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Abstract

The brain’s ability to tell time and produce complex spatiotemporal motor patterns is critical to 

anticipating the next ring of a telephone or playing a musical instrument. One class of models 

proposes that these abilities emerge from dynamically changing patterns of neural activity 

generated within recurrent neural networks. However, the relevant dynamic regimes of recurrent 

networks are highly sensitive to noise, i.e., chaotic. We describe a firing rate model that tells time 

on the order of seconds and generates complex spatiotemporal patterns in the presence of high 

levels of noise. This is achieved through the tuning of the recurrent connections. The network 

operates in a novel dynamic regime that exhibits coexisting chaotic and locally stable trajectories. 

These stable patterns function as “dynamic attractors” and provide a novel feature characteristic of 

biological systems: the ability to “return” to the pattern being generated in the face of 

perturbations.

Timing is a fundamental component of sensory and motor processing, learning, and 

cognition; yet, the neural mechanisms underlying temporal processing remain unknown1–3. 

On the scale of milliseconds and seconds a number of different mechanisms have been 

proposed to underlie sensory or motor forms of timing, including, internal clocks that rely 

on a pacemaker and counter4, ramping firing rates5–6, multiple oscillator models that rely on 

detecting the beats between oscillators running with different periods7–8, and the 

stochasticity of neural dynamics9. While these models are not necessarily mutually 

exclusive, many of them focus primarily on simple temporal tasks. For example, internal 

clock and ramping models are generally proposed as mechanisms underlying the timing of 

single intervals, and are unlikely to contribute to complex temporal or spatiotemporal motor 

processing such as tapping Morse code or generating cursive handwriting. Here we focus on 

a more general framework that can account for a wide range of temporal and spatiotemporal 

tasks in the range of tens of milliseconds to a few seconds. Specifically, that motor timing 
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relies on the dynamic changes in the pattern of activity of neurons in recurrent neural 

networks1,10–11.

The first models to propose that time might be encoded in the dynamic changes in the 

patterns of active neurons were developed by Mauk, in the context of the cerebellum11–12. 

Subsequent models emphasized the importance of dynamic patterns of activity in a 

population of neurons for neural computations in general13–16. Within this framework the 

state of a network at any given time can be represented by a point in a high-dimensional 

space where each dimension corresponds to the activity level of a neuron. The concatenation 

of these points over time forms a “neural trajectory”. In contrast to conventional attractor 

models, within this “population clock” framework temporal and spatiotemporal 

computations arise from the voyage through state space as opposed to the arrival at any one 

given location. The advantage of computing with neural trajectories is particularly obvious 

for tasks that require timing, because time is implicitly encoded in the trajectory and can be 

readout by downstream neurons. This framework is quite general because it can account for 

both temporal and spatiotemporal processing, that is, the generation of complex motor 

patterns. Furthermore, experimental studies in different brain areas have identified time-

varying populations of active neurons that encode time17–20.

At a theoretical level, the hypothesis that neural networks would be able to autonomously 

generate continuously changing patterns of activity in a flexible and robust manner has been 

controversial. The main challenge has been that recurrent neural networks operating in 

“high-gain” regimes in which recurrent connections are strong enough to generate self-

sustained patterns of activity are highly sensitive to noise, and often formally chaotic21–27. 

Thus, while the dynamics in these networks is potentially computationally powerful, the fact 

that minute levels of noise can produce vastly different neural trajectories effectively 

abolishes their computational power because a given pattern cannot be reliably reproduced 

across trials.

Building on two previous firing rate models28–29, we describe the first example of a 

recurrent network model that produces complex high-dimensional trajectories that are highly 

resistant to noise. This robustness is achieved by tuning the recurrent connections of the 

network. A novel and powerful computational consequence of this approach is that a 

previously chaotic trajectory becomes a locally stable channel or “dynamic attractor”—

meaning that even if the network is perturbed it can return to its trained trajectory. We show 

that these stable neural trajectories can dramatically improve the ability of Random 

Recurrent Networks (RRNs) to tell time and generate complex motor patterns in the 

presence of high levels of noise. Because the current model is based on firing-rate units, the 

problem of chaotic behavior in spiking neural networks remains unsolved. But we show here 

that it is possible to tame chaos in firing-rate recurrent networks, and that the resulting 

dynamics offers a novel neurocomputational framework based on “dynamic attractors”.
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RESULTS

“Innate” Training

The network studied consists of randomly connected nonlinear firing rate units26,28–29. In 

these networks the connectivity is represented by a recurrent weight matrix WRec drawn 

from a normal distribution with a mean of zero and a standard deviation scaled by a “gain” 

parameter g. For large networks, values of g>1 generate increasingly complex and chaotic 

patterns of self-sustained activity26. In all simulations presented here the networks are in 

this “high gain” chaotic regime (g ≥ 1.5)26,30. Figure 1A provides an example of an RRN 

where all the recurrent units connect to a single output unit. There were 800 units, each with 

a sigmoidal activation function, and a time constant of 10 ms (see Online Methods). By 

adjusting the synaptic weights onto the output unit the network can be trained to produce 

some desirable computation, such as a timed response or a complex motor output10–12,28 

(see below). The network is spontaneously active (i.e., it has self-sustaining activity), and an 

external input at t=0 ms (50 ms duration) temporarily kicks the network into a delimited 

volume of state space, which can be defined as the starting point of a neural trajectory. 

Across trials, even in the absence of continuous noise (omitted here for illustrative purposes) 

different initial conditions result in a divergence of the trajectories as illustrated in Figure 1B 

(Pre-training) by the “firing rates” of 3 sample units. This divergence renders the network 

useless from a computational perspective because the patterns cannot be reproduced across 

trials. One approach to overcome this problem has been to use tuned feedback to control the 

dynamics of the network28–29. An alternate approach would be to alter the weights of the 

RRN proper in order to decrease the sensitivity to noise; this approach, however, has been 

limited by the challenges inherent in changing the weights in recurrent networks. 

Specifically, since all weights are “being used” throughout the trajectory, plasticity tends to 

dramatically alter network dynamics, produce bifurcations, and not converge31.

