 0.05) (20). Moreover, EcN treatment enhanced the
bacterial diversity of all seven DM species and alleviated the adverse impacts of Cipro
treatment during acute HRV diarrhea (26). In addition to the protection of the gut epithe-
lium and microbiota modulation, attenuation of HRV diarrhea severity may be associated
with EcN-mediated intestinal and systemic immune responses.

The purpose of this study was to investigate the effects of EcN with Cipro on the
immune responses to HRV in treated DM-transplanted Gn pigs. Our findings demon-
strate that EcN treatment enhanced adaptive and innate immune responses. Our
results emphasize that the DM-Gn pig is a suitable and robust model to study human
enteric viral infections and the effects of various therapies such as probiotics and
antibiotics.
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RESULTS
EcN treatment increased the numbers of HRV-specific IgA antibody-secreting

cells in systemic and intestinal tissues and increased the HRV-specific IgA
antibody titers in serum, small intestinal contents, and large intestinal contents in
Cipro-treated DM pigs after VirHRV challenge. EcN with or without Cipro treatment
following virulent HRV (VirHRV) challenge was investigated. EcN treatment concurrent
with Cipro (EcN1Cipro) increased the mean numbers of HRV-specific immunoglobulin
A (IgA) antibody-secreting cells (ASCs) in blood and ileal tissues (Fig. 1B). Diarrheal
scores and HRV fecal shedding were recorded daily after VirHRV challenge for up to 7
days, and it was reported previously that EcN treatment ameliorated HRV diarrheal se-
verity (see Fig. S1 in the supplemental material) (20). HRV-specific IgA ASCs in the
blood, spleen, duodenum, and ileum were negatively correlated with diarrheal scores
(R = 20.4 [P=0.05], R = 20.4 [P= 0.05], R = 20.5 [P=0.02], and R = 20.6 [P=0.008],
respectively).

IgA ASCs in the duodenum were negatively correlated with VirHRV shedding (R =
20.5 [P=0.02]). EcN treatment increased the HRV-specific IgA antibody titers in serum,

FIG 1 Escherichia coli Nissle 1917 (EcN) treatment enhanced HRV-specific IgA antibody-secreting cells (ASCs)
and HRV-specific IgA antibody titers in defined commensal microbiota (DM)-transplanted pigs with or without
ciprofloxacin (Cipro) after virulent human rotavirus (VirHRV) challenge. (A) Schematic diagram of the
experimental design showing the time points for DM transplantation, EcN and Cipro treatment (Tx), VirHRV
challenge, and euthanasia. (B) Mean numbers of HRV-specific IgA ASCs in systemic and intestinal tissues. (C)
Geometric mean titers (GMT) of HRV-specific IgA antibodies in serum, small intestinal contents (SIC), and large
intestinal contents (LIC). Data are shown as means 6 SEM for the EcN/Cipro versus the Cipro groups.
Significant differences are indicated (*, P, 0.05; **, P, 0.01; ***, P, 0.001), as calculated from a nonparametric
Kruskal-Wallis rank sum test. Gnotobiotic (Gn) neonatal piglets were derived using hysterectomy and
transplanted with DM at 7 days of age, followed by challenge with VirHRV 14days later, and pigs were
euthanized at 3 weeks postchallenge (postchallenge day 21 [PCD21]). PBTD, post-bacterial transplantation day.
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small intestinal contents (SIC), and large intestinal contents (LIC) (Fig. 1C). Moreover,
HRV-specific IgA titers in serum, SIC, and LIC were negatively correlated with diarrheal
scores (R =20.4 [P=0.05], R = 20.7 [P=0.0007], and R =20.5 [P= 0.03], respectively).

Similar trends were observed for HRV-specific IgG and IgM ASC numbers in systemic
and intestinal tissues and HRV-specific IgG and IgM antibody titers in serum, SIC, and
LIC (Fig. S2). HRV-specific IgM ASC numbers were below the detection limit in blood
tissues. HRV-specific IgG titers in LIC were negatively correlated with the diarrheal
score (R = 20.6 [P=0.008]). A similar trend was also observed in total Ig-secreting cells
(IgSCs) and total Ig isotype concentrations (Fig. S3). Total IgM IgSCs in the spleen and
ileum were negatively correlated with the diarrhea score (R = 20.6 [P=0.004] and R =
20.6 [P=0.004], respectively). IgA IgSCs in blood were negatively correlated with
VirHRV shedding (R =20.5 [P=0.02]).

EcN+Cipro treatment increased the frequencies of activated antibody-forming
B cells, Ig-secreting B cells, and resting/memory antibody-forming B cells in
systemic and intestinal tissues. Coincident with increased HRV-specific ASCs and
antibody titers and reduced diarrheal scores, EcN-treated pigs had increased frequen-
cies of CD79b1 CD21 CD212 cells in systemic and ileal tissues (Fig. 2A; Fig. S4), while
no differences were observed in duodenal tissues (data not shown). The frequencies of
activated antibody-forming B cells in the blood and ileum were negatively correlated
with diarrheal scores (R = 20.4 [P=0.05] and R = 20.5 [P=0.02], respectively).
Similarly, EcN treatment increased the frequencies of Ig-secreting cells in systemic and
duodenal tissues (Fig. 2B; Fig. S4), while no differences were observed in ileal tissues
(data not shown). EcN treatment increased the frequencies of resting/memory anti-
body-forming B cells in intestinal tissues (Fig. 2C; Fig. S4), but no differences were
observed in systemic tissues (data not shown). Resting/memory antibody-forming B

FIG 2 Escherichia coli Nissle 1917 (EcN) treatment alters the frequencies of antibody- and Ig-forming
B cells in systemic and intestinal tissues in defined commensal microbiota (DM)-transplanted pigs
with or without ciprofloxacin (Cipro) after virulent human rotavirus (VirHRV) challenge. (A) Mean
frequencies of activated antibody-forming B cells (CD79b1 CD21 CD212) in systemic and ileal tissues.
(B) Mean frequencies of Ig-secreting B cells (CD79b1 CD22 CD211) in systemic and duodenal tissues.
(C) Mean frequencies of resting/memory antibody-forming B cells (CD79b1 CD22 CD212) in intestinal
tissues. (D) Mean frequencies of naive antibody-forming B cells (CD79b1 CD21 CD211) in duodenal
tissues. Data are shown as means 6 SEM. Statistical significance was determined by the nonparametric
Kruskal-Wallis test for the EcN/Cipro versus the Cipro groups. Gn neonatal piglets were derived using
hysterectomy and transplanted with DM at 7 days of age, followed by challenge with VirHRV 14days
later, and pigs were euthanized at 3 weeks postchallenge (PCD21).
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cells in the ileum were negatively correlated with diarrheal scores (R = 20.4 [P=0.04]).
Finally, EcN treatment marginally increased the frequencies of naive antibody-forming
B cells in duodenal tissues only (Fig. 2D; Fig. S4), but no differences were observed in
other tissues (data not shown).

EcN treatment decreased T helper cell frequencies prechallenge but increased
them postchallenge (blood and duodenum), and T cytotoxic cell frequencies were
mainly increased (except in blood) pre-/post-VirHRV challenge. EcN treatment
decreased the frequencies of T helper cells (CD31 CD41) in the ileum (Fig. 3A and C).
The frequencies of T cytotoxic cells (CD31 CD81) in the spleen and intestinal tissues
were increased pre-/post-VirHRV challenge (Fig. 3B and D). The frequencies of T helper
cells in blood and spleen were negatively correlated with VirHRV shedding (R = 20.5
[P=0.003] and R = 20.5 [P=0.03], respectively) and diarrheal scores (R = 20.7
[P=0.006]). A similar trend was observed for T cytotoxic cells in blood, which were neg-
atively correlated with VirHRV shedding (R =20.5 [P=0.04]).

EcN+Cipro treatment increased HRV-specific IFN-c-producing CD4 and CD8 T
cell frequencies in spleen and ileum post-VirHRV challenge. EcN treatment
increased the frequency of HRV-specific CD31 CD41 interferon gamma (IFN-g)-produc-
ing T cells post-VirHRV challenge in splenic and ileal tissues (Fig. 3E). Furthermore, EcN
treatment increased the frequency of HRV-specific CD31 CD81 IFN-g-producing T cells
in splenic and ileal tissues (Fig. 3F). We observed that CD31 CD81 IFN-g T cells in the
spleen and ileum were negatively correlated with diarrheal scores (R = 20.5 [P=0.03]
and R = 20.4 [P=0.05], respectively).

EcN with or without Cipro treatment reduced T regulatory cell frequencies
after VirHRV challenge. EcN with or without Cipro treatment reduced the frequencies
of CD41 CD251 FOXP31 T regulatory cells (Tregs) and CD81 CD251 FOXP31 Tregs
post-VirHRV challenge in the blood, spleen, and ileal tissues (except CD4) and in the
duodenal tissues (except CD8), respectively (Fig. 3G and H). Moreover, CD41 Tregs in
ileal tissues were negatively correlated with diarrheal scores (R = 20.5 [P=0.05]).
Similarly, CD41 Tregs in the ileum, blood, and spleen were negatively correlated with
VirHRV shedding (R = 20.5 [P=0.05], R = 20.7 [P=0.02], and R = 20.6 [P=0.02],
respectively).

EcN with or without Cipro treatment reduced proinflammatory and increased
immunoregulatory cytokine levels in serum. Proinflammatory and immunoregula-
tory cytokine responses associated with Cipro, EcN, and VirHRV challenge were
assessed by measuring the levels of serum cytokines at multiple time points, prechal-
lenge (postchallenge day 0 [PCD0]) and postchallenge (PCD2 and PCD7) (Fig. 4).
Coinciding with increased diarrheal scores, Cipro treatment and HRV challenge
increased the proinflammatory (interleukin-18 [IL-18] and tumor necrosis factor alpha
[TNF-a]) cytokine responses, while EcN treatment reduced the proinflammatory (IL-8,
IL-12, IFN-g, and TNF-a) cytokines at PCD2 (Fig. 4). EcN with or without Cipro treatment
reduced IL-17 levels at PCD2 as well as at PCD21 (data not shown). Other cytokines (IL-
4, IL-6, and IFN-a) were not altered at the tested time points (data not shown). These
data suggest that EcN reduced local (gut) inflammation caused by HRV infection with
or without Cipro treatment. In contrast, EcN with or without Cipro treatment increased
the immunoregulatory cytokines IL-10 and transforming growth factor b (TGF-b) at
PCD2 (Fig. 4). Moreover, the IL-10 cytokine level was increased at PCD0 (data not
shown).

EcN+Cipro treatment decreased the frequencies of TLR4 MNCs and increased
the frequencies of TLR3 and TLR9 MNCs. The effects of EcN with and without Cipro
treatment on the expression of Toll-like receptor 4 (TLR4), TLR3, and TLR9 were ana-
lyzed in systemic and intestinal mononuclear cells (MNCs) (Fig. 5). Coinciding with
decreased diarrheal severity, the frequencies of TLR4 (associated with proinflammatory
signaling)-expressing MNCs were decreased in systemic and intestinal tissues of EcN-
treated pigs (Fig. 5A). The frequencies of TLR3 (associated with anti-RV protection)-
and TLR9 (associated with anti-inflammatory signaling)-expressing MNCs were
increased in systemic and intestinal tissues of the EcN-treated groups, respectively
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FIG 3 Escherichia coli Nissle 1917 (EcN) treatment alters the frequencies of T helper cells, T cytotoxic cells, HRV-specific IFN-g-producing T
cells, and T regulatory cells in systemic and intestinal tissues from defined commensal microbiota (DM)-transplanted pigs with or without
ciprofloxacin (Cipro) before/after virulent human rotavirus (VirHRV) challenge. (A to D) Mean frequencies of T helper cells (CD31 CD41) (A)
and T cytotoxic cells (CD31 CD81) (B) prechallenge and T helper cells (C) and T cytotoxic cells (D) postchallenge. (E and F) Mean frequencies
of HRV-specific CD31 CD41 IFN-g-producing T cells (E) and HRV-specific CD31 CD81 IFN-g-producing T cells (F) postchallenge. (G and H)
Mean frequencies of CD41 CD251 FOXP31 T regulatory cells (G) and CD81 CD251 FOXP31 T regulatory cells (H) postchallenge. Data are
shown as means 6 SEM for the EcN/Cipro versus the Cipro groups, and significant differences are indicated (*, P, 0.05; ***, P, 0.001), as
calculated by a nonparametric Kruskal-Wallis rank sum test. Gn neonatal piglets were derived using hysterectomy and transplanted with DM
at 7 days of age, followed by challenge with VirHRV 14 days later, and pigs were euthanized at 3 weeks postchallenge (PCD21).
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(Fig. 5B and C). TLR3 and TLR9 expression in ileal tissues was negatively correlated with
diarrheal scores (R =20.5 [P=0.04] and R =20.5 [P=0.03], respectively).

EcN+Cipro treatment increased the frequencies of cDCs, pDCs, activated cDCs
and pDCs, and CD103+ cDCs/pDCs in systemic and/or intestinal tissues. EcN treat-
ment with Cipro increased the frequencies of conventional dendritic cells (cDCs) in sys-
temic in blood and ileal tissues (Fig. 6A). The frequencies of cDCs in blood were nega-
tively correlated with diarrheal scores (R = 20.5 [P=0.02]). EcN treatment increased
the frequencies of plasmacytoid dendritic cells (pDCs) in intestinal tissues (Fig. 6B).
Furthermore, EcN treatment with Cipro increased the frequencies of activated cDCs in
systemic and intestinal tissues (Fig. 6C) and the frequencies of activated pDCs in blood
and intestinal tissues (Fig. 6D). EcN treatment with Cipro increased the frequencies of
CD1031 cDCs in all tissues (Fig. 6E) and CD1031 pDCs in splenic and ileal tissues
(Fig. 6F). Moreover, the numbers of CD1031 cDCs and pDCs in spleen and duodenal tis-
sues were negatively correlated with diarrheal scores (R = 20.5 [P=0.05] and R = 20.5
[P=0.02], respectively).

EcN treatment increased the frequency of NK cells in systemic tissues and NK
cell function in blood. EcN with or without Cipro treatment increased the frequency
of natural killer (NK) cells in systemic tissues (Fig. 7A) and marginally enhanced NK cell
cytotoxicity of blood MNCs (Fig. 7B). These data suggest that EcN treatment enhanced
innate immune responses associated with Cipro and VirHRV in the Gn pig model.

DISCUSSION

The human gastrointestinal microbiota and its symbiotic relationship with benefi-
cial microbes play a vital role in immune regulation, including nutrition, metabolism,
and pathogen resistance (31–36). However, antibiotics could cause microbial imbal-
ance related to the composition or population of the gastrointestinal microbiota that
further compromises mucosal immunity. Microbial imbalance has been associated with
health-related problems, including metabolic, immunological, and inflammatory bowel
diseases; respiratory diseases such as asthma and allergies; developmental disorders;
and increased vulnerability to infectious diseases (37–44). Ciprofloxacin is a folate an-
tagonist broad-spectrum antibiotic that we used for this study. Paim et al. reported
that Cipro treatment increased the severity of VirHRV diarrhea in this DM-Gn pig model
(20). Moreover, in healthy humans and our DM-Gn pig model, Cipro treatment
decreased the taxonomic richness, diversity, and consistency of gut microbiota param-
eters (26, 45).

Using a DM-transplanted Gn pig model and following treatment with Cipro concur-
rently with EcN followed by challenge with VirHRV, EcN enhanced multiple aspects of

FIG 4 Escherichia coli Nissle 1917 (EcN) treatment modulated proinflammatory and immunoregulatory
cytokines in serum from defined commensal microbiota (DM)-transplanted pigs with or without
ciprofloxacin (Cipro) after virulent human rotavirus (VirHRV) challenge. Mean concentrations of Th1 (IL-
12 and IFN-g), Th2 (IL-8), Th17 (IL-17), proinflammatory (TNF-a), and T regulatory (IL-10 and TGF-b)
cytokines in sera of pigs from different groups are shown. Data are shown as means 6 SEM, and
significant differences are indicated (*, P, 0.05; ***, P, 0.001), as obtained from a nonparametric
Kruskal-Wallis rank sum test, for the EcN/Cipro- versus the Cipro-treated groups. Gn neonatal piglets
were derived using hysterectomy and transplanted with DM at 7 days of age, followed by challenge
with VirHRV 14days later, and pigs were euthanized at 3 weeks postchallenge (PCD21).
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the immune response. Our study demonstrated that EcN treatment enhanced total
IgA, IgG, and IgM IgSCs as well as HRV-specific IgA, IgG, and IgM ASCs in systemic and
intestinal sites, which coincided with reduced diarrheal scores (20). These results indi-
cate that EcN treatment enhanced HRV antibody-producing cell frequencies and anti-
body titers in Cipro-treated, VirHRV-challenged, DM-transplanted Gn pigs. This is in
agreement with previous studies showing that oral administration of two strains of
Lactobacillus probiotics increased the number of IgA-positive (IgA1) B cells in the lam-
ina propria (46, 47). IgA antibody is a major functional component of the humoral
adaptive immune system, especially at mucosal sites (48). The levels of HRV-specific
IgA antibodies in pigs strongly correlate with protection against HRV infection (23, 49,
50). Our results confirm that an EcN probiotic enhances the IgA antibody responses.
EcN treatment enhanced total and HRV-specific IgA, IgG, and IgM antibody titers in se-
rum, SIC, and LIC. It is possible that the observed effects of EcN treatment on systemic
and intestinal IgA responses could be mediated by direct modulation of host immune
responses, suggesting that EcN is more stable and persistent in the gut of the host’s
gastrointestinal system. Additionally, total and HRV-specific IgM and IgG ASCs and

FIG 5 Escherichia coli Nissle 1917 (EcN) treatment modulated the frequencies of Toll-like receptor
(TLR)-expressing mononuclear cells (MNCs) in defined commensal microbiota (DM)-transplanted pigs
with or without ciprofloxacin (Cipro) after virulent human rotavirus (VirHRV) challenge. Mean
frequencies of MNCs expressing TLR4 (A), TLR3 (B), and TLR9 (C) are shown. MNCs were isolated from
systemic and intestinal tissues of piglets. Data are shown as means 6 SEM. Statistical significance was
determined by the nonparametric Kruskal-Wallis test for the EcN/Cipro versus the Cipro groups. Gn
neonatal piglets were derived using hysterectomy and transplanted with DM at 7 days of age,
followed by challenge with VirHRV 14 days later, and pigs were euthanized at 3 weeks postchallenge
(PCD21).
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antibody titers were enhanced, further confirming the enhancement of immune
responses against HRV infection (see Table S1 in the supplemental material).

EcN treatment increased the frequencies of activated antibody-forming B cells in
systemic and ileal tissues, Ig-secreting B cells in systemic tissues and duodenum cells,
resting/memory antibody-forming B cells in intestinal cells, and naive antibody-form-
ing B cells in duodenal cells only. These results are similar to those of our previous
studies where EcN protected against HRV infection (6, 51). The frequencies of activated
antibody-forming B cells and IgSCs were increased in systemic and ileal cells of EcN-
treated pigs, suggesting that EcN potentiated the effect of intestinal B cell develop-
ment and thus also increased systemic responses. These findings suggest that EcN
treatment enhanced B cell immune responses in systemic tissues, with some effects on
intestinal tissues. These responses coincided with reduced diarrhea (20) and increased
HRV-specific IgA antibody responses in serum, SIC, and LIC.

Innate immune responses are critical as the first line of defense, limiting RV

FIG 6 Escherichia coli Nissle 1917 (EcN) treatment alters the frequencies of conventional dendritic
cells (cDCs), plasmacytoid dendritic cells (pDCs), activated cDCs and pDCs, CD1031 cDCs, and CD1031

pDCs in systemic and intestinal tissues in defined commensal microbiota (DM)-transplanted pigs with
or without ciprofloxacin (Cipro) after virulent human rotavirus (VirHRV) challenge. Mean frequencies
of cDCs (A), pDCs (B), activated cDCs (C), activated pDCs (D), CD1031 cDCs (E), and CD1031 pDCs (F)
are shown. Data are shown as means 6 SEM for the EcN/Cipro versus the Cipro groups. Significant
differences are indicated (***, P, 0.001). Statistical significance was determined by the nonparametric
Kruskal-Wallis test. Gn neonatal piglets were derived using hysterectomy and transplanted with DM
at 7 days of age, followed by challenge with VirHRV 14 days later, and pigs were euthanized at 3
weeks postchallenge (PCD21). MNCs, mononuclear cells.
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replication and disease severity in the host (18, 52) as well as shaping humoral immune
responses. EcN treatment enhanced innate immune responses. For example, NK cell
frequencies and cytotoxicity were marginally increased in systemic sites of mice in the
EcN-treated groups. This suggests that EcN treatment promoted innate immune
responses, improving protection against HRV infection in vivo. This suggests that EcN
administration can inhibit the proapoptotic effects of HRV infection by (i) inhibiting
proinflammatory TLR-mediated proapoptotic signaling or activating antiapoptotic
pathways (18) and (ii) supporting adequate immune function and programmed cell
death (53, 54).

Dendritic cells (DCs) play a key role in the interaction with probiotic bacteria and
initiation of the innate immune responses (55, 56), and pDCs were shown to contribute
to RV clearance in a murine model (57). Moreover, DC major histocompatibility com-
plex class II (MHC-II) expression is a marker of maturation (58). In our study, EcN treat-
ment with Cipro increased the frequencies of CD1031 cDCs in all tissues, CD1031 pDCs
in the spleen, cDCs in the ileum and systemic tissues, pDCs in intestinal tissues, and
activated cDCs and activated pDCs in systemic and/or intestinal tissues. These results
suggest that EcN was stable in the gut and thus enhanced the maturation of systemic
and intestinal activated DCs, promoted pDC and cDC development, and increased IgA
antibody responses in Cipro- and VirHRV-treated pigs (59, 60). Enhancing the induction
of pDCs with EcN may be critical in protection against enteric pathogens (18).
Moreover, the enhanced activation of B cells coincided with increased frequencies of
cDCs and pDCs (51). Also, lamina propria DCs expressing CD103 that were enhanced in
our study are known to switch naive CD41 T cells into FOXP31 T regulatory cells (61).
In this study, we observed reduced CD1031 cDCs in systemic and intestinal tissues in
Cipro- and VirHRV-treated pigs. The loss of CD103 (aEb7) integrin by intestinal DCs dur-
ing experimentally induced colitis was investigated in mice (62), suggesting that Cipro/
VirHRV-associated MNC necrosis, possibly showing intestinal inflammation in our DM-
Gn pig model, may have resulted in reduced CD1031 DC frequencies. Interestingly,
EcN treatment increased the expression of CD1031 DCs in systemic and intestinal tis-
sues, probably by reducing the number of necrotic MNCs. Moreover, CD1031 DCs are
implicated in maintaining tight junction proteins, protecting the integrity of the

FIG 7 Escherichia coli Nissle 1917 (EcN) enhanced the frequency and function of natural killer (NK)
cells in systemic sites in defined commensal microbiota (DM)-transplanted pigs with or without
ciprofloxacin (Cipro) after virulent human rotavirus (VirHRV) challenge. The mean frequencies of NK
cells (A) and NK cell function (B) in blood mononuclear cells (MNCs) are shown. Blood MNCs and
carboxyfluorescein diacetate succinimidyl ester (CFSE)-stained K562 tumor cells were used as effector
and target cells, respectively, and cocultured at set ratios to assess NK cytotoxic function. Data are
shown as means 6 SEM. Statistical significance was determined by the nonparametric Kruskal-Wallis
test for the EcN/Cipro versus the Cipro groups. The effector-target cell cocultures were stained with
7-aminoactinomycin D (7AAD) after 12 h of incubation at 37°C, and the frequencies of CFSE-7AAD
double-positive cells (lysed K562 target cells) were assessed by flow cytometry. Gn neonatal piglets
were derived using hysterectomy and transplanted with DM at 7 days of age, followed by challenge
with VirHRV 14 days later, and pigs were euthanized at 3 weeks postchallenge (PCD21).
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epithelial barrier, and preventing inflammatory reactions to intestinal pathogens, and
they affect cellular intraepithelial motility and morphogenesis (63, 64). Additionally,
CD103 integrin is essential for proper communication between the pathogen, DCs, and
T/B lymphocytes (65). Therefore, the Cipro/VirHRV-induced decreased frequencies of
CD103-expressing DCs that we observed could have resulted in atypical innate
immune signaling against Cipro/VirHRV and worsening of the infection. On the other
hand, EcN treatment enhanced HRV-specific IgA ASCs and antibody titers, improved
the epithelial barrier, and reduced diarrhea severity (20).

Previous studies have demonstrated that TLR2, -4, -7, and -8 expression in periph-
eral blood MNCs of pediatric patients is upregulated during HRV infection (66). TLR4
expressed by epithelial and immune cells plays an important role in the mucosal host
defense against invading pathogens. Moreover, probiotic bacteria downregulated
TLR4 expression associated with proinflammatory and proapoptotic signaling (54,
67–70). Consistent with previous observations (18, 51), we demonstrated that HRV-
induced TLR4-expressing MNC frequencies were reduced in systemic and intestinal
MNCs by EcN treatment. TLR3 is involved in the initial recognition of RV genomic dou-
ble-stranded RNA (dsRNA). In this study, EcN treatment increased the TLR31 MNC fre-
quencies in systemic and intestinal MNCs, suggesting that EcN probiotic colonization
may have supported immune activation of virus-induced TLR31 MNCs or enhanced
their persistence. TLR3-mediated immune responses are associated with limiting RV rep-
lication (51, 71). TLR91 MNC frequencies were increased in the systemic and intestinal
MNCs of EcN-treated pigs, coinciding with increased protection against diarrhea (20).
This suggests a potent beneficial effect of EcN leading to the upregulation of TLR9
expression in systemic and intestinal MNCs. Thus, increased TLR9 expression in EcN-
treated pigs could contribute to the enhanced immunoglobulin responses observed (6,
72, 73). Moreover, these findings are consistent with previous findings that anti-inflam-
matory signaling via TLR9 resulted in decreased ulcerative colitis and Helicobacter pylori-
induced gastritis in mice (74, 75). These results indicate that enhanced TLR3/TLR9 expres-
sion facilitated more efficient recognition of RV and RV dsRNA, improving protection
against HRV diarrhea. Moreover, they suggest that EcN treatment, by upregulating TLR9
expression, could result in enhanced antibodies against HRV and the increased proin-
flammatory responses observed.

EcN treatment enhanced T cell immune responses by increasing the frequencies of
CD31 CD41 T cells in the blood and duodenum (postchallenge), CD31 CD81 T cells in
the spleen and intestinal tissues (pre/postchallenge), and splenic and ileal CD31 CD41

and CD31 CD81 IFN-g-producing T cells (postchallenge). The latter coincided with
decreased splenic CD41 Tregs (postchallenge) and splenic and ileal CD31 CD81 Tregs
(postchallenge). This suggests that EcN modulates the immunoregulatory environment
with or without Cipro treatment, serves as a potent inducer of intestinal immunity,
restores gut homeostasis, and thus moderates HRV infection and Cipro treatment
effects post-VirHRV challenge. The frequencies of T helper or T cytotoxic cells in blood
were correlated with reduced virus shedding (20). IFN-g-producing T cells have previ-
ously been correlated with protection against HRV infection in pigs (76, 77).

The higher serum levels of the immunoregulatory cytokines TGF-b and IL-10 might
have contributed to the reduced serum levels of the proinflammatory cytokines IL-8,
TNF-a, IL-17, and IL-12 associated with EcN treatment. Induction of an anti-inflamma-
tory microenvironment may have reduced HRV-induced disease (20) or the subsequent
aggravated host immune responses (78–80). We observed higher levels of the Th1
cytokines IFN-g and IL-12 in Cipro-treated HRV-challenged pigs, while reduced levels
were detected in pigs treated with EcN with or without Cipro, suggesting a Th1-
induced microenvironment during HRV infection that coincided with higher diarrheal
severity scores (20). We observed higher anti-inflammatory IL-10 levels in EcN-treated
pigs, which may also contribute to the higher HRV IgA antibody responses (81)
observed in these pigs, possibly through TLR9 signaling (82). IL-17 is a proinflammatory
cytokine and plays a critical role in host defense and inflammatory and autoimmune
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diseases (83). We observed higher serum IL-17 levels in the groups treated with VirHRV
with or without Cipro than in the EcN-treated groups. Similar findings were observed
previously for influenza virus and respiratory syncytial virus infections (84, 85).
Consistent with our previous observations using probiotics (5) and in EcN-treated
pigs, lower IL-17 levels were observed, thus indicating an ameliorated HRV inflam-
matory response. This suggests that EcN induced an anti-inflammatory environ-
ment with or without Cipro treatment post-VirHRV challenge, thereby inhibiting
proinflammatory cytokine responses.

In summary, our results suggest that Cipro treatment may have perturbed gas-
trointestinal homeostasis, which resulted in altered immune responses, whereas
the probiotic EcN promoted strong but balanced immunoregulatory/immunostimu-
latory responses during VirHRV infection of DM-colonized Gn piglets. Our results
suggest that low-cost dietary supplementation with EcN can protect against antibi-
otic-associated diarrhea and potentially other enteric infections. Further studies are
necessary to investigate the EcN efficacy under conditions where children are
exposed to antibiotics and malnutrition and in Gn pigs colonized with a complete
human infant microbiota.

MATERIALS ANDMETHODS
Virus. The virulent HRV (VirHRV) Wa strain passaged 25 to 26 times in Gn piglets was used to orally

inoculate piglets at a dose of 2� 106 fluorescent focus units (FFU) as described previously (86, 87).
Animal experiments. This study was approved by The Ohio State University Institutional Animal

Care and Use Committee. Piglets were derived from near-term sows (Landrace � Yorkshire � Duroc
cross-bred) by hysterectomy and maintained in sterile isolators as described previously (88). All piglets
were colonized orally at 7 days of age with defined commensal microbiota (DM) with 105 CFU of each
bacterium/piglet (26). DM were kindly provided by David Francis from South Dakota State University.
The experimental design was adapted from that previously described (20), wherein piglets were ran-
domly assigned to 4 groups (Fig. 1A): DM1VirHRV (n=7), DM1Cipro1VirHRV (n= 6), DM1EcN1VirHRV
(n= 3), and DM1Cipro1EcN1VirHRV (n= 4). The piglets were orally treated or untreated with Cipro
(60mg/day) and/or EcN (105 CFU/piglet daily) at post-bacterial transplantation day 8 (PBTD8) to PBTD13.
The EcN inoculum was prepared as described previously (19). All piglets were challenged with VirHRV at
a dose of 2� 106 FFU per piglet at PBTD14 and euthanized by electrocution following anesthesia at
PBTD35/post-VirHRV challenge day 21 (PCD21). Non-DM Gn and conventional piglets were not included
because their inclusion would significantly complicate this already complex experimental design. The
primary goal of this study was to evaluate the effects of Cipro and EcN treatments in a microbiota-associ-
ated pig model without multiple compounding factors characteristic of studies in conventional animals.
One of the variables found in conventional pigs that would be a significant compounding factor is the
natural variability of the gut microbiome. The non-DM piglets that were included in our previous experi-
ments generally demonstrate the same trends, but the effects are less pronounced. The blood, spleen,
duodenum, and ileum were collected to isolate mononuclear cells (MNCs) for subsequent immunologi-
cal assays. Serum, small intestinal contents (SIC), and large intestinal contents (LIC) were collected to
determine the HRV-specific and total antibody responses (6, 19, 86, 89, 90).

Isolation of mononuclear cells. Systemic (blood and spleen) and intestinal (duodenum and ileum)
tissues were collected to isolate MNCs as described previously (5, 23, 76, 91, 92). The purified MNCs were
suspended in E-RPMI 1640. The viability of each MNC preparation was determined by trypan blue exclu-
sion ($95%).

HRV-specific and total antibody responses. The HRV antibody and total immunoglobulin (Ig) iso-
type titers in serum, SIC, and LIC were detected by an enzyme-linked immunosorbent assay (ELISA) as
described previously (6, 19, 86, 89, 90, 92). To determine the intestinal antibody responses, SIC and LIC
were collected with protease inhibitors in the medium.

HRV-specific antibody-secreting cell and total Ig-secreting cell responses. HRV-specific antibody
secretion in MNCs isolated from the blood, spleen, duodenum, and ileum was analyzed by an enzyme-
linked immunosorbent spot (ELISPOT) assay as described previously (6, 19, 89, 90, 92).

Serum cytokines. Serum samples were collected at multiple time points and analyzed for proinflam-
matory (TNF-a and IL-6), innate (IFN-a), Th1 (IL-12 and IFN-g), Th2 (IL-4, IL-6, and IL-8), and Treg (IL-10
and TGF-b) cytokines as described previously, with some modifications (5, 79, 91).

Flow cytometry analysis. Freshly isolated MNCs were stained for determining the following T cell
subsets: T helper cells (CD31 CD41), cytotoxic T cells (CD31 CD81), and T regulatory cells (CD41/CD81

CD251 FOXP31) (5, 91). To determine the frequencies of HRV-specific IFN-g-producing CD41 and CD81

cells, freshly isolated MNCs from the spleen and ileum were restimulated in vitro with the semipurified
attenuated HRV Wa strain (12 mg/ml) and porcine cross-reactive human CD49d monoclonal antibody
(mAb) (0.5 mg/ml) (clone 9F10; BD Pharmingen) for 18 h and stained as previously described (5, 91).
MNCs were stained to assess the frequencies of conventional dendritic cell (cDC) (SWC3a1 CD42

CD11R11), plasmacytoid DC (pDC) (SWC3a1 CD41 CD11R12), activated cDC (SWC3a1 CD42 CD11R11

MHC-II1), activated pDC (SWC3a1 CD41 CD11R12 MHC-II1), CD1031 cDC (SWC3a1 CD42), and CD1031
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pDC (SWC3a1 CD41) marker expression on DCs and Toll-like receptor (TLR) expression on MNCs with
monoclonal antibodies to porcine and human cell surface markers as reported previously (6, 18, 54, 93).
TLR3 (ligand double-stranded RNAs), TLR4 (ligand bacterial lipopolysaccharide), and TLR9 (ligand bacte-
rial CpGs) were used in our experiments. Similarly, the frequencies of resting/memory antibody-forming
B cells (CD79b1 CD22 CD212), Ig-secreting B cells (CD79b1 CD22 CD211), naive antibody-forming B
cells (CD79b1 CD21 CD211), and activated antibody-forming B cells (CD79b1 CD21 CD212) among sys-
temic and intestinal CD79b1 B cells were determined as described previously (6, 19, 94). The frequencies
of NK cells (SWC3a1 CD161) were assessed among systemic and intestinal MNCs. Appropriate isotype-
matched control antibodies were included. Subsequently, 50,000 events were acquired per sample using
a BD Accuri C6 flow cytometer (BD Biosciences, San Jose, CA, USA). Data were analyzed using C6 flow
sampler software.

NK cytotoxicity assay. Total blood MNCs and K562 cells were used as effector and target cells,
respectively. Effector-to-target cell ratios of 10:1, 5:1, 1:1, and 0.5:1 were used, and the assay was done as
described previously (91, 95).

Statistical analysis. All statistical analyses were performed using GraphPad Prism version 6
(GraphPad Software, Inc., La Jolla, CA). Log10-transformed isotype ELISA antibody titers were analyzed
using one-way analysis of variance (ANOVA) followed by Duncan’s multiple-range test. Correlation analy-
sis was performed using Spearman’s nonparametric correlation method. Data represent the mean num-
bers of HRV-specific antibody-secreting cells per 5� 105 MNCs and were analyzed using a nonparametric
t test (Mann-Whitney) (*, P value of,0.05; **, P value of,0.01; ***, P value of,0.001). Error bars indicate
the standard errors of the means (SEM).
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