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Abstract: Delayed graft function (DGF) after renal transplantation is a relevant clinical problem
affecting long-term organ function. The early detection of patients at risk is crucial for postoper-
ative monitoring and treatment algorithms. In this prospective cohort study, allograft perfusion
was evaluated intraoperatively in 26 kidney recipients by visual and formal perfusion assessment,
duplex sonography, and quantitative microperfusion assessment using O2C spectrometry and ICG
fluorescence angiography. The O2C tissue spectrometry device provides a quantitative method of
microperfusion assessment that can be employed during kidney transplantation as an easy-to-use
and highly sensitive alternative to ICG fluorescence angiography. Intraoperative microvascular flow
and velocity in the allograft cortex after reperfusion predicted DGF with a sensitivity of 100% and a
specificity of 82%. Threshold values of 57 A.U. for microvascular flow and 13 A.U. for microvascular
velocity were identified by an ROC analysis. This study, therefore, confirmed that impairment of
microperfusion of the allograft cortex directly after reperfusion was a key indicator for the occurrence
of DGF after kidney transplantation. Our results support the combined use of intraoperative duplex
sonography, for macrovascular quality control, and quantitative microperfusion assessment, such as
O2C spectrometry, for individual risk stratification to guide subsequent postoperative management.

Keywords: renal allograft; transplant function; near-infrared fluorescence; indocyanine green; laser
Doppler; tissue oxygenation

1. Introduction

Delayed graft function (DGF) after kidney transplantation is an increasing clinical
problem. The rising incidence rate of DGF correlates with the introduction of expanded
criteria donors (ECDs) and donation after cardiac death (DCD) in the context of organ
shortage [1]. DGF is known to occur in 25–35% of transplanted organs, but rates up to 50%
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have been reported [2–5]. ECD programs in Europe include the Eurotransplant Senior Pro-
gram (ESP), the Recipient-oriented Extended Allocation Program (REAL), and the Rescue
Allocation (RA). ECD kidneys might possibly be related to marginal organ quality [6] with
a higher rate of postoperative graft dysfunction [7–10]. However, ECD kidney recipients
still show better overall survival than patients remaining on dialysis therapy [9]. Since
DGF is associated with impaired long-term graft survival, strategies to detect and reduce
DGF incidence should be implemented to improve graft survival [2,11–13].

To date, the only intraoperative quality control officially requested by procurement
authorities in Europe is visual assessment of the color after reperfusion and the amount
of intraoperative urine production. Doppler ultrasound is commonly added to judge
macrovascular perfusion of the renal allograft [14–16]. Different quantitative tools have
been employed to assess graft perfusion after revascularization noninvasively in real
time. Quantitative indocyanine green (ICG) near-infrared fluorescence angiography has
been established for predicting DGF using the Spy Elite system (Stryker, Kalamazoo, MI,
USA) [17–19]. Threshold values were defined for ICG Ingress, representing the quality of
inflow. Intraoperative organ spectrometry with oxygen to see (O2C) (LEA Medizintechnik,
Giessen, Germany) has been used to assess microperfusion mainly in limbs [20–25], but
also in solid organs [26–28] and in kidney allografts [29,30].

The aim of this study was to evaluate different methods of intraoperative perfusion
assessment for predicting DGF after kidney transplantation.

2. Materials and Methods
2.1. Inclusion Criteria and Patient Selection

All patients scheduled for kidney transplantation in the University Medical Center
Mannheim (Germany) during a time period of 2 years (October 2019–September 2021) were
screened for study inclusion (n = 54). Provided the absence of exclusion criteria, namely
known allergy to iodine or ICG, severe hepatic dysfunction, pregnancy, hyperthyroidism,
pulmonary hypertension, and the logistical availability of both technical tools for quan-
titative perfusion assessment (O2C and SPY Elite) and the existence of written informed
consent, 26 patients were prospectively enrolled in the study (Figure 1). The study was
conducted in accordance with the Declaration of Helsinki, was approved by the ethics com-
mittee of the Medical Faculty Mannheim, University of Heidelberg (2019-668N), and was
registered (registration number DRK S00030097, DRKS—German Clinical Trials Register).

2.2. Study Design and Procedure

In this prospective pilot trial, standard techniques were applied for preoperative pa-
tient care, organ allocation via EUROTRANSPLANT (Leiden, The Netherlands), organ
procurement, and the transplantation procedure. Postoperative care was conducted along
a standardized treatment pathway [31] in all patients. After completion of the vascular
anastomoses, graft perfusion was assessed visually via duplex sonography, O2C spectrom-
etry, and ICG perfusion measurement by the transplant team. In parallel, cardiocirculatory
parameters at the time of perfusion assessment were recorded.

2.3. Visual and Formal Perfusion Assessment

Formal evaluation of the “color after reperfusion” was performed as required by the
German Organ Procurement Organization (DSO) and marked on the “Kidney Quality
Form” as “homogeneous”, “marbled”, or “dark blue”.
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Figure 1. Flow diagram.

2.4. Macroperfusion Assessment by Ultrasound

A sterile ultrasound probe (T-Shaped Intraoperative Transducer, I14C5T (9016), BK
Medical ApS, Herlev, Denmark) was connected to the bk5000 Ultrasound System (CE0543,
BK Medical ApS, Herlev, Denmark). The probe was placed directly on the surface of the
graft. All anastomosis, the inflow and outflow vessels, as well as the cortex and parenchyma
of the kidney were closely examined for stenosis, dissection, kinking of vessels, or lack
of perfusion within all areas of the graft. The result was recorded by two experienced
transplant surgeons.

2.5. Intraoperative Spectrometry of Allograft Microperfusion with Oxygen to See (O2C)

Cortical graft microperfusion was assessed quantitatively using the O2C device (Oxy-
gen to see, version III, LEA Medizintechnik, Giessen, Germany). The device has been
approved as a medical device class IIa according to regulation (EU) 2017/745. Micro-
Lightguide O2C combines white light tissue spectrometry (wavelength range: 500–630 nm;
optical resolution: 1.5 nm) and laser Doppler flowmetry (830 nm). The probe simultane-
ously measures the following four parameters of microcirculation from the tissue surface:
postcapillary oxygen saturation of hemoglobin (SO2, in %), relative microvascular amount
of hemoglobin (rHb, in A.U. (Arbitrary Units)), relative microvascular blood flow (flow, in
A.U.) and microvascular blood flow velocity (velocity, in A.U.).

The intraoperative measurements were conducted with a sterile LFX-29 probe (catch-
ment volume 3 mm) that was placed directly onto the surface of the allograft. The mea-
surements were performed, according to a standardized protocol, 5 min after reperfusion
at three different sites (upper, middle, and lower parts of the graft), each for a duration
of 10 s. The parameter values were immediately shown on the display of the O2C device.
The measurement results from the three sites were averaged to obtain a single value to
represent the kidney. The measurements were only performed once, i.e., no serial scans
were performed.
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2.6. Intraoperative Fluorescence Angiography with ICG

Subsequently, the SPY Elite System (Stryker, Kalamazoo, MI, USA) was used for
intraoperative fluorescence angiography to visualize cortical microperfusion of the graft,
as described in previous studies [17–19]. The fluorescent dye ICG (Verdye, Diagnostic
Green, Belgium) was injected in a standardized dose of 0.02 mg ICG per kg body weight.
Quantitative assessment was performed with the integrated software (SPY-Q, Stryker).
Four parameters are defined in the quantitative analysis of the intraoperative fluorescence
videos: “Ingress” represents the difference between the baseline fluorescence intensity and
the maximum intensity assessed; “Egress” is the difference between maximum intensity
and final intensity; “IngressRate” quantifies the blood inflow by evaluating the increase in
the fluorescence intensity per second (increase in gray stats per second); and “EgressRate”
characterizes the outflow of blood, measured as the decrease in fluorescence intensity
per second.

2.7. Clinical Parameters of Graft Function

The need for postoperative hemodialysis and the parameters of early kidney function
(serum creatinine levels on postoperative days (PODs) 1–10; estimated glomerular filtration
rate (eGFR) on PODs 1 and 7; cumulative diuresis in the first 24 h after transplantation;
and diuresis on PODs 1, 2 and 7) were monitored. DGF was defined as the need for two or
more sessions of hemodialysis postoperatively, according to Schnuelle et al. [32].

2.8. Statistical Analysis

All statistical calculations were performed using SAS statistical software, release 9.4
(SAS Institute Inc., Cary, NC, USA). Continuous variables are presented as mean values
together with standard deviations or (e.g., in the case of skewed variables) as median values
together with minimum and maximum. For categorical variables, absolute and relative
frequencies (percentages) are given. The comparison of two independent groups (e.g., DGF
versus non-DGF) was performed using Fisher’s exact test or the Mann–Whitney U test, as
appropriate. The CKD-EPI equation was used to estimate GFR.

In order to investigate the correlation between two continuous variables of perfusion
assessment, Pearson’s correlation coefficient was assessed.

Furthermore, logistic regression analyses were performed in order to identify parame-
ters potentially associated with DGF. A receiver operating characteristic (ROC) curve was
generated for the O2C parameters “flow” and “velocity”. For each ROC curve, the AUC
(area under the curve) was estimated together with 95% confidence intervals.

For all statistical tests, p < 0.05 was considered to show a statistically significant
test result.

3. Results
3.1. Patients and Procedure Characteristics

This prospective cohort study contains the assessment and associated data of 26
transplanted kidneys (22 deceased-donor kidney transplantations from donation after
brain death and 4 living-donor kidney transplantations). Patient and donor characteristics
are displayed in Table 1. At the time of perfusion assessment, the median heart rate was
65 (53–100) bpm, the median systolic blood pressure was 120 (100–136) mmHg, and the
median rate of norepinephrine was 0.3 (0–1.0) mg/h.

3.2. Postoperative Results and Delayed Graft Function

DGF occurred in five patients (19%). None of the four patients after living-donor
kidney transplantation developed DGF. None of the common perioperative parameters and
comorbidities were found to be significantly associated with DGF, nor was the immediate
urine production after reperfusion (none vs. moderate vs. good), or the type of donation or
vascularization (Table 2).
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Table 1. Patient and periprocedural characteristics (n = 26). Continuous variables are expressed as
a mean and standard deviation or as the median with minimum and maximum. For categorical
variables, absolute (numbers) and relative (percentage) frequencies are given.

Recipient Characteristics

Age (years) 56 (±15)
Gender (♀;♂) 6 (23); 20 (77)

Body mass index (kg/m2) 25 (±4)
Preoperative eGFR (mL/min/1.73 m2) 8.5 (5–26)

Preoperative hemoglobin 12 (±1.8)
Time on dialysis (months) 47 (0–158)

Smoker 4 (15)
Chronic kidney disease stage 4 3 (12)
Chronic kidney disease stage 5 23 (88)

Renal anemia 18 (69)
Diabetes mellitus 7 (27)

Dyslipidemia 12 (48)
Hypertension 23 (88)

Peripheral arterial occlusive disease 1 (4)
Chronic heart failure 3 (12)

Periprocedural characteristics
Living-donor transplantations 4 (15)

Deceased-donor transplantations (all DBD) 22 (85)
1 artery 20 (77)

2 arteries 6 (23)
Separate pole artery 3 (12)

1 vein 26 (100)
Operating time (minutes) 129 (±47)

Cold ischemia time (minutes) 602 (±308)
Warm ischemia time (minutes) 26 (±8)
Postoperative characteristics
Diuresis POD 1 (mL/24 h) 1880 (30–9000)
Diuresis POD 2 (mL/24 h) 2240 (100–12,300)
Diuresis POD 7 (mL/24 h) 1770 (1050–5500)

Legend: DBD, donation after brain death; POD, postoperative day.

Table 2. Comparison of recipient, donor, and periprocedural characteristics between recipients with
normal graft function (Non-DGF, n = 21) and those with delayed graft function (DGF, n = 5) after
kidney transplantation. Continuous variables are expressed as mean and standard deviation. For
categorical variables, absolute (numbers) and relative (percentages) frequencies are given.

Recipient Characteristics DGF Non-DGF p-Value

Age (years) 61 (±9) 55 (±16) 0.5803
Gender (♀;♂) 0 (0); 5 (100) 6 (29); 15 (71) 0.2981
Body mass index (kg/m2) 27 (±2) 25 (±5) 0.3657
Smoker 0 4 (19) 0.5552
Preoperative eGFR (mL/min/1.73 m2) 6 (5–24) 9 (5–26) 0.5984
Comorbidities
Renal anemia 4 (80) 14 (67) 1.0000
Diabetes 2 (40) 5 (24) 0.5875
Dyslipidemia 1 (20) 11 (55) 0.3217
Hypertension 5 (100) 18 (86) 1.0000
Peripheral arterial occlusive disease 0 1 (5) 1.0000
Chronic Heart Failure 0 3 (14) 1.0000
Donor characteristics
Age (years) 70 (±11) 67 (±14) 0.7641
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Table 2. Cont.

Recipient Characteristics DGF Non-DGF p-Value

Gender (♀;♂) 3 (19); 2 (20) 13 (81); 8 (80) 1.0000
First donor creatinine (mg/dL) 1.0 (0.3–1.7) 0.9 (0.4–2.6) 0.5156
Last donor creatinine (mg/dL) 1.0 (0.3–5.2) 0.8 (0.4–3.4) 0.3652
Smoker 1 (20) 3 (30) 1.0000
Cause of death (cerebral hypoxia) 3 (60) 2 (12) 0.0549
Procurement and
periprocedural characteristics
Donation (living; postmortem) 0 (0); 5 (100) 4 (19); 17 (81) 0.5552
Arterial supply 1/2 arteries 4 (80)/1 (20) 16 (77)/5 (24) 1.0000
Operating time (minutes) 130 (95–183) 110 (64–239) 0.3313
Cold ischemia time (minutes) 554 (430–1431) 611 (96–1129) 0.3162
Warm ischemia time (minutes) 21 (16–28) 26 (15–40) 0.5801
Intraoperative urine production
(none, moderate or good) 2 (50); 2 (50) 3 (19); 13 (82) 0.2487

The average postoperative creatinine levels of both groups were significantly different
on PODs 2–10 (Figure 2a). There was no significant difference on PODs 1 (6.04 ± 1.89 mg/dL
in DGF vs. 5.82 ± 1.77 mg/dL in non-DGF, p = 0. 8392). The average postoperative di-
uresis on days 0, 1, and 2 was significantly different (Figure 2b). There was no significant
difference on POD 7 (median values 1750 mL in DGF vs. 2195 mL in non-DGF, p = 1.0000).
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Figure 2. Comparison of average serum creatinine (a) and cumulative diuresis (b) between patients
with normal postoperative graft function (non-DGF) and delayed graft function (DGF) over time
(POD, postoperative day) following kidney transplantation. Data are expressed as a mean and
standard deviation (a) or the median and Q1–Q3 interquartile range (b), respectively.

3.3. Formal and Visual Perfusion Assessment

Concerning the visual aspect of the graft after reperfusion (Table 3), 24 grafts were
classified as “homogeneous” after reperfusion and two grafts were classified as “marbled”.
There was no significant association between the intraoperative clinical parameters or the
visual assessment of the color of the graft after reperfusion and DGF (OR = 5.00, 95%-CI:
0.26–97.70, p = 0.3538).
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Table 3. Association between intraoperative perfusion assessment of the allograft and delayed graft
function (DGF) after kidney transplantation. Quantitative perfusion assessment was performed with
ICG fluorescence angiography and O2C.

Perfusion Parameter DGF Non-DGF p-Value

Ingress (A.U.) 172 (100–233) 147.5 (77–252) 0.7500
IngressRate (A.U.) 23.5 (15.9–31.5) 41.8 (8.4–71.5) 0.5819
Egress (A.U.) 54.5 (48–80) 83 (32–196) 0.3963
EgressRate (A.U.) 3.9 (1.3–7.8) 4.7 (2.5–31) 0.2161
SO2 (%) 52.5 (21.3–80.7) 70.3 (18.0–93.7) 0.1700
rHb (A.U.) 111.7 (102.0–128.3) 113.0 (106.3–120.7) 0.5240
Flow (A.U.) 47.0 (36.7–57.3) 81.0 (27.3–249.0) 0.0275
Velocity (A.U.) 12.3 (12.0–13.3) 17.0 (11.3–32.0) 0.0119
Visual * (homogeneous/marbled) 4 (80); 1 (20) 20 (95); 1 (5) 0.3538

* Visual perfusion assessment was performed by the surgeons intraoperatively after reperfusion in accordance with
the requirements by the German Organ Procurement Organization (DSO). Continuous variables are expressed as
median values together with minimum and maximum. For categorical variables, absolute and relative frequencies
are given. Legend: A.U.: arbitrary units; flow, microvascular blood flow; rHb, relative microvascular amount of
hemoglobin; SO2, postcapillary oxygen saturation of hemoglobin; velocity, microvascular blood flow velocity.

3.4. Perfusion Assessment by Ultrasound

In all grafts, perfusion was classified as “homogenous”. No major arterial, venous, or
anastomotic problems were documented.

3.5. Association between Intraoperative Perfusion Analysis with ICG and Delayed Graft Function

In the DGF group, surprisingly, the average value for the absolute ICG perfusion
parameter Ingress was higher, but the IngressRate characterizing the quality of inflow
of blood into the kidney allograft was nearly half as low as in the non-DGF group. The
outflow parameters Egress and EgressRate were lower in the DGF group. However, all of
the four intraoperative ICG perfusion parameters were not associated significantly to DGF
(Table 3).

3.6. Correlation of Intraoperative Perfusion Assessment with O2C and ICG

The following O2C parameters correlated significantly positively with ICG IngressRate:
SO2 (r = 0.60275, p = 0.0497), flow (r = 0.69319, p = 0.0124), and velocity (r = 0.76678,
p = 0.0036) (Figure 3). There was no significant correlation of the O2C parameter rHb with
Egress or with EgressRate (p = 0.9180 and p = 0.2187, respectively).
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3.7. Association between Intraoperative Perfusion Analysis with O2C and Delayed Graft Function

The mean values for the O2C parameters “flow” (Figure 4c) and “velocity” (Figure 4d)
differed significantly between the DGF and non-DGF groups. For the parameters SO2
(Figure 4a) and rHb (Figure 4b), no significant difference between the groups was docu-
mented. The tests in Table 3 should be regarded as exploratory statistic. Because of the
small sample sizes, we decided not to correct for multiple comparisons in order to obtain
an impression of which parameters differ between the two groups and in order to avoid a
rather large type 2 error.
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Figure 4. (a–d) Box plots showing intraoperative microperfusion assessment with O2C in patients
with normal as opposed to delayed graft function (DGF) after kidney transplantation with significant
differences for the parameters flow and velocity (p-values: (a), p = 0.1700; (b), p = 0.5323; (c), p = 0.0314;
(d), p = 0.0171). A.U., Arbitrary Units; flow, microvascular flow; rHb, relative microvascular amount
of hemoglobin; SO2, postcapillary oxygen saturation of hemoglobin; velocity, microvascular blood
flow velocity.

The ROC analysis of the O2C perfusion parameter “flow” yielded an optimal cutoff
value of 57.34 A.U., with a sensitivity of 100% and a specificity of 82% (AUC = 0.855, CI:
[0.651; 1.000], p = 0.1299) for the prediction of DGF.

The ROC analysis of the O2C perfusion parameter “velocity” yielded an optimal
cutoff of 13.33 A.U., with a sensitivity of 100% and a specificity of 82% (AUC = 0.891,
CI [0.709; 1.000], p = 0.1421) for the prediction of DGF. However, these associations failed
to reach statistical significance.
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4. Discussion

The results of this prospective comparative cohort study suggest that even experienced
transplant surgeons cannot predict DGF by means of intraoperative visual inspection or
by duplex sonography. Quantitative perfusion assessment of microperfusion should be
employed to enable an accurate individual risk stratification concerning the occurrence of
DGF after kidney transplantation.

Concordant with the literature, the incidence of DGF in our study was about 19%.
In our study population, the common risk factors were not associated with DGF. Despite
the fact that postoperative serum creatinine levels and urine outputs were significantly
different in patients with a normal postoperative graft function as opposed to DGF, they
vary considerably in the early postoperative period. Therefore, these parameters may
not allow for the prediction of short- and long-term graft function, or the individual risk
stratification of DGF. Consequently, extensive postoperative monitoring is necessary for all
kidney recipients until patients at risk can be identified.

As known from gastrointestinal procedures, the surgeons’ clinical judgement is of
limited value in predicting postoperative outcome [33], presumably due to an overestima-
tion of results. The use of duplex sonography, including more objective parameters, for
estimating postoperative transplant function, such as the resistance index (RI), is being
discussed controversially in the literature [18,34–37]. This is in line with our findings.

We assume that quantitative intraoperative assessment of the graft’s microperfusion
after reperfusion is a more precise tool for predicting postoperative early graft function
because it can be interpreted as a surrogate parameter reflecting the combination of risk
factors present in an individual patient [19], organ quality [18], and the extent of the
manifestation of ischemia-reperfusion injury (IRI). Impairment of the microperfusion of
the allograft cortex seems to be a key risk factor for the occurrence of DGF [38–40].

Fluorescence angiography with ICG is an imaging modality with a predictive ability for
DGF, as supported by prospective trials [18,19]. The Spy Elite System has been successfully
employed for this purpose. A threshold value of 126.23 A.U. for the perfusion parameter
ICG Ingress as an absolute parameter characterizing the peak inflow fluorescence intensity
has been shown to predict DGF with a sensitivity of 78.3% and a specificity of 80.8% in
128 transplant patients [19]. However, not all systems allow for an additional quantification
of ICG inflow and outflow, and heterogeneous perfusion parameters gained by different
systems still need standardization [41]. Furthermore, this technique requires a comparable
dosing of ICG and a certain level of training within the team [42]. Allograft spectrometry
and laser Doppler microvascular blood flowmetry with the O2C device has emerged as a
noninvasive alternative method for intraoperative microperfusion assessment [29,30]. It
is comparably safe, is more cost-efficient, does not require potentially toxic or expensive
contrast agents, and has a simpler logistical setup than that of fluorescence angiography.
Specific threshold values for these O2C perfusion parameters were either not reported in
previous studies or were calculated on the basis of measurements, with a different probe
leading to a higher level of flow and velocity than in our results.

To the best of our knowledge, so far, there has not been a study comparing different
modalities of intraoperative perfusion assessment during kidney transplantation with
regard to a patient-specific prediction of DGF. In the present study, the ICG IngressRate
correlated significantly with the O2C parameters flow and velocity. Consequently, these
parameters had significantly lower values in the DGF group. We were able to deliver
threshold values for the parameters flow and velocity, allowing for the prediction of DGF.
The results of intraoperative risk stratification via O2C can be used to guide postopera-
tive care. Patients with a flow exceeding 57 A.U. or a velocity exceeding 13 A.U. can be
transferred to normal wards earlier, conserving valuable IMC/ICU space without endan-
gering patient safety. On the other hand, kidney recipients with a critical microvascular
flow or velocity should be monitored more closely, potentially on IMC units with a focus
on systemic hemodynamics, renal blood flow, sufficient hydration, and early discussion
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of a percutaneous biopsy to rule out acute rejection, since IRI can trigger immunologic
responses predisposing to acute graft rejection [43,44].

The O2C method is limited by the selective measurements and the depths of pene-
tration. This seems to apply in particular to the parameters SO2 and rHb, derived from
the tissue surface by white light spectroscopy. In case of a subcapsular hematoma or an
abundance of fatty tissue, the measurements of superficial parameters might fail. Therefore,
we still routinely combine microperfusion measurement with duplex sonography. Even in
this comparably small cohort, the O2C method showed promising results.

5. Conclusions

This pilot trial delivers a solid basis for larger prospective trials with the aim of vali-
dating O2C threshold values and investigating the optimal point in time for employing
intraoperative quantitative microperfusion assessment of the renal allograft for individual
risk stratification concerning postoperative transplant function in order to guide postopera-
tive management after kidney transplantation. O2C probe specifications should be reported
exactly in further publications in order to allow for a comparison between different studies.
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