It is important to note that in the current “reservoir” framework the precise pattern produced 

by the recurrent network is largely irrelevant—what matters is that it is complex and that 

these patterns can be used by downstream units13,16,32. This means that, independent of the 

ultimate desired output, there is really no specific desired target activity pattern within the 

recurrent network. Thus we reasoned that noise sensitivity could be reduced by training the 

units in the network to reproduce their “innate” pattern of activity, rather than some 

trajectory determined by the “desired” output. We define an “innate” trajectory as one 

triggered by a given input in an untrained network (using an arbitrary initial condition)—

here the innate trajectories were chosen in the absence of noise, but they can also be chosen 

in the presence of noise (see Online Methods). The approach is to tune the recurrent units to 

do what they can already do. Towards this end we used a modified FORCE algorithm to 

adjust the recurrent weights to rapidly minimize the errors during a training trial (see Online 

Methods)29. By training the RRN to reproduce its innate trajectory over a 2.25 s period it 

was possible to create a locally stable transient channel (Fig. 1B, Post-training), largely 

preserving the shape of the original trajectory while turning it into an “attracting” one within 

the 2.25 sec window. Outside the training window, however, the trajectory rapidly diverges. 

Once the RRN generates stable trajectories, the output can be trained to produce a timed 

response at 2 sec (Fig. 1B). This timed response is now robust to differences in initial 
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conditions, noise, and large perturbations in the recurrent network (see below for a more 

detailed analysis). Fig. 1C shows the output unit in an example in which the pretraining and 

trained RRN are perturbed with a 10-ms pulse from a second input unit (not shown) at t=500 

ms (note the perturbation in activity). Despite this perturbation the trained network can 

“recover” and return to the innate trajectory and generate a timed response at approximately 

2 sec.

Generating Robust Complex Spatiotemporal Patterns: Handwriting

In the above example the timing that generated the late response is encoded in the neural 

dynamics of the network. This same high-dimensional dynamics can be used to generate 

arbitrary spatiotemporal patterns that are highly resistant to noise and perturbations. To 

illustrate this we first trained the RRN to robustly reproduce two different innate activity 

patterns in the same manner described above and then trained two output units to generate 

handwritten words. Two distinct brief inputs (50 ms duration) were used to stimulate an 

RRN in the absence of noise to generate the two innate trajectories for training the RRN. 

After training the RRN on both trajectories, two output units (representing X and Y axes) 

were trained and then tested (in the presence of continuous noise) to produce the words 

‘chaos’ and ‘neuron’ in response to Inputs 1 and 2, respectively (Fig. 2A). One remarkable 

feature of creating locally stable trajectories is that they function as “dynamic attractors”: 

even relatively large perturbations to the RRN can be self-corrected. This feature is shown 

by perturbing the network activity after the trajectory has already been initiated (Fig. 2B). 

The perturbation was produced by a 10-ms pulse of an additional input unit randomly 

connected to all units in the RRN with an input amplitude of 0.2, injected at t=300 ms 

(approximately the time of the ‘h’ and ‘e’ during the ‘chaos’ and ‘neuron’ trajectories 

respectively). Despite the obvious effect of the perturbation on the state of the recurrent 

network (as evidenced by the altered output), the network returned to the original trajectory 

over the course of a few hundred milliseconds resulting in increasingly clear writing.

Computational Power of Innate Training

In order to characterize the computational power of the innate training we quantified the 

“timing capacity” of the network by determining the maximal delay after the input the 

network could produce (Fig. 3). The target output function was flat (non-zero) with a simple 

pulsed response at different delays after the 50 ms input. Fig. 3A shows that a network of 

size N=800 (g=1.5) reliably learned a 5000 ms delay (note that estimates of timing capacity 

must be interpreted in the context of the time constant of the units, 10 ms), but not a 6000 

ms delay, reflecting the finite “memory” of such networks28,33. To quantify this we 

parametrically varied the delay and compared the performance of the innate training 

approach to two additional architectures (Fig. 3B), using the same set of ten initial networks 

for all architectures. Together the three architectures were: 1) the current approach (“Innate 

training”) where recurrent plasticity within the RRN was directed at the innate trajectory; 2) 

an echo-state/FORCE approach (“Echo-state”) where the output feeds back onto the RRN, 

and where only the connections from the recurrent to output units were plastic28–29; 3) an 

RRN with recurrent plasticity (“Fair recurrent plasticity”) which provided a control for the 

amount of plastic connections involved in the training; thus, as in Architecture 1, in this 

architecture the weights of 60% of recurrent units were adjusted according to the error in the 
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output unit29. Both training and testing in this task occurred with random initial conditions 

and in the presence of continuous noise (noise standard deviation I0=0.001). As shown in 

Fig. 3B, the innate training of the recurrent connections dramatically improved the maximal 

time delay of the network (defined as the time delay at which performance decays to 0.5), 

producing on average a 5-fold improvement.

In Figure 3 all networks were trained for 30 training trials of the RRN. To demonstrate the 

effects of the number of training trials on performance we also carried out the same analysis 

over 10 and 20 training trials. These results reveal that there was a trade-off between the 

duration of the training window, the number of training loops, and performance: shorter 

windows required fewer training trials to achieve maximal performance (Fig. S1).

The observed “timing capacity” of approximately 5 seconds (for a network of size N=800) 

raises the question of what determines this limit. There are a number of factors contributing 

to this capacity, including the intrinsic richness of the RRN patterns (related to g), noise 

levels, and ability of the output unit to readout these patterns. But, it is possible to obtain an 

empirical upper bound on the “raw” encoding capacity of the network by performing the 

same analysis shown in the absence of any noise and with an untrained recurrent network 

(Fig. S2). These results reveal an upper bound of approximately 20 s. This upper bound is, 

of course, essentially useless from a computational perspective because the network is 

chaotic. But it does provide an empirical ceiling for the temporal encoding capacity of the 

model.

Cross-Trial Variability and Timing Precision

Implicit in the findings above is that after training there are different types of dynamics 

within the same network: while ongoing activity (or trajectories triggered by untrained 

inputs) continue to produce chaotic trajectories, the trained trajectories exhibit locally stable 

patterns of activity. Recent experimental studies have also revealed different types of 

dynamics within the same network. For example, it has been shown that cross-trial 

variability of neural activity is “quenched” in response to stimulus onset34; that is, the 

variability of neural “ongoing” or “background” activity is significantly larger than that 

observed after a stimulus or during a behavioral task. We thus quantified the cross-trial 

variance before and after the brief 50-ms input in the trained and untrained networks. 

Additionally, to “push the envelope” in terms of how much noise the network can handle we 

increased the noise levels during training and testing (as well as the number of training 

trials). The variance was calculated over 8 test trials for each of the 800 units over a time 

period starting 500 ms before the stimulus. The target delay was 1000 ms (and the training 

window was 1300 ms). The sample “firing rates” of three units in Fig 4A (upper panel) 

show that in presence of continuous very high levels of noise (I0=1.5) each of the recurrent 

units exhibits significant jitter, reminiscent of the membrane voltage fluctuations observed 

in vivo, resulting in a high cross-trial variance before stimulation (t<0). Nevertheless, in 

response to the input, the trained network was still able to robustly generate an appropriately 

timed output (Fig. 4A, middle panel). And, as expected, this robustness reflects a dramatic 

decrease in the variance of the activity after the stimulus onset (Fig. 4A, lower panel).
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Psychophysical studies have carefully characterized the precision of timed motor responses 

(see Discussion). The variance of timed motor responses in the range of up to a few seconds 

is generally well captured by a linear relationship with t2, known as the generalized Weber’s 

law. To characterize the variance signature of the model we trained the output units to 

generate several consecutive responses at intervals of 250 ms. Fig 4B shows the output of 

two different networks over 100 test trials, and the variance of the peak of each response 

against t2. The relationship was well fit by a linear function (R>0.9 in each of 5 networks 

tested). These results establish that stable RRNs can account for Weber’s law. We stress, 

however, that depending on the noise levels and intervals being trained nonlinear 

relationships are also observed (see Discussion).

Noise Analysis, Suppression of Chaos, and Stimulus Specificity

We next examined two critical issues relating to the stability and dynamics of the trained 

recurrent networks. First, we performed a parametric noise analysis in order to quantitatively 

characterize the response of the trained networks in the presence of high levels of noise. To 

this end different levels of noise were continuously injected into all 800 units of the 

recurrent network. Second, we examined whether training specifically altered the noise 

sensitivity of the trajectory elicited by the trained input, or if training produced global 

changes of all network trajectories. This question can be seen as addressing whether learning 

(creating locally stable trajectories) was stimulus specific. Each of 10 different networks 

(N=800, g=1.8) was stimulated with two different 50-ms long inputs. The neural trajectory 

produced by Input 1 (In1) served as the “innate” training target (duration of 2 s) for 

recurrent plasticity, while the trajectory triggered by the second input (In2) served as a 

“control” to determine the effect of training on untrained trajectories. After training, 

performance was quantified by examining the correlation within the 2 sec window between 

the trajectories elicited in the presence of noise in relation to the trajectory in the absence of 

noise (“reproducibility”; see Online Methods). After training the activity patterns in the 

recurrent units were very similar in the absence and in the presence of continuous noise at 

levels of 0.001 and 0.1, but not 1.0 (Fig. 5A). Average data (Fig. 5B) shows that over noise 

amplitudes of up to 0.1 performance in response to In1 was essentially perfect. In these 

simulations the RRNs were trained for 20 trials (in the presence of noise with amplitude 

0.001). The reproducibility was not significantly better with 30 training trials (Fig. S3). But 

the sensitivity to noise can be even further decreased by training in the presence of more 

noise for more trials (e.g., Fig. 4 and supplementary Figs. S1 and S3).

Training to the In1 trajectory also improved the reproducibility of In2, but despite this 

improvement there was a fundamental difference between the trained and untrained 

trajectories. The increased reproducibility of both the trained and untrained patterns does not 

imply that either of them is no longer chaotic—rather it provides an estimate of how much 

two trajectories diverge within a 2 second window in response to different levels of noise. 

Thus, to formally characterize the behavior of the networks before and after training we 

quantified the divergence of trajectories by estimating the largest Lyapunov exponent (λ)—

which provides a measure of the rate of separation of two nearby points in state-space, a 

standard way to determine if a dynamical system is chaotic or not. For each of the ten 

networks, λ was numerically estimated for the trajectories elicited by In1 and In2, both 
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before and after training (Fig. 6), and both within and outside of the training window. Before 

training both trajectories exhibited positive exponents, indicative of exponential divergence 

and thus chaotic dynamics. After training the mean λ across networks for In1 was not 

significantly different from zero, suggestive of local stability. The mean λ for In2 also 

decreased, but remained above zero (10/10 networks). The dynamics in response to both 

inputs outside the training window (between t=8 s and t=10 s) exhibited chaotic dynamics 

(8/10 networks) or entered stable limit cycles (2/10). Which of these regimes occurred was 

in part dependent on the initial structure of the network and the extent of the training: lower 

initial values of λ and/or more training loops were more likely to lead to a limit cycle (not 

shown). Importantly, a 2×3 two-way ANOVA with repeated measures (factors “Input” and 

“Training”) showed a significant interaction effect (F2,18=20.7, p=2×10−5), meaning that λ 

post-training was differentially affected by Input1.

These results demonstrate that the original “innate” trajectory was transformed into a locally 

“attracting” trajectory—best described as a stable transient channel to the chaotic attractor 

(see Supplementary Note for a discussion of other relevant chaotic phenomena). Thus in a 

local sense the chaotic behavior of the trained trajectory was “tamed” by training. In contrast 

the untrained trajectories remained chaotic.

In summary, while Fig. 5B demonstrates an improvement in the reproducibility of the 

untrained trajectory, Fig. 6 establishes that the untrained trajectory is still chaotic—that is, in 

response to a perturbation the trajectories will still diverge at an exponential rate. Fig. S4 

provides an intuitive way to visualize the practical meaning of these results. In response to 

fairly large perturbations the trained trajectory exhibits the desirable feature of being able to 

“find its way back” after being perturbed. Whereas in response to small or large 

perturbations the untrained trajectory will continue to diverge off on some new path (albeit 

at a slower rate than before training), even though it can stay “on track” for a few seconds in 

response to tiny perturbations.

Mechanisms: Network Structure After Training

As a first approach to characterize the relationship between the observed behavior and the 

structure of the trained recurrent networks, we examined the distribution of weights and the 

connectivity patterns before and after training. The distribution of the nonzero recurrent 

weights changed very consistently (Fig. 7A). Innate training led to a non-Gaussian 

distribution with long tails (note that the number of nonzero weights does not change 

because training does not alter which units are connected), meaning that the median absolute 

synaptic weight increased (Pre-train median±mean absolute deviation from the median, 

MAD, across 10 networks: 0.1358±0.0004; Post-train: 0.147±0.001; paired Wilcoxon sign-

rank test, p=0.002). Shuffling the weights (but not the connections) of the recurrent matrix 

WRec after training leaves the weight distribution untouched; however, the stability 

properties of the network are destroyed (Fig. 7B). Thus, it’s not simply the statistics of the 

synaptic weights or the binary connectivity what defines the network behavior. As an 

example of the importance of precise wiring rather than the distribution, we found that post-

training weights from bidirectional connections were significantly stronger on average than 

those from unidirectional connections (in absolute value; unidirectional median±MAD 
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across networks: 0.145±0.001; bidirectional: 0.161±0.003; paired Wilcoxon sign-rank test, 

p=0.002; Fig. S5). Interestingly, both the long-tailed weight distribution and the 

bidirectional vs. unidirectional connectivity features observed here have been reported in the 

rat visual cortex35.

In order to explore the role of the connectivity structure of the trained networks we 

computed the distribution of local clustering coefficients which are associated with 

recurrency and self-sustained activity (see Methods)36. The cyclic clustering coefficients 

provide a measure of the number of neuron triplets connected in a circular fashion, weighted 

by their synaptic strengths. As shown in Fig. 7C, innate training increased the median cyclic 

clustering coefficients (Pre-train median ± MAD across networks: 0.01270 ± 0.00005; Post-

train: 0.0139 ± 0.0001; paired Wilcoxon sign-rank test p=0.002) and made the distribution 

of the clustering coefficients have a longer right tail and a non-Gaussian distribution. 

Interestingly, innate training also resulted in an increase in the non-cyclic clustering 

coefficients (Pre-train median ± MAD across networks: 0.01280 ± 0.00005; Post-train: 

0.0142 ± 0.0002; paired Wilcoxon sign-rank test p=0.002; see Fig. 7D), leading to a stronger 

short-range feedforward structure.

To determine whether the observed dynamics reflected the specific wiring signature of the 

trained networks, we calculated both cyclic and non-cyclic clustering distributions after 

shuffling the weights of the trained networks (Fig. 7C and D). Shuffling significantly altered 

the distribution of the cyclic distribution more than that of the non-cyclic coefficients (two-

sample Kolmogorov-Smirnov test between Post-train and Post-train shuffled for every 

network, all cyclic p values <0.002; p values of non-cyclic distributions ranged from 0.002 

to 0.11), suggesting that the presence of cyclic clusters may have an important role in the 

ability of an RRN to generate complex yet stable neural trajectories. However, as noted 

above an untrained input can produce a chaotic trajectory after training, thus it is clear that 

some interaction between the input and the structure of the recurrent network is involved in 

the resulting dynamics.

As an initial attempt to correlate the stable activity pattern with the structure of the network 

we examined the correlation between all of the plastic recurrent weights Wij of a network 

and the correlation in “firing rates” of the pre- and postsynaptic units ri and rj during the 

trained innate trajectory (Fig. S6). There was a moderate correlation R=0.355±0.005 

(p<10−16 for each of 5 networks examined) between the initial weights and the presynaptic-

postsynaptic correlations. Contrary to our expectations, there was actually a small but 

significant decrease in this correlation after training (R=0.322±0.005; p<10−16 for each of 

the 5 networks). Overall these results indicate that the stability of the trained trajectory is not 

a simple “optimization” of the weights based on the mean correlation of presynaptic-

postsynaptic activity.

DISCUSSION

Here we describe a robust and general mechanism by which recurrent neural networks could 

encode time and generate complex spatiotemporal patterns. The model builds on a number 

of previous studies10–11,16,28–29, but is unique in the extent to which it behaves as a 
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“dynamic attractor”—that is, the network can return to and complete a trained pattern even 

when the entire recurrent network is significantly perturbed. Indeed, in the sense that 

previously chaotic trajectories are turned into stable ones, it can be said that this approach 

“tames” chaos. In addition to the locally stable nonperiodic trajectories the network 

exhibited coexisting chaotic trajectories. These features are absent from previous models 

operating in the high gain regime, including those that used controlled feedback or that 

incorporated recurrent plasticity driven by the output error (Architectures 2 & 3 in Fig. 3)29. 

Here local stability was achieved by tuning the weights of the recurrent network to 

reproduce an “innate” trajectory, effectively teaching the network to robustly reproduce one 

of the arbitrary trajectories it can already generate. The advantage of training on an “innate” 

trajectory is that it guarantees that the network is attempting to learn an attainable trajectory. 

The outcome of training is that the “learned” trajectories are locally stable over many 

seconds despite the fact that all units in the network have a 10-ms time constant. Below we 

discuss the implications of these findings to temporal processing, neural computation, the 

biological plausibility of this model, and experimental predictions.

Implications for the Neural Mechanisms of Timing

A longstanding and ongoing debate on the neural basis of timing relates to where in the 

brain temporal computations take place and whether timing is a result of centralized 

(“dedicated”) or general (“intrinsic”) mechanisms3. Our view is that, precisely because 

timing is critical to so many forms of processing, it is a general computation performed by 

recurrent neural networks. For this reason, the current model is presented as a general 

computational framework of recurrent networks that may be engaged in a number of 

different areas depending on the task at hand. Indeed, this view is supported by the growing 

experimental literature suggesting that a large number of different brain areas are involved 

in timing. These areas include, but are not limited to, the cerebellum, basal ganglia, 

hippocampus, and motor, frontal, and parietal cortex1–2,37–43.

Traditionally the experimentally observed variance signature of timed responses has been 

used as an important criterion to evaluate models of timing. Within a given task timing 

variability is often well described by Weber’s law or the scale property, meaning that there 

is a constant ratio between the standard deviation of the response and the interval being 

timed2. For motor timing on the scale of up to a few seconds it is established that variability 

is best accounted for by Weber’s generalized law, in which the variance of the response is 

linearly related to time squared (plus an additional variance term). As shown in Fig. 4B, the 

timing described here is well captured by the generalized Weber function, but we emphasize 

that this result is dependent on parameters. Specifically, variance can become either sub- or 

supralinear depending on the overall level of noise and the timescale being examined: with 

very low noise levels the relationship tends to be sublinear, and over time spans that exceed 

the timing capacity of the network the relationship becomes supralinear. Nevertheless it is of 

relevance that the model can capture the experimentally observed linear relationship 

between variance and time squared.

When considering the neural mechanisms of timing it is useful to distinguish between 

sensory and motor timing tasks. In contrast to sensory timing, motor timing requires the 
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active internal generation of events. For this reason we propose that sensory and motor 

timing may rely on networks operating in “low gain” (no self-sustaining activity) and “high 

gain” regimes respectively. Previous studies have demonstrated that randomly connected 

recurrent networks in low gain regimes can discriminate temporal stimuli based on hidden 

states (e.g., short-term synaptic plasticity)13,16,44. In the current model the timing arises 

entirely from the active state of neural networks. For this reason the current framework is 

particularly relevant to motor tasks, which require the active generation of temporal or 

spatiotemporal patterns rather than the discrimination of the temporal features of sensory 

stimuli.

Biological Plausibility

The presented results provide an existence proof that recurrent plasticity can suppress the 

chaotic behavior of specific trajectories of recurrent networks. Nevertheless it still must be 

determined if recurrent neural networks in the brain operate in similar regimes. And if so, 

how such regimes are achieved, given that the learning rule we use here is not biologically 

plausible.

The current work was inspired by a study that used the recursive least square algorithm to 

tune the weights of the recurrent units onto the output units29. Whether applied to the output 

or recurrent units the approach relies on a supervised ‘online’ tuning of the weights 

minimize the error between the actual firing rate of a unit and its target rate. Although the 

approach is “delta rule-like” in that it minimizes an error, it is computationally sophisticated, 

and as applied here operates on a unrealistically fast time scale—however, as previously 

noted there may be conditions under which more plausible rules can be used29.

Additionally, in our implementation there is a separate target pattern that guides plasticity 

for each unit in the network: a highly implausible biological scenario. Nevertheless, in one 

sense the rule is more biologically plausible than traditional supervised learning rules: the 

rule does not require an external teacher to figure out the “correct” target pattern because the 

target trajectory is the innate internally generated trajectory. Thus, more realistic versions of 

this approach may be viable because which trajectories are “burned-in” is largely irrelevant, 

what matters is that networks “settle” on one (or a few) of the immense set of possible innate 

trajectories.

It is important to stress that the current work was based on simple firing rate units, as 

opposed to spiking units. Chaos control in spike-based models presents a drastically more 

complex problem21,23–25, and the current work does not directly speak to solving the 

problem of chaos in spiking networks. An initial step towards translating the current work to 

spiking models will be to first create spiking networks that exhibit the complex balanced 

dynamic regimes similar to the untrained firing-rate networks studied here. While this has 

not yet been achieved, recent advances in understanding the dynamics of recurrent spiking 

networks45, and the generation of simple trajectories within spiking recurrent networks46 

have taken steps in this direction.
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Structure and Mechanisms Underlying Stable Trajectories

The presence of stable trajectories within an otherwise chaotic state space raises important 

questions in neuroscience and nonlinear systems as to why some network architectures 

exhibit this novel dynamic regime. In linear recurrent networks, the structure of the network, 

as analyzed though a number of techniques including eigen and Schur decompositions, 

provides valuable keys to understand the dynamics of such systems47. However, predicting 

the behavior of a continuous-time nonlinear network from its connectivity matrix is still not 

possible in the general case. Additionally, a key observation here is that the interaction 

between the input connectivity and recurrent weights plays a fundamental role in how the 

network responds to external stimuli: as shown here after training the same network can 

respond very differently to different inputs (Figs. 2–6). Steps towards understanding this 

interaction and the dynamics in response to external inputs have been taken for both 

discrete-time linear networks33 and continuous-time nonlinear networks30, but it remains 

impossible in continuous nonlinear networks to predict the modes of activity or describe 

why some trajectories are locally stable and others are not.

Despite the limitations in mathematically analyzing and predicting the dynamics of 

nonlinear networks, it is of interest that analysis of the connectivity patterns and network 

structure revealed highly reproducible, non-random signatures in the recurrent weight 

matrices. For example, innate training produced a robust increase in the median absolute 

weight resulting in a non-Gaussian long-tailed weight distribution (Fig. 7A).

After training there were global changes in the entire family of trajectories generated by the 

RRN. The untrained trajectories became less chaotic—i.e, they diverged at a slower rate, but 

still were not stable in the sense that they could not return to their original path after a 

perturbation. The changes captured by the statistics and structure of the connectivity matrix 

likely contribute to the global changes in the untrained trajectories, but not the trajectory 

specific training effects because these are specific to a small subset of trajectories and at 

some level must rely on the creation of specific basins of attraction around the trained 

trajectories.

Conclusion and Experimental Predictions

In the current model recurrent cortical circuits exhibit “preferred” or learned neural 

trajectories. That is, while spontaneously active networks exhibit complex but unstable 

trajectories, trained stimuli elicit “preferred” stable trajectories that can last many seconds 

and are highly robust to noise. The presence of these two modes of activity is consistent with 

experimental evidence34, and we show (Fig. 4) that the networks studied here reproduce the 

experimentally observed decrease in neural variance in response to stimulus onset. An 

experimentally testable prediction is that the magnitude of the variance drop and its duration 

is stimulus specific and dependent on learning. That is, the decrease in variance in response 

to overtrained stimuli will be larger and longer-lasting than that to novel or irrelevant 

stimuli.

Our results demonstrate that, in principle, recurrent plasticity can locally suppress chaos and 

significantly enhance the computational power of recurrent networks. A phenomenon 
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observed here is that of “dynamic attractors” (locally stable transient channels), which 

account for the ability of a network to not only generate complex patterns (e.g., the hand-

writting patterns of Fig. 2), but to be able to return to the pattern in response to large 

perturbations. To the best of our knowledge this is the first description of a high-dimensional 

nonlinear system capable of this level of robustness. The demonstration of how to create 

stable trajectories suggests a novel neural computational framework. Specifically, an 

influential theory in neuroscience has been that some computations are instantiated by the 

activity of neural networks converging to steady-state patterns that represent fixed-point 

attractors in neural state space48–49. In contrast to these standard attractor models, in the 

present framework—”dynamic attractor computing”—computations arise from the voyage 

through stable channels in state space rather then the arrival at any one given location.

It has often been suggested that neural circuits may operate on the “edge of chaos”, referring 

to a dynamic regime which offers desirable computational features while avoiding chaotic 

behavior. But theoretical and experimental studies suggest that the brain does exhibit full 

blown chaotic regimes21–25,50, and experimental evidence, and common sense, also tells us 

that neural circuits can generate reproducible neural trajectories critical for sensory and 

motor processing. Our results reconcile these observations and suggest that, rather than 

operating on the edge of chaos, the same network can produce both locally stable and 

chaotic trajectories.

METHODS

Network equations

The network dynamics of the model is described by the following equations26,28:

(1)

where ri = tanh(xi) represents the activity level, often referred to as the “firing rate” (even 

though it takes on negative values) of recurrent unit xi (i=1,…,N). The variable y represents 

the input units (i=1,2), and z is the output. N=800 is the network size (number of recurrent 

units), and τ=10 ms is the unit time constant. The recurrent connectivity is represented by 

the sparse N×N matrix WRec, with nonzero initial values randomly chosen from a Gaussian 

distribution with zero mean and standard deviation  where g is the synaptic 

strength scaling coefficient, and pc=0.1 is the connection probability between units (in Fig. 4 

pc = 0.25 was used because it enhanced resistance to noise). As with previous studies in the 

high gain regime we used g values in the range of 1.5 (Figs. 2, 4) to 1.8 (Figs. 1, 3, 5, 6, 

7)29–30—while performance was very similar across a wide range of g values higher values 

tended to generate more complex trajectories and require more training. The activity of the 

network was readout by z through the 1×N output connectivity matrix WOut, with initial 

values drawn from a Gaussian distribution with zero mean and standard deviation . 

The input weight vector, WIn, is drawn from a Gaussian distribution with zero mean and 
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unit variance. The values of y are 0, except during an input pulse comprising a step with 50-

ms duration and amplitude of 5 (except for Fig. 2 where the amplitude was 2). In the case of 

multiple inputs, values of both inputs were zero, except during the time window in which 

one input was briefly turned on in a given trial. A noise current is included as a N×1 random 

vector Inoise drawn from a Gaussian distribution with a standard deviation of I0 and a zero 

mean. I0 was constant during a trial and equal to 0.001 unless stated otherwise (training was 

successful with standard deviations as high as 0.1, as in Fig. 4—however, many more 

training trials are need to converge).

In the control simulations when feedback from the output unit was present (“echo-state” 

architecture 2), an additional feedback term was included in Eq. 1 leading to:

(2)

This equation represents the traditional echo-state architecture28,51. It is the same as Eq 1, 

except for the presence of the feedback term WFb·z, where WFb is a length N vector with 

elements drawn from a uniform distribution between −1 and 1. In this architecture only the 

WOut weights were plastic, and obeyed the same learning rule for all architectures (see 

below)29. It is possible that the poor performance of Architecture two in Fig. 3 was poor 

because the feedback was flat throughout most of the trial. Thus we ran additional 

simulations with a separate feedback unit that learned its “innate” output pattern. 

Performance was still significantly worse than that of Architecture 1.

Recurrent Learning Rule, Innate Training

The key step to the approach defined here is to train the recurrent network dynamics to 

generate a pattern that the RRN is already capable of producing, as opposed to the 

conventional strategy of training it to produce a pattern based on the desired output. We 

refer to the target pattern as the innate trajectory, and define it as the trajectory generated in 

the absence of noise and starting from an arbitrary initial condition—there are of course a 

vast number of potential innate trajectories, and there is nothing special about any of them 

except that they clearly fall within the domain of trajectories that the network can generate. 

The innate trajectory could have been chosen in the presence of noise; here, the innate 

trajectory was generated in the absence of noise by a specific input, simply because it allows 

for a fairly standardized definition. In all results presented here the target (“innate”) 

trajectory of the recurrent network was chose in the absence of noise. Fig. S7 shows that 

choosing the innate trajectories in the presence of noise resulted in similar results (under the 

conditions tested). However, choosing a “foreign” trajectory (i.e., training a network on the 

innate trajectory of another network) did not produce effective training (at least over the 30 

training trials examined). Here we have not addressed the problem of what constitutes an 

“achievable” or an optimal target trajectory. Rather, since the precise structure of the stable 

target trajectory is largely irrelevant we provide a practical choice of a recurrent target by 

using an innate pattern, this approach guarantees that the target falls within the domain of 

possible trajectories for the network.
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The learning rule used to train the plastic recurrent units is based on the RLS rule52, which 

we implemented according to the FORCE algorithm29. The rule was applied to a subset of 

the recurrent synapses in the network; similar performance seems to be observed within a 

range of 60% to 95% (most simulations presented here imposed the condition that all the 

synapses onto 60% of the units were plastic). The weight update for the synapses (plastic) 

onto recurrent unit i was:

(3)

where B(i) is the subset of recurrent units presynaptic to unit i, and ei represents the 

individual error of unit i defined by:

(4)

where ri(t) is the activity of unit i before the weight update, and Ri(t) is the “innate” target 

activity of that unit. The innate activity Ri(t) is recorded before the training begins, by letting 

the network evolve in time under the same conditions that will be used during training (same 

input brief input, but in the absence of noise). Pi (one for each recurrent plastic unit i) is a 

square matrix that estimates the inverse of the correlation matrix of the presynaptic inputs to 

element i (B(i)), and is updated by:

(5)

Training procedure—1) Harvest an innate trajectory by letting the network evolve 

according to Eq. 1 in response to the input in the absence of noise; record the activity Ri(t) 

for all recurrent units in the “training window” defined by [toff:tend], where toff is the offset 

time of the input pulse and tend is the end point of the training window. 2) Train the 

recurrent plastic weights with the Innate algorithm as defined by Eqs. 3, 4, and 5 (the 

network evolves according to Eq. 1) in the presence of noise and with random initial 

conditions for a number of training loops (training generally converges in between a few 

loops and a few dozen loops, depending on the duration of the training window); Inoise is 

Gaussian with zero mean and standard deviation I0. 3) After training the recurrent units, the 

readout unit can also be trained using previously proposed algorithms in the interval 

[toff:tend]. 4) Test (run) the network with the trained (fixed) set of recurrent and readout 

weights, again in the presence of noise and random initial conditions.

Over the course of training the total change in synaptic weights converges to an asymptote

—but generally does not reach zero because plasticity is driven by noise. In the simulations 

shown here a fixed number of training loops was used. In the simulations in Figures 1, 2, 3, 

5, 6, and 7 there were between 20 and 30 training trials, which led to fairly asymptotic 

performance in these networks (Fig. S3). In the high noise simulations of Figure 4 hundreds 

of training trials were used.
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Recurrent Weights Learning Rule for Control Architecture 3 (Fig. 3)

The learning rule for the recurrent units in the control simulations of Architecture 3 (Fig. 3) 

was implemented as described by Sussillo and Abbott29 for their architecture 1C. The 

implementation of this rule is fairly similar to the one used. The critical difference is that in 

Architecture 3 the error for each of the recurrent units was the same “backpropagated” error 

from the output unit, as opposed to the local error of each recurrent unit. A consequence of 

this difference is that in Architecture 3 training of the recurrent and output weights takes 

place simultaneously. As in Architecture 1, the presynaptic weights to 60% of recurrent 

units were plastic. As for the innate training (Eq. 3) the weight update postsynaptic recurrent 

unit i is:

(6)

but here, in contrast to Eq. 3, the error signal is the same for all recurrent plastic units, and 

was equal to the error signal for the readout unit (see also Eq. 9):

(7)

where f(t) is the target function of the output unit. Pi is a square matrix (one for each 

recurrent plastic unit i, with each dimension equal to the number of units in B(i)29. Its 

update rule is the same as in Eq. 5.

Readout Weights Learning Rule (all architectures)

The learning rule for the readout unit in all the results shown here was the same RLS/

FORCE algorithm used in previous studies 28–29,52. The readout weight update is defined as:

(8)

where the error, e(t) is defined as in Eq. 7. The weight update occurs at times separated by 

the small time interval Δt, which may be larger than the time step δt for the numerical 

integration of Eq. 1 (or Eq. 2 in the case of Architecture 2) (we used δt = 1 ms and δt = 2 

ms). Note that WOut enters Eq. 9 with non-updated value, i.e. it is evaluated at the earlier 

time t − Δt rather than at t. P is a running estimate of the inverse of the correlation matrix of 

the network rates r plus a regularization term:

(9)

The only difference between Eqs. 5 and 9 is that in Eq. 5, each matrix Pi is specific to a 

subset of presynaptic recurrent units to recurrent postsynaptic unit i, whereas in Eq. 9 a 

single matrix P refers to all presynaptic recurrent units (which all contact the output unit).

Laje and Buonomano Page 15

Nat Neurosci. Author manuscript; available in PMC 2014 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Output Target Functions

The handwritten targets used in Fig. 2 were obtained using custom Matlab code and a 

Wacom Bamboo Pen Tablet. X and Y pen positions were originally sampled at 

approximately 50 Hz, then low pass filtered and resampled with interpolation to 1 kHz 

(corresponding to the time step of 1 ms used for all simulations). In Fig. 3 the readout target 

function f(t is defined by a constant value with a Gaussian pulse at time tdelay (0.25, 0.5, 1, 2, 

3, …, 8 s); where t=0 corresponds to the offset of the input).

Noise analysis

Network performance in the presence of noise (Fig. 5) was quantified by estimating the 

correlation between two trajectories from two different runs for each network within each 

condition: a “template” trajectory without noise, and a “test” trajectory with noise. A high 

correlation means a high degree of reproducibility. We first calculated the Pearson 

correlation coefficient between the two trajectories for each recurrent unit, then averaged 

across units (after Fisher transformation), and then averaged across networks. Correlation 

was calculated for the duration of the trained window only (0 – 2 s). Model and test 

trajectories had the same pre-stimulus initial conditions. Noise was continuously injected 

into all units in the recurrent network only after input was off, with a Gaussian distribution 

with zero mean and standard deviation I0 (Eq. 1). Noise amplitude is to be compared to total 

absolute incoming synaptic weights to a unit (averaged across units); i.e., comparing the 

average sizes of the second and fourth terms on the right-hand side of Eq. 1. A noise 

amplitude I0=1.0 in Fig. 5 corresponds to 7% of the average total absolute incoming 

synaptic weight.

Largest Lyapunov Exponent (LLE) Estimates

We estimated the local LLE (λ, also known as finite-time LLE) in a manner similar to that 

described by Jaeger and Haas28 with some improvements according to Kantz53 and 

Boffetta et al54. The method described below is presented schematically in Fig. S8. We 

computed the distance between “perturbed” and “unperturbed” trajectories in state space as 

a function of time, then found an interval where the log(distance) vs time plot is linear with 

a well-defined slope. To this end, the network was first run with random initial conditions 

and no noise to get a “fiducial trajectory” x(t) in 800-dimensional state space. Ten segments 

of 1000-ms duration were extracted from the fiducial trajectory which served as the 

“unperturbed” trajectories. The first segment x1(t) started 100 ms after the input went off, at 

state x(100); the second x2(t), third x3(t), etc. segments started 100 ms after the previous, at 

states x(200), x(300), etc. The “perturbed” trajectories were obtained as follows. Each 

segment was perturbed at its initial time point—for instance, for the first segment, the state 

x(100) was perturbed—by a uniform-noise vector of size 10−7 and then the network was run 

for 1000 ms; the perturbation was performed 10 times, leading to 10 “perturbed” trajectories 

yij(t) for each “unperturbed” segment xi(t). We then computed the average di(t) of the 

Euclidean distances between each of the 10 perturbed trajectories and the unperturbed 

trajectory (for each of the 10 segments) in 800-dimensional state space as a function of time 

(0 – 1000 ms): . We 
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then normalized it to the initial distance (0 ms), i.e. the “size” of the perturbation, computed 

the logarithm and averaged across all segments: . This 

procedure was repeated ten times for each of the 10 networks. We visually searched for a 

portion where all 10 repetitions have a linear shape with a well-defined slope of at least 300-

ms duration within the range 100 ms – 900 ms; the average slope of the linear fits was the 

local LLE estimate for each network at each condition (pre-training; post-training; post-

training outside the trained interval). In Fig. 6a, for visualization purposes, we plot the 

average of the ten repetitions for each network: . In the condition “post-

training outside the trained interval”, the fiducial trajectory started 8 s after the input went 

off (6 s after the end of the training window). Note that any trajectory not converging to a 

fixed point will have at least one zero Lyapunov exponent (in the direction of the flow); if 

the trajectory is stable, then it will be the largest Lyapunov exponent, all other exponents 

being negative.

Network structure: Clustering coefficients

Local clustering coefficients were calculated using the generalization to directed, weighted 

networks proposed by Fagiolo55. Cyclic clustering coefficients correspond to the first row 

of Table 1 of Fagiolo55; non-cyclic clustering coefficients pool all “middlemans”, “ins”, and 

“outs” (rows 2, 3, and 4, respectively). Cyclic and non-cyclic clusters are mutually 

exclusive: they sum up to the total number of undirected clusters. The values of the 

(weighted) clustering coefficients, however, are not restricted. As these definitions assume a 

positive-definite weight matrix WRec, all clustering coefficients were calculated based on 

the absolute values of the weights. All self-connections were excluded from the calculation. 

Shuffling of the weights was performed by keeping the binary connectivity and randomly 

reassigning all nonzero weights; thus, for each network all three conditions (Pre-train, Post-

train, and Post-train shuffled) have the same binary connectivity.

Statistics

All error bars and measures of dispersion are the SEM. All statistical test types are cited in 

the text, and all p-values are two-tailed.

Parameter values for Figures

Figures 1, 5, 6, 7, S3, S4, S5, S6, and S7: N = 800, g = 1.8, pc = 0.1; 20 training loops; noise 

amplitude I0 = 0.001 unless noise was parametrically varied (Fig. 5). Perturbation in Fig. 1c: 

input amplitude = 5, input duration 50 ms. For these Figures, a set of 10 networks working 

as “seeds” was defined; all training and testing procedures were applied to this same set of 

networks.

Figures 3, S1, and S2 N = 800, g = 1.5, pc = 0.1; 30 training loops; noise amplitude I0 = 

0.001. Input amplitude = 5, Input duration 50 ms. In order to make a controlled comparison 

across architectures, a second set of 10 “seed” networks was defined; all training and testing 

procedures were applied to this same set of networks.
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Figure 2: N = 800, g = 1.5, pc = 0.1; 30 training loops. Input amplitude = 2, Input duration 

50 ms.

Figure 4A: N = 800, g = 1.5, pc = 0.25; 500 training loops; noise amplitude I0 = 1.5. Input 

amplitude = 5, Input duration 50 ms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Complexity without chaos
A: A random recurrent network (left panel) in the chaotic regime is stimulated by a brief 

input pulse (small black rectangle at t=0 in right panel) to produce a complex pattern of 

activity in the absence of noise. Color-coded raster plot of the activity of 100 out of 800 

recurrent units (right panel). Color-coded activity ranges from −1 (blue) to 1 (red). B: Time 

series of three sample recurrent units (top panel), and the output unit (bottom panel). In the 

pre-training (left) the blue traces comprised the innate trajectory subsequently used for 

training. The divergence of the blue and red lines demonstrates that two different initial 
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conditions (before the input) lead to diverging trajectories before training, even in the 

absence of ongoing noise. After training (right), however, the time series are reproducible 

during the trained window (2.25 s; shaded area). That is, despite different initial conditions 

the blue and red lines trace very similar paths, while still diverging outside of the trained 

window. The output unit was trained to “pulse” after 2 s. C: Five different runs of the 

network above, perturbed with a 10-ms pulse at t=0.5 s (dashed line) from an additional 

input unit randomly connected to the recurrent network. The trained network (right) robustly 

reproduces the trained trajectory, recovering from the perturbation resulting in the timed 

response of the output unit at t=2 s.
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Figure 2. Generation and stability of complex spatiotemporal motor patterns
A: Blue traces represent 10 test trials in response to In1 (left panel) or In2 (right) after 

training; the background gray line shows the output target. These test trials were run over 

different initial conditions in the presence of continuous noise in all of the 800 recurrent 

units (0.001). Time is represented by uniformly placed colored circles (Δt≅18 ms). B: Test 

trials run under the same initial condition in the presence of continuous noise, but with the 

addition of a perturbation at 300 ms (open square). The perturbation was produced by an 

additional 10 ms input pulse (not diagrammed) with an amplitude of 0.2.
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Figure 3. Improved “timing” capacity
A: An input pulse (black trace) triggers a chaotic innate” neural trajectory, displayed as a 

color-coded raster plot (only 20 out of 800 units shown). The linear readout unit receives 

input from all the recurrent units (blue trace), showing irregular pre-training activity. After 

the RRN is trained to the innate trajectory (training window defined by dashed lines), the 

readout unit is trained to reproduce a flat target with a pulse at a given interval (green trace; 

5-s duration in this example). An unsuccessful simulation from a 6 s interval training is also 

included as an example. B: Performance across different architectures. Ten RRNs were 

trained in each of the three displayed architectures, parametrically varying the delay. The 

performance (goodness of reproduction) is quantified by the Pearson correlation coefficient 

R2 between target and actual output (green and blue traces in A); mean ± SEM across 

networks.

Laje and Buonomano Page 24

Nat Neurosci. Author manuscript; available in PMC 2014 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Innate training decreases the neural variance and results in Weber-like timing
A: (Top panel) Time traces of three sample units over two different trials (blue and red) 

(N=800, g=1.5, pc=0.25, 1.3 s training window). Gaussian noise with a standard deviation of 

I0=1.5 was continuously injected into all recurrent units. As in Figs. 1 and 3 the output unit 

was trained to generate a timed pulse (1000 ms after the onset of the 50 ms input pulse, 

middle panel). The lower panel shows the neural variance. The variance of each unit was 

calculated over 8 trials, and then averaged over all 800 units. There was a sharp decrease in 

variance produced by the onset of the stimulus, which persisted over many seconds before 

gradually ramping back up to baseline (not shown). The dashed line shows the neural 

variance before training: because the input “clamps” network activity stimulus onset also 

produced a decrease in the variance, but it rapidly increased after stimulus offset. The mean 

Std across units at the input of the input pulse was 0.037 and 0.024, before and after training 

respectively. B: Example of two simulations in which the output unit were trained to 

produce events at 250, 500, 750, 1000, and 1250 ms (upper panels). Variance across trials 

was estimated by calculating the time of the peak of each response. The relationship 

between variance and t2 was well fit by a linear function (lower panels). I0=1.0.
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Figure 5. Robustness against noