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Abstract: The process of cell-sorting is essential for development and maintenance of tissues. Mathe-
matical modeling can provide the means to analyze the consequences of different hypotheses about
the underlying mechanisms. With the Differential Adhesion Hypothesis, Steinberg proposed that cell-
sorting is determined by quantitative differences in cell-type-specific intercellular adhesion strengths.
An implementation of the Differential Adhesion Hypothesis is the Differential Migration Model
by Voss-Böhme and Deutsch. There, an effective adhesion parameter was derived analytically for
systems with two cell types, which predicts the asymptotic sorting pattern. However, the existence
and form of such a parameter for more than two cell types is unclear. Here, we generalize analytically
the concept of an effective adhesion parameter to three and more cell types and demonstrate its
existence numerically for three cell types based on in silico time-series data that is produced by a
cellular-automaton implementation of the Differential Migration Model. Additionally, we classify
the segregation behavior using statistical learning methods and show that the estimated effective
adhesion parameter for three cell types matches our analytical prediction. Finally, we demonstrate
that the effective adhesion parameter can resolve a recent dispute about the impact of interfacial
adhesion, cortical tension and heterotypic repulsion on cell segregation.

Keywords: differential adhesion hypothesis; differential migration model; cell sorting; cellular au-
tomaton; statistical learning methods; high heterotypic interfacial tension hypothesis; pattern formation

1. Introduction

During the development of multicellular organisms, mechanical forces affect the
internal states of cells as well as the interaction between cells, and they are, therefore,
an integral part of all morphogenetic processes [1]. These forces are typically driven by
molecular motors and transmitted via cytoskeleton elements and adhesion molecules
within the cells and between them. Together, molecular motor driven movement and force
transmission via adhesion complexes constitute two major self-organizing phenomena that
drive tissue morphogenesis.

Since it constitutes a paradigmatic process for tissue morphogenesis, cell-sorting
has found much attention both from experimental and theoretical research. It describes
the tissue-scale segregation phenomenon that is observed when mixed heterotypic cell
populations unmix into spatially confined homotypic cell clusters [2,3]. Over many decades
this process has been studied in a number of in-vitro cell-sorting experiments for many
different cell types [2–7]. To resolve which types of intercellular interaction guide individual
mobile cells to find their homotypic neighbors, several theoretical hypotheses have been
proposed and studied. Steinberg put forward the Differential Adhesion Hypothesis (DAH)
which exploits the similarity of cell segregation with the unmixing of immiscible fluids
such as water and oil. It states that cell-sorting is driven by the minimization of tissue
surface tensions which result from quantitative differences in the strengths of cell-type
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specific intercellular adhesion [8]. However, Harris (1976) [9] remarked that tissue surface
tension can result from several cellular mechanisms besides differential adhesion and
suggested the differential contractility of cells as a major driver of cell-sorting. This is also
acknowledged by the Differential Interfacial Tension Hypothesis (DITH) of Brodland and
Chen (2000) [10]. There, the effects of intercellular adhesion and cellular contractility at
cell–cell contacts are subsumed to the concept of differential interfacial tension at homo-
and heterotypic cell contacts which determines the degree of mutual attachment between
cells and thus drives cell-sorting. Canty et al. (2017) [11] demonstrated experimentally that
repulsion at heterotypic cell–cell contacts with little to no contribution from adhesive or
tensile differences between cell types can lead to cell-sorting and tissue separation. They
propose the High Heterotypic Interfacial Tension Hypothesis (HIT) which asserts that
heterotypic repulsion creates a situation where tension is strongly increased at heterotypic
contacts compared to homotypic contacts and constitutes the major driver of cell-sorting
and tissue separation.

The competing explanatory models DAH, DITH and HIT are unified within the Differ-
ential Migration Model (DMM) of Voss–Böhme and Deutsch (2010) [12]. They established
that all the above hypotheses have in common that cell–cell contacts affect type-specifically
the migration properties of the involved cells and parametrized this effect, independent
of its specific nature - adhesion or repulsion, cortical tension or even signaling cascades.
For the segregation of two cell types, the existence and form of an effective adhesion
parameter (EAP) has been derived mathematically, which predicts the asymptotic sorting
behavior [12].

However, while most previous studies focus on the simplest case of two cell
types [7,13,14], the case of three and more cell types is more relevant in real biological
systems. Studies of cell segregation and pattern formation with three or more cell types are
still rare [15]. Although the DMM can be directly generalized to more than two cell types,
it has only been studied for the minimal case of two cell types. In particular, the existence
and form of the EAP for systems with three or more cell types remains an open question.

We study numerically the impact of the EAP and related parameters on the degree of
tissue separation in terms of clear tissue boundaries as well as the separation time scale for
mixtures of two cell types. We present new arguments to analytically predict the form of
the EAP, thus generalizing the concept of the EAP to mixtures of arbitrary many cell types.
We show numerically for three cell types that the analytically predicted EAP guides the
asymptotic sorting behavior in the DMM, i.e., the EAP determines the asymptotic value
of the normalized sum of heterotypic contacts. The form of the EAP on the asymptotic
segregation behavior is independently quantified via two statistical learning methods,
Support Vector Machines (SVM) and Logistic Regression model (Logit) [16]. The form
estimated by the statistical learning methods matches our analytical prediction both for two
and three cell types. Finally, we demonstrate that the EAP can explain different segregation
behaviors in two cell- type Cellular Potts models which was previously attributed to the
competing hypotheses DAH/DITH and HIT [11].

2. Materials and Methods
2.1. Differential Migration Model

The DMM is a special probabilistic cellular automaton (PCA) based on Voss-Böhme
and Deutsch [12], which has been analyzed for two cell types. Here, we present the key
features of this model for the case of arbitrary many cell types:

Lattice: The PCA works on a squared lattice S := {0, 1, . . . , L}2 with periodic bound-
aries and we set L = 25 throughout our numerical analysis.
Cells: To emulate biological cells, every lattice site x ∈ S is assigned a cell type w ∈W

of all possible cell types W := {0, 1, . . . } in the system. In this way each cell regardless
of its type, has approximately the same size and occupies exactly one lattice site.
The number of cells of each type remains constant during the sorting process.
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Configurations: A configuration ηt of the lattice S represents the state of the model at
time t. It belongs to the set of all possible configurations X := WS = {η : S→W}.
Migration: A configuration η is changed by a cell position switch η → ηxy involving

two adjacent lattice sites x and y with x, y ∈ S:

ηxy(z) :=


η(z), z 6= x and z 6= y
η(y), z = x
η(x), z = y .

(1)

Position switches between two cells of the same type do not change the configuration
and are therefore neglected. Thus, neighboring cells situated at lattice sites x and y
only switch their positions if they are heterotypic, i.e., η(x) 6= η(y).
Differential adhesion: We assume that stronger bonds to neighboring cells hinder cell
motility. Accordingly, a cell switch η → ηxy occurs with rate c(x, y, η). The rate
c(x, y, η) depends on the parameters βη(x)η(z) and βη(y)η(z), which represent the bind-
ing strengths between cells at lattice sites x and y to positions from the von-Neumann-1
neighborhoods N(x) and N(y), see Figure 1. The von-Neumann-1 neighborhood of
a lattice site corresponds to all neighboring lattice sites with Manhattan distance
one. The cell switch rate of the two adjacent lattice sites x, y ∈ S with x ∈ N(y) and
y ∈ N(x) is as follows:

c(x, y, η) :=


exp

(
− ∑

z∈N(x)
βη(x)η(z) − ∑

z∈N(y)
βη(y)η(z)

)
, η(x) 6= η(y)

0, otherwise .

(2)

Figure 1. Example of a cell switch. (a) A cell switch at a straight interface between two clusters
of type w = 0 (purple) and w = 1 (turquoise) has rate c = exp[−3(β00 + β11)− 2β01] according
to Equation (2). (b) A single cell of type w = 0 inside a cluster of cells of type w = 1 switches
with rate c = exp[−3β11 − 5β01]. The cell switch between two adjacent cells is highlighted (gray
double arrows).

Notice that the particular mechanism which affects the cellular motility on intercellular
contact is not specified. The parameters βij can be interpreted as repulsion, if βij < 0,
enhancing cellular motility, and it can be interpreted as binding strength resulting from the
interplay of adhesion and relaxed cortical tension at cell–cell contact, if βij > 0, inhibiting
cellular motility. The details on the numerical implementation of this PCA are elaborated
in the Appendix A. Depending on how many cell types are considered the number of
intercellular adhesion parameters varies. For this, the vector β(N) of all intercellular
adhesion parameters occurring in a system with N cell types is introduced, for instance

β(N=2) := (β00, β11, β01)
T for 2-cell-type systems and

β(N=3) := (β00, β11, β22, β01, β02, β12)
T for 3-cell-type systems.



Entropy 2021, 23, 1378 4 of 19

For a 2-cell-type model, an effective adhesion parameter (EAP)

β∗(N=2) := β00 + β11 − 2β01

was analytically predicted in Voss-Böhme and Deutsch [12]. The EAP determines the
asymptotic cell segregation behavior of systems with N = 2 cell types regardless of the
value combinations of β(2). The higher the EAP the more segregated the cell types become.

For simulation of the DMM model a Gillespie-related algorithm is used where in-
dependent cell switches, see Equation (1), are chosen and the waiting times between
these events are calculated based on the cell switch rates, see Equation (2), within lattice
configuration η. For details about this algorithm, see Appendix A, Algorithm A1. Each
numerical simulation yields a time-series of lattice configurations ηt, since every cell switch,
i.e., whenever two neighboring cells switch their position, see Equation (1), results in a new
configuration. The variable t refers to the number of cell switches performed.

2.2. Order Indicator

To quantify the level of cell segregation an order indicator is introduced that quantifies
the level of cell segregation of a lattice configuration η. The order indicator ω(η) is the
normalized sum of homotypic cell–cell contacts within a configuration η. This indicator
increases the more cells of the same type are clustered together. In detail, the set of all
homotypic von-Neumann-1 neighbors of a cell of type η(x) at position x ∈ S is given by

H(x, η) := {z ∈ S | η(x) = η(z), z ∈ N(x)} .

With n=(x, η) := |H(x, η)|, the total sum of homotypic connections is defined as

d(η) :=
∑
x∈S

n=(x, η)

2
. (3)

The highest amount dmax and the lowest amount dmin of homotypic lattice site con-
nections are reached in the case of a fully sorted and chessboard-patterned configuration,
respectively. The exact values for 2- and 3-cell-type systems are listed in Appendix B.
With dmax and dmin, the order indicator value ω(η) for configuration η is defined as the
normalization of d(η):

ω(η) :=
d(η)− dmin
dmax − dmin

Thus, ω(η) takes values in [0, 1], where configurations with almost perfect sorted
patterns, such as in Figure 2I, yield ω(η) values above 0.95. In the case of chessboard
configurations as in Figure 2III, the order indicator values are below 0.05. For a random
lattice configuration, the order indicator value is ω(η) ≈ 0.5, in the case of a 2-cell-type
system, and it is ω(η) ≈ 0.33 for a 3-cell-type system.

With the order indicator ω(η), a time-series of configurations ηt can be converted into
a time-series of order indicator values ω(ηt), in short ω(t). Furthermore, the asymptotic
cell segregation level for a simulation is estimated as the average over the last 10% of the
time-series ω(t) and is denoted ω, see Figure 2 for an illustration.
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Figure 2. Illustration of the principal cell-sorting behavior in the model. Depending on the effective
adhesion parameter the model exhibits asymptotically one of three basic cell-sorting states. (a) Sim-
ulated order indicator ω(t) in the case of 2-cell-type system for three different sets of intercellular
adhesion parameters β(2): (1.2,−0.2,−1.0) (blue), (1.1,−1.1, 0.0) (orange), (−1.3, 0.3, 1.0) (green)
for three different cell-type systems, each corresponding to a distinct asymptotic segregation: a
cell population with sorted patterns as in configuration I (blue), a not fully cell-type segregated
population as in II (orange) and a cell type mixture population with chessboard pattern as in III
(green). Configuration 0 illustrates the random start configuration ηt=0 with an initial order indi-
cator value ω(t = 0) ≈ 0.5 (marked as red square at t = 0). The simulation termination condition
is t = 312499 cell switches (red vertical line). The asymptotic value ω (indicated for each case
as black horizontal line at the end) is computed as the average over the last 10% of cell switches
(gray area). (b) Analogous for examples of 3-cell-type systems, starting with random configuration,
i.e., initial order indicator value ω(t = 0) ≈ 0.33. The three different sets of intercellular adhesion
parameters β(3) are: (0.6, 0.6, 2.3,−0.9,−1.1,−1.5) (blue), (−0.8,−0.1, 1.0,−0.1,−0.2, 0.4) (orange)
and (−0.6,−0.6,−2.3, 0.6, 2.4, 0.5) (green).

3. Results
3.1. Cell System Parameters for Two Cell Types

We present a new simple argument for the form of the effective adhesion parameter
β∗(2) guiding the asymptotic behavior in the DMM for two cell types [12] to generalize it
to systems with arbitrary many cell types. For this, we introduce two additional system
parameters βs

(2) and β∆
(2) besides β∗(2), which determine how changes to the intercellular

adhesion parameters β(2) affect the asymptotic cell segregation behavior as well as the
dynamics. Although the parameters βs

(2) and β∗(2) set the temporal scale of the waiting
times and the asymptotic level of segregation, respectively, we argue that the parame-
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ter β∆
(2) determines the number of cell switches required to reach the asymptotic level

of segregation.
Indeed, the addition of a constant θ to all intercellular adhesion parameters simultane-

ously like
β
′
(2) = β(2) + θas with as = (1, 1, 1)T (4)

rescales the cell switch rates cβ(x, y, η) in the DMM by a factor exp(−8θ), since

c
β
′
(2)
(x, y, η) = exp

(
− ∑

z∈N(x)
(βη(x)η(z) + θ)− ∑

z∈N(y)
(βη(y)η(z) + θ)

)
= exp(−8θ) · cβ(2)

(x, y, η) ,

(5)

independent of the actual configuration η ∈ X and the considered lattice sites x, y ∈ S.
This factor does not alter the relation between the cell switch rates, but only rescales all
waiting times between cell switches by exp(−8θ). Thus, the spatio-temporal order of the
cell sorting dynamics and the asymptotic behavior are not affected. In order to parametrize
this rescaling, a scaling parameter βs

(2)

βs
(2) = β00 + β11 + β01 = 〈β(2), as〉 (6)

is introduced, where the functional, which maps β(2) → βs
(2), is given as a scalar product

with the vector as = (1, 1, 1)T .
Secondly, we notice that the choice which cell type is denoted by type w = 0 and which

one by w = 1 is arbitrary and the dynamics in the model is invariant against relabeling
of the cell types. This invariance is reflected in the cell switch rates c(x, y, η) as well as
in the order indicator ω, which quantifies the level of segregation of a configuration η
as sum of homotypic lattice site connections. Accordingly, the functional which maps
the intercellular adhesion parameters β(2) to the effective adhesion parameter β∗(2) must
reflect this invariance as well. This implies that an effective adhesion parameter β∗(2), which
controls the asymptotic sorting behavior, assuming it exists and is determined by a linear
functional on the intercellular adhesion parameters, has the form

β∗(2) = a

(
β00 + β11

)
+ bβ01 = 〈β(2), a∗〉 (7)

with two real-valued constants a, b and a vector a∗ = (a, a, b)T introduced analogously to
Equation (6) to express the functional. The constants a, b are set by the condition that the
asymptotic level of segregation and thus the differential adhesion parameter β∗(2) must not
be affected by the temporal scaling parameter βs

(2), which implies

〈a∗, as〉 = 0 ⇒ 2a = −b . (8)

Without loss of generality, we can neglect an additional offset and factor in Equation (7)
and choose a = 1 for which follows

β∗(2) = β00 + β11 − 2β01 = 〈β(2), a∗〉

a∗ = (1, 1,−2)T .
(9)

We present an additional heuristic argument to make the assumption of a linear de-
pendency in Equation (7) plausible and to estimate that the critical value of the effective
adhesion parameter, at which the system remains randomly mixed, should be zero: Con-
sider two limit scenarios of a cell switch, first two cells at a straight interface between
clusters and secondly a single cell of one type moving inside a cluster of opposite type. As il-
lustrated in Figure 1a, two cells of different type at the interface switch their position and
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thus cause a less segregated configuration with a rate cmix = exp[−3(β00 + β11)− 2β01].
In contrast, a cell of type w = 0 inside a cluster of type w = 1 switches position with a
given neighbor with rate cunmix, 0 = exp[−3β11 − 5β01], see Figure 1b. Analogously, for a
single cell of type w = 1 in a cluster of type w = 1 the rate is cunmix, 1 = exp[−3β00 − 5β01].
Both types of switches are necessary to move a single cell of opposite type out of a cluster.
Since the former switch with rate cmix reduces the level of segregation while the latter two
switches with rates cunmix, 0, cunmix, 1 are required to increase segregation, the ratio between
these types of switches cunmix, 0/cmix · cunmix, 1/cmix = exp[3(β00 + β11 − 2β01)] should
determine the level of the asymptotic segregation. In particular, the point at which the
system remains mixed is expected where mixing and unmixing rates are equal, i.e., where
the ratio of the rates becomes 1. Since the exponential function is monotonous, it is suf-
ficient to focus on the exponent, which is a multiple of the effective adhesion parameter
β∗(2) = β00 + β11 − 2β01. Thus, the critical value 1 of the ratio of rates translates into a
critical parameter β∗(2) = 0 for which a two-cell-type system is expected to remain mixed.

After establishing the system parameters βs
(2) and β∗(2), which are defined via scalar

products with the corresponding vectors as, a∗, we point out that there is a third system
parameter β∆

(2) defined by the vector perpendicular to as and a∗

β∆
(2) = |β00 − β11| = |〈β(2), a∆〉|

a∆ = (1,−1, 0)T ∼ as × a∗ .
(10)

The parameter β∆
(2) quantifies the difference between the homotypic adhesion strengths

of the two cell types. It becomes zero if both types have the same strength of homotypic
adhesion. We use the absolute value in the definition of the parameter β∆

(2) as we are not
interested in which cell type has the stronger homotypic adhesion. We find numerically
that the parameter β∆

(2) affects how many cell switches are required to reach the asymptotic
level of segregation, see Figure 3. For a fixed effective adhesion parameter β∗(2) = 3, which
means for the same asymptotic level of cell segregation, Figure 3 shows the number of cell
switches required to reach certain thresholds of cell segregation, here ω ≥ 0.7, ≥0.8 and
≥0.9. This number increases with increasing β∆

(2) independently of the chosen thresholds.

Figure 3. The convergence parameter slows down the sorting process. For each β∆
(2) value a different

intercellular adhesion parameter β(2) with β∗(2) = 3.0 is used and every simulation is repeated three
times, see black lines. When a simulation reached an order indicator value ω ≥ 0.7, ≥0.8 and ≥0.9
for the first time the corresponding cell switch number is marked with a blue square, green dot
and orange triangle. Each simulation has a random start configuration ηt=0 with an initial order
indicator value ω(ηt=0) ≈ 0.5 and the intercellular adhesion parameters for each convergence speed
parameter β∆

(2) are: (0.5, 0.5,−1) for 0, (−0.5, 1.5,−1) for 2, (−1.5, 2.5,−1) for 4, (3.5,−2.5,−1) for 6
and (−3.5, 4.5,−1) for 8.
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This numerical observation is supported by a heuristic argument: Consider again
the limit scenarios of a cell switch, i.e., two cells at a straight interface between clusters
which switches with a particular neighbor with rate cmix = exp[−3(β00 + β11)− 2β01]
and a single cell of one type within a cluster of opposite type which switches with rate
cunmix, 0 = exp[−3β11 − 5β01], or cunmix, 1 = exp[−3β00 − 5β01] respectively. In the sym-
metric case of equal homotypic adhesion parameters β00 = β11, which implies β∆

(2) = 0
and cunmix, 0 = cunmix, 1, cell switches of the two single cells in either cluster are equally
frequent and these switches occur in a certain ratio with cell switches at the interface. If the
symmetry is broken by increasing β∆

(2) at constant β∗(2) and βs
(2), for instance β00 > β11,

implying that cunmix, 0 > cunmix, 1, the single cell of type w = 0 is favored to leave the
cluster of opposite type in comparison to the symmetric case and in particular compared
to the other single cell of type w = 1. Thus, segregation is now limited by the slower
process of the single cell of type w = 1 moving out of clusters of type w = 0. Moreover,
the rate cmix of a cell switch at the interface is constant if only the parameter β∆

(2) is altered.
Thus, in between two switches of a single cell of type w = 1 (rate cunmix, 1) out of a type
w = 0 cluster there are more cell switches at the interface (rate cmix) than in the symmetric
case. Please note that these back-and-forth switches at the interface do not progress the
segregation but increase the number of total cell switches. This scenario illustrates how an
increase of the parameter β∆

(2) increases the number of cell switches required to reach the

asymptotic level of segregation. Thus, we denote β∆
(2) as convergence speed parameter.

Please note that the convergence speed parameter β∆
(2) in Equation (10) is proportional

to the Euclidean distance between β(2) and the related symmetric adhesion parameters β
sym
(2)

with the same values of β∗(2) and βs
(2). Indeed, for a given vector of adhesion parameters

β(2) = (β00, β11, β01)
T with system parameters βs

(2), β∗(2), and β∆
(2), the corresponding

symmetric adhesion parameters β
sym
(2) =

(
1
2 [β00 + β11], 1

2 [β00 + β11], β01

)
have the same

system parameters βs
(2) and β∗(2) but a convergence speed parameter of zero. The Euclid

distance of the adhesion parameters β(2) to this symmetric case β
sym
(2) is

∥∥∥β(2) − β
sym
(2)

∥∥∥ =

√
1
2
|β00 − β11| ∼ β∆

(2) . (11)

Since the convergence speed parameter is zero, the symmetric case β
sym
(2) leads to the

fastest convergence to the asymptotic level of segregation for the given system param-
eters βs

(2), β∗(2). In contrast to the definition of the convergence speed parameter β∆
(2) in

Equation (10), the definition of β∆
(2) via Equation (11) can be generalized to N cell types,

see below.

3.2. The Effective Adhesion Parameter for Arbitrary Number of Cell Types

For a mix of more than two cell types neither the form nor the existence of an effective
adhesion parameter are known. Assuming that for an arbitrary number N of cell types
an effective adhesion parameter β∗(N) exists, we postulate its form based on the general-
ization of our arguments for the case of two cell types. We also postulate the form of the
convergence speed parameter β∆

(N) as introduced for two cell types.
The scaling parameter is directly generalized from Equation (6) to N cell types

βs
(N) =

N−1

∑
i=0

βii +
N−1

∑
i<j

βij = 〈β(N), as〉

as = (1, . . . , 1)T .

(12)

and only scales all waiting times between cell switches as in the case of two cell types.
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The invariance against relabeling of the cell types applies as well to N cell types which
implies, analogously to Equation (7),

β∗(N) = a
N−1

∑
i=0

βii + b
N−1

∑
i<j

βij = 〈β(N), a∗〉 (13)

where the constants a, b are set again by the condition

〈a∗, as〉 = 0 ⇒ Na = −N(N − 1)
2

b . (14)

Choosing again a = 1, the effective adhesion parameter has the form

β∗(N) =
N−1

∑
i=0

βii −
2

(N − 1)

N−1

∑
i<j

βij (15)

with corresponding vector a∗. For N = 2 this equals the result for two cell types from
Equation (9) and for N = 3 this takes the form

β∗(3) = β00 + β11 + β22 − (β01 + β02 + β12) . (16)

In contrast to the case of two cell types, the space perpendicular to the vectors as and
a∗ for N > 2 is not one- but [N + N(N − 1)/2− 2]-dimensional, i.e., two-dimensional
for N = 3. Thus, the definition of a convergence speed parameter β∆

(N), analogous to
Equation (10), is ambiguous. One option is to consider all pairs of cell types and their
corresponding convergence speed parameters, e.g., |β00 − β11|, |β00 − β22|, and |β11 − β22|
for N = 3. Since the segregation of all cell types requires the segregation of each pair of
cell types, these pair-wise parameters should predict the convergence speed on subsets
of intercellular adhesion parameters analogously to Figure 3. For instance, when two
vectors of intercellular adhesion parameters are equal except they differ in one of these
pair-wise convergence speed parameters, the one with the smaller parameter leads to
a faster convergence. However, these pair-wise parameters do not allow comparison if
several of them differ between two vectors of adhesion parameters and the influence of the
heterotypic parameters is not even considered. Thus, the convergence speed parameter
β∆
(N) is instead defined by the generalization of Equation (11)

β∆
(N) =

∥∥∥β(N) − β
sym
(N)

∥∥∥
β

sym
(N)

=
(

β̄hom, . . . , β̄hom, β̄het, . . . , β̄het
)

β̄hom =
1
N

N−1

∑
i=0

βii , β̄het =
2

N(N − 1)

N−1

∑
i<j

βij .

(17)

We postulate, in analogy to the case of two cell types, that the parameter β∆
(N) deter-

mines the number of cell switches required to reach the asymptotic level of segregation for
a given effective adhesion parameter β∗(N).

3.3. Numerical Evidence for the Effective Adhesion Parameter

We test our analytical prediction for the effective adhesion parameter for more than
two cell types, by comparison with numerical simulations of the DMM model for two
and three cell types. We find in both cases that the proposed effective adhesion parameter
determines the asymptotic level of cell segregation. However, there are deviations due
to the limited simulation time, from which the asymptotic level of the order indicator
ω is extrapolated. This is revealed by additionally linking the simulation results to the
convergence speed parameter β∆, introduced above. For two cell types, we observe that for
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small values of β∆
(2), which refers to simulations which converge quickly to their asymptotic

value, the dependency between β∗(2) and ω agrees almost perfectly with the analytically
proven prediction. Deviations from the analytical prediction are the most pronounced the
larger the convergence speed parameter is. For three cell types, we observe an analogous
relation between deviations from the postulated dependency on the effective adhesion
parameter β∗(3) and a convergence speed parameter β∆

(3) as introduced above.

3.3.1. The Asymptotic Level of Cell Segregation Depends on the Effective
Adhesion Parameter

At first the dependence of the level of asymptotic cell segregation ω on the effective
adhesion parameter β∗ is tested. For the 2-cell-type, the effective adhesion parameter
clearly determines the asymptotic sorting state, see dark blue points in Figure 4a, i.e., ω
increases with increasing β∗(2), as predicted by Voss-Böhme and Deutsch [12], and all
configurations stay randomly mixed at β∗(2) = 0, i.e., ω(β∗ = 0) = 0.5 (see black dashed
lines), as predicted by the heuristic argument above. The monotonic dependence of the
asymptotic order parameter ω on the proposed effective parameter β∗(2) is supported
by a value of 0.81 of the spearman rank correlation coefficient (Kendall rank correlation
coefficient of 0.58). Additionally, Figure 4a shows the asserted influence of the convergence
speed parameter β∆

(2) on level of cell segregation dynamics. More precisely, the higher

the β∆
(2) value is the slower is the sorting process and the closer the respective ω value

remains to ω(t = 0) ≈ 0.5 until the end of the simulation. For these intercellular adhesion
parameters β(2), the asymptotic value of the order indicator has not yet been reached,
which is why they are scattered above and below the increasing line, indicated by the dark
blue points in Figure 4a. Note, that also the effective adhesion parameter β∗ shows impact
on the amount of cell switches needed for a system to reach its asymptotic cell segregation
ω. This is further investigated in Appendix D.

Analogous results for the case of three cell types with the postulated effective adhesion
parameter are shown in Figure 4b. Qualitatively the same functional relation between
the hypothesized effective adhesion parameter β∗(3) and ω is visible as in the case of
two cell types, see dark blue points in Figure 4b. This includes the prediction that all
configurations stay randomly mixed at β∗(3) = 0, i.e., ω(β∗ = 0) = 0.33 (see black dashed
lines). The monotonic dependence of the asymptotic order parameter ω on the proposed
effective parameter β∗(3) is supported by a value of 0.79 of the Spearman rank correlation
coefficient (Kendall rank correlation coefficient of 0.53), which is of similar quality as in the
case of two cell types. Based on the analogy of the numerical results for two and three cell
types, we conclude that β∗(3) predicts the level of sorting reached asymptotically such as
β∗(2) does in the 2-cell-type case. Correspondingly, the asymptotic cell segregation exhibits

the postulated influence of the convergence speed parameter β∆
(3). Note that the restriction

in Figure 4b to simulations with an β∆
(3) < 3.0 ensures a sufficient sampling of data points

with smaller β∆
(3) parameter values. Smaller β∆ values result in more simulations reaching

their asymptotic cell segregation.
For the 2-cell-type system, we can additionally visualize the effective adhesion param-

eter β∗(2) as a plane in 3D, see Figure 5, with E : (β00 + β11)− 2β01 = 0 for β∗(2) = 0 and its
normal vector a∗ = (1, 1,−2). This plane separates simulated data points based on their
level of asymptotic cell segregation ω. This means, the direction a∗ indeed describes the
direction of order progression, see color transition in Figure 5.
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Figure 4. The level of the asymptotic cell segregation is predicted by the effective adhesion parameter.
(a) Each point corresponds to a simulation whose intercellular adhesion parameter is drawn uniform,
i.e., β(2) ∼ U[−10, 10]3, with a random start configuration, i.e., initial order indicator ω(t = 0) ≈ 0.5.
The curve ω(β∗(2)) intersects with the predicted point ω(β∗(2) = 0) = 0.5 (highlighted by black
dashed lines). A data point represents the asymptotic estimate ω of this simulation after ≈ 300, 000
cell switches, along with the corresponding effective adhesion parameter β∗(2) and convergence

parameter β∆
(2) (color bar). The corresponding shift parameter βs

(2) is not shown. (b) Analogous
representation for the data points of 3-cell-type systems starting with random configurations, i.e., ini-
tial order indicator values ω(t = 0) ≈ 0.33. The curve ω(β∗

(3)) intersects with the predicted point
ω(β∗(3) = 0) = 0.33 (highlighted by black dashed lines). The intercellular adhesion parameters are

also drawn uniform, i.e., β(3) ∼ U[−10, 10]6 and have an additional condition such as β∆
(3) < 3, see

Equation (17), to reduce scattering for visibility, see text for details.

Figure 5. A plane with the analytically derived normal vector separates data points respective to
their estimated asymptotic level of cell segregation. The points refer to the same data as in Figure 4a.
The coloration represents the level of asymptotic cell segregation ω. The analytically predicted plane
(gray rhomb in the middle) with the normal vector a∗ is E : β00 + β11 − 2β01 = 〈β(2), a∗〉 = 0.
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We present analogous analysis for 4- and 5-cell-type systems, see Appendix C, Figure A1
and find a strong support of the analytically predicted effective adhesion parameter as well.

3.3.2. Estimating the Effective Adhesion Parameter Using Statistical Learning Methods

We confirmed qualitatively the compliance between our prediction and the numerical
data in the previous section. Now we confirm additionally our prediction by comparing the
analytical effective adhesion parameters for two and three cell types to the corresponding
estimates obtained via two statistical learning methods, Support Vector Machines (SVM)
and Logistic Regression (Logit-Model) [16]. More precisely, for the general case of N
cell types, the learning methods provide a hyperplane equation of the effective adhesion
parameter β∗(N). Therefore, we quantify statistically the deviation from our analytical
prediction. This is done for β∗(2) and β∗(3) based on the numerical data ω(β) referred to in
the previous section and displayed in Figure 4a,b, respectively. Both methods are suited
for this task because they fit the linear dependency of the parameter β∗ on the intercellular
adhesion parameters β, are well documented and directly available from libraries such as
scikit-learn for Python [17], and, in contrast to some other approaches like deep learning,
both quantify the factors that lead to classification.

The learning methods provide a hyperplane equation as a linear predictor to separate
classified data points. Thus, the numerical data points ω(β) are first classified based on
their asymptotic order indicator ω and a classification threshold. As thresholds, we chose
the random configurations, i.e. ω ≥ 0.5 for two cell types and ω ≥ 0.33 for three cell types.
Due to the symmetry of the effective adhesion parameter β∗, see Equations (7) and (13),
the number of coefficients, which must be estimated, can be reduced to the constant a for
the homotypic and the constant b for the heterotypic adhesion parameters. The result-
ing hyperplane equations for both 2-cell-type and 3-cell-type cases are presented in the
headlines of Table 1a,b.

Table 1. The effective adhesion parameter is confirmed by statistical learning methods. (a) For the
estimation of the effective adhesion parameter β∗(2), 2000 simulations are conducted under the same
conditions as described in Figure 4a. After simulation, each data point is classified: ω > 0.5 as class
1, else class −1. The classified data points are used by the SVM and Logit-Model to estimate the
homotypic a and the heterotypic b coefficient as well as the intercept i according to the table head.
The model accuracy is tested via 5-fold cross-validation. (b) Analogous for the 3-cell-type systems
the simulation conditions are described in Figure 4b. For data point classification applies: ω > 0.33
as class 1, else class −1. For details on the estimation process as well as the model accuracy test, see
Appendix E.

(a) 2-cell-type
systems

0 = a(β00 + β11) + bβ01 + i Model

a/a b/a i/a Accuracy

SVM 1.0000 −1.9764 −0.0374 0.9965
Logit 1.0000 −1.9763 −0.0455 0.9965

Theoretical prediction 1 −2 0

(b) 3-cell-type
systems

0 = a(β00 + β11 + β22) + b(β01 + β02 + β12) + i Model

a/a b/a i/a Accuracy

SVM 1.0000 −0.9994 0.2835 0.9895
Logit 1.0000 −0.9935 0.2624 0.9900

Theoretical prediction 1 −1 0

For the 2-cell-type case in Table 1a, both relative coefficients, for homotypic a/a ≈ 1.00
and heterotypic b/a ≈ −1.99 intercellular adhesion parameters, are close to their predicted
values 1 and −2, respectively. The relative intercept i/a, i.e. the value of β∗(2) which
corresponds to the chosen threshold ω = 0.5, is for both learning methods near zero,
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as predicted by our heuristic argument. These predictions of the SVM and the Logit-Model
are of high quality as indicated by model accuracy values close to one. This quantitative
result of the statistical learning methods in Table 1a support the analytical prediction for
β∗(2) = β00 + β11 − 2β01.

Analogous for three cell types, the results of Table 1b support the analytical results
by estimating β∗(3) = β00 + β11 + β22 − β01 − β02 − β12 with convincing model accuracy
of about 0.99 for both learning methods. The relative intercept i/a, i.e., the value of β∗(3)
which corresponds to the chosen threshold ω = 0.33, is for both learning methods close
to zero, as predicted by our heuristic argument. We attribute the deviation of the relative
intercept i/a from zero as well as the lower model accuracy compared to two cell types to
insufficient convergence of the order indicators as predicted by the convergence speed β∆

(3).
We present analogous analysis for 4- and 5-cell-type systems, see Appendix C, Table A2

and again find a strong support of the analytically predicted parameters defining the effec-
tive adhesion parameter.

3.4. The Impact of Interfacial Tension, Adhesion or Repulsion on Cell Segregation

For two cell types, the EAP resolves previous discussions about the impact of inter-
facial tension on cell segregation compared to interfacial adhesion or repulsion [11]: We
predict that a higher level of segregation is reached when the EAP is large, which can be
achieved by both heterotypic repulsion or differential adhesion. In fact, transforming the
relative contact tensions used in ref. [11] to the corresponding EAP by identifying high
tensions Tij in the experiments and the Cellular Potts model (CPM) with low adhesion
parameters βij = −Tij in the DMM, we can predict the experimental and numerical obser-
vations there, see Figure 6. In particular, we find that low lengths of heterotypic interfaces
(LHI) are observed for high EAP values, analogous to the DMM. Figure 6 shows that the
EAP is a better predictor for the asymptotic segregation behavior than the classification
according to the DAH/DITH and HIT hypotheses.

Figure 6. The effective adhesion parameter resolves previous discussions about the impact of
interfacial tension compared to adhesion or repulsion. The indicator ω̃ is analogous to the order
indicator ω and is calculated by subtracting the length of heterotypic interfaces (LHI) reported in
Canty et al. (2017) [11] from an upper bound of 8000 of all lattice site connections, the EAP is computed
from the relative contact tensions Tij used there: β∗(2) = −T00 − T11 + 2T01 = β00 + β11 − 2β01.
In contrast, Canty et al. [11] propose that the asymptotic level of segregation is determined by a
discrete number of scenarios into which all relative contact energies can be sorted. These scenarios are:
Differential Adhesion Hypothesis / Differential Interfacial Tension Hypothesis (DAH/DITH), control
(Ctrl), two cases of High Heterotypic Interfacial Tension Hypothesis (HIT), ectoderm-mesoderm
energies (E-M), negative control (N). The prediction in [11] was that HIT leads to the highest level of
segregation, while E-M, N, Ctrl and DAH/DITH lead to lower segregation.

Thus, we propose that rather than differentiating between intercellular adhesion and
contact tension, the combined effect of intercellular contact on cellular motility, which is
quantified by the EAP, should be focused on. Furthermore, the correct prediction of the
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asymptotic level of segregation in the CPM simulations of Ref. [11] using the effective
adhesion parameter β∗ derived for the DMM suggests that our results may be directly
applicable to CPM models of cell segregation. This is plausible due to the analogous
structure of the exponent of the cell switch rates in the DMM and the energy functional in
the CPM.

4. Discussion

We study analytically and numerically the differential migration model of Voss-Böhme
and Deutsch (2010) [12], which is a cell-based model incorporating differential hypothe-
sis [8], differential interfacial hypothesis [10], and High Heterotypic Interfacial Tension
Hypothesis [11] within a unified framework. We generalize the existence and form of an
effective adhesion parameter (EAP) guiding the asymptotic level of segregation, which is
already known for systems with two cell types [12], to systems with an arbitrary number
of cell types. We additionally predict the critical value of this effective adhesion parameter
at which the system remains randomly mixed. For the case of two and three cell types, we
confirm these theoretical predictions numerically and quantify the form of the effective
adhesion parameter independently using statistical learning methods. The analogous
results for 4- and 5-cell types suggest that our findings are valid in systems with even
higher number of cell types. For two cell types, we show that the EAP resolves previous
discussions about the impact of interfacial tension on cell segregation compared to interfa-
cial adhesion or repulsion [11]. Thus, we propose that rather than differentiating between
intercellular adhesion and contact tension, the combined effect of intercellular contact on
cellular motility, which is quantified by the EAP, should be focused on.

Most previous studies focus on the simplest case of two cell types [7,13,14]. Al-
though three and more cell types are more relevant in real biological systems, studies
of cell segregation and pattern formation with three or more cell types are still rare [15].
By analytically and numerically demonstrating the existence of cell segregation for three
cell types and characterizing its dynamics, we extent results from two cell types to the
more general case.

The differential migration model has recently been applied successfully to reproduce
experimental cell segregation data for two cell types [18]. In particular, the match between
model and experimental observation demonstrated that contact tension and adhesion
are sufficient to explain segregation data without additional mechanisms of collective
motion. Analogously, our analytical and numerical results can be applied to cell segregation
experiments with three or more cell types.
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Appendix A. PCA Implementation

The Differential Migration Model (DMM) [12] is implemented as a rule-based proba-
bilistic cellular automaton (PCA). Instead of the classical discrete-time implementation via
Monte-Carlo steps, a Gillespie-like algorithm is used which simulates the PCA in continu-
ous time. For this, a support data structure is employed which tracks all heterotypic cell
switches. These switches correspond to all possible events of the system for the correspond-
ing lattice configuration η at a given point in time. The code effort is higher compared
to more intuitive time-discrete algorithms due to the necessary update mechanics of the
data structure but it allows the performance of one heterotypic cell switch per iteration
step, since there are iteration steps without actual events in the analogous time-discrete
Monte-Carlo simulation. At each iteration step, one entry from the support data structure
is randomly chosen according to a weight which is calculated from the corresponding cell
switch rate c(x, y, η), see Equation (2). Afterwards, the associated lattice sites x, y inter-
change their occupations. Then all entries of the support data structure that are affected by
the configuration change are updated.

Algorithm A1 The PCA Algorithm.

lattice = initializeLattice(size, cellTypeDistribution);
sds = initializeSupportDataStructure(lattice, cellContactBindingStrength);
while checkSimulationRunCondition do

cellSwitch = getOneRandomCellSwitch(sds);
x, y = getLatticeSitesAssociatedToCellSwitch(cellSwitch);
interchangeLatticeOccupationsAtSites(x, y);
affectedLatticeSites = getAffectedLatticeSites(x, y, lattice, sds);
for z in affectedLatticeSites do

neighbors = getNeighborsOfLatticeSite(z, lattice);
for n in neighbors do

c = getCellSwitchRate(z, n, lattice);
heterotypic = checkLatticeSitesAreHeterotypic(z, n);
data = [n, c, heterotypic];
updateSdsEntryForLatticeSiteWithData(sds, z, data);

end
end

end

Appendix A.1. initializeLattice

Initially , the square lattice S has the start configuration η0 ∈ X. The lattice S is
described by S = {0, 1, · · · , L}2 where L = 25. The parameter called “cellTypeDistribution”
determines the total amount of cells for each cell type w ∈W within the lattice.

Appendix A.2. initializeSupportDataStructure

The support data structure holds the information about the neighbors of all lattice
sites together with the corresponding cell switch rates and whether a cell–cell contact
is heterotypic or not. The parameter named “cellContactBindingStrength” provides the
intercellular adhesion parameters β(N) to calculate the cell switch rate.

Appendix A.3. checkSimulationRunCondition

To finalize a simulation a run condition is met. For this, either an iteration step count
or a normalized order indicator value is used. In most cases, the simulation is stopped at
312,500 cell switches except for the data in Figure 3 where thresholds of the order indicator
are used.



Entropy 2021, 23, 1378 16 of 19

Appendix A.4. getOneRandomCellSwitch

One heterotypic entry is drawn from the support data structure. This heterotypic cell
switch identified by k has the corresponding cell switch rate c(k)(x, y, η). This rate belongs
to the set ζ(η) of all heterotypic cell switch rates, given the lattice configuration η ∈ X.
The probability p(k) that a cell switch k is chosen correlates directly with c(k)(x, y, η). That
is shown in Equation (A1):

ζ(η) := {c(x, y, η) | x, y ∈ S, η(x) 6= η(y)},

p(k) :=
c(k)(x, y, η)

n

∑
j=1

c(j)(x, y, η)

with n = |ζ(η)| and
n

∑
j=1

p(j) = 1 (A1)

Appendix A.5. getLatticeSitesAssociatedToCellSwitch

The lattice sites x, y ∈ S from the chosen cell switch are obtained.

Appendix A.6. interchangeLatticeOccupationsAtSites

The new occupation η(x) ∈ W of lattice site x ∈ S becomes the former occupation
η(y) ∈W of lattice site y ∈ S and vice versa, according to Equation (1).

Appendix A.7. getAffectedLatticeSites

The set Zη→ηxy of all lattice sites affected by the cell switch and the resulting configu-
ration change η → ηxy, see Equation (1), is composed of the direct neighbors u(x, y) of the
lattice sites x, y ∈ S associated with the cell switch η → ηxy and their neighbors. Thus, it is

Zη→ηxy :=
⋃

e∈u(x,y)

N(e) with u(x, y) := N(x) ∪N(y).

Appendix A.8. getNeighborsOfLatticeSite

For a lattice site z ∈ S the neighborhood N(z) is obtained, see description to Equation (2).

Appendix A.9. getCellSwitchRate

The cell switch rate c(x, y, η) between two lattice sites x and y is calculated according
to Equation (2).

Appendix A.10. checkLatticeSitesAreHeterotypic

Two lattice sites x ∈ S and y ∈ S are heterotypic if their corresponding cell types
η(x), η(y) are not equal.

Appendix A.11. updateSdsEntryForLatticeSiteWithData

The updated data in terms of cell switch rate and heterotypic cell contact of the
neighborhood member n ∈ N(z) is assigned to the neighborhood host z within the support
data structure.

Appendix B. Order Indicator

Table A1. Highest and lowest number of homotypic connections for ideal 2- and 3-cell-type systems.
These values are used to normalize the total sum of homotypic connections, see Equation (3).

2-Cell-Type Systems 3-Cell-Type Systems

dmax 1200 1175

dmin 50 0
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If we consider a lattice S = {0, 1, . . . , L}2 then the ideal case of a fully sorted con-
figuration consists of stripes for each of the N cell types, each with a height of L

N and a
length of L. In this scenario the highest amount dmax of homotypic lattice site connections is
dmax = 2 · L2 − n · N, since every lattice site has two unique homotypic connections except
for those at cell-type interfaces. These only have one homotypic connection. For the same
ideal scenario, a chessboard configuration where no homotypic connections exist can be
achieved for the right lattice side length L. Therefore, dmin = 0.

In practice, a discrete lattice with 252 lattice sites cannot be separated into even stripes.
Due to this imperfection, small deviations from these values occur in data. In the case of
2-cell-type systems, a lattice side of L = 25 causes dmin = 2 · L = 50 because every cortical
lattice site has one homotypic connection due to periodicity.

In other publications such as Canty et al. (2017) [11], the level of cell segregation and
clustering is quantified by the length of the heterotypic interface, here we use the amount
of homotypic lattice site connections, see Equation (3).

Appendix C. Numerical Evidence for the Effective Adhesion Parameter with Extended
Cell-Type Number

Figure A1. The level of the asymptotic cell segregation is predicted by the effective adhesion parameter
for 4- and 5-cell-type systems. (a) Each point corresponds to a simulation whose intercellular
adhesion parameter is drawn uniform, i.e., β(4) ∼ U[−4, 4]10 with an additional condition such
as β∆

(4) < 3 , see Equation (17), to reduce scattering for visibility, see text of Figure 4 for details.
The start configuration is random, i.e., initial order indicator ω(t = 0) ≈ 0.25. The curve ω(β∗(4))

intersects with the predicted point ω(β∗(4) = 0) = 0.25 (highlighted by black dashed lines). A data
point represents the asymptotic estimate ω of this simulation after ≈ 300000 cell switches, along
with the corresponding effective adhesion parameter β∗(4) and convergence parameter β∆

(4) (color
bar). (b) Analogous representation for the data points of 5-cell-type systems, starting with random
configurations, i.e., initial order indicator values ω(t = 0) ≈ 0.20. The curve ω(β∗(5)) intersects
with the predicted point ω(β∗

(5) = 0) = 0.20 (highlighted by black dashed lines). The intercellular

adhesion parameters are also drawn uniform, i.e., β(5) ∼ U[−2.5, 2.5]15 with the additional condition
β∆
(5) < 3.
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Table A2. The effective adhesion parameter is confirmed by statistical learning methods for 4 and
5 cell types. (a) For the estimation of the effective adhesion parameter β∗

(4), 2000 simulations are
conducted under the same conditions as described in Figure A1a. After simulation, each data point
is classified: ω > 0.25 as class 1, else class −1. The classified data points are used by the SVM and
Logit-Model to estimate the homotypic a and the heterotypic b coefficient as well as the intercept i
according to the table head. The model accuracy is tested via 5-fold cross-validation. (b) Analogous
for the 5-cell-type systems the simulation conditions are described in Figure A1b. For data point
classification applies: ω > 0.20 as class 1, else class −1. For details on the estimation process as well
as the model accuracy test, see Appendix E.

(a) 4-cell-type
systems

0 = a
3
∑

i=0
βii + b

3
∑

i<j
βij + i Model

a/a b/a i/a Accuracy

SVM 1.0000 −0.6553 0.8022 0.9615
Logit 1.0000 −0.6625 0.7330 0.9610

Theoretical prediction 1 −2/3 0

(b) 5-cell-type
systems

0 = a
4
∑

i=0
βii + b

4
∑

i<j
βij + i Model

a/a b/a i/a Accuracy

SVM 1.0000 −0.5030 0.5889 0.9555
Logit 1.0000 −0.4913 0.5992 0.9565

Theoretical prediction 1 −0.5 0

Appendix D. The Impact of the Effective Adhesion Parameter on the
Convergence Speed

Figure A2 shows that the larger the EAP β∗ is the more cell switches are needed before
a simulation reaches its asymptotic segregation state which is a fully sorted pattern in the
case of β∗(2) = 12 and β∗(2) = 24 according to the DMM, see Section 2.1. This effect is visible
from about β∗ > 4 and the cause is still unknown.

Figure A2. The effective adhesion parameter also influences the convergence speed exemplified
with 2-cell-type systems. In the case of β∗(2) = 12 (violet) the intercellular adhesion parameters are
(2.0, 2.0,−4.0) and for β∗(2) = 24 (green) they are (4.0, 4.0,−8.0). Both simulations have a random
start configuration, i.e., initial order indicator ω(t = 0) ≈ 0.5 and run for about 7.2 million cell
switches. The asymptotic estimate ω for the last 10% of ≈ 300000 cell switches (gray area) is written
on the corresponding time-series.
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Appendix E. Statistical Learning Methods

All methods, SVM and Logistic regression as well as the 5-fold cross-validation, are
executed in default mode and as recommended by the library scikit-learn. This includes
among others the hyperparameter C = 1.0. The smaller this inverse regularization param-
eter is the more regularization is applied and the lower is the risk of model over fitting.
This also can increase the numerical stability. The default penalization is in both cases l2-
penalty [17]. Since all intercellular adhesion parameters are from the same distribution, see
caption of Figure 4, preprocessing steps such as data scaling are omitted. Other execution
details are:

• SVM: used algorithm implementation “SVC”
• SVM: kernel “linear”
• Logit: used training algorithm/solver “lbfgs”
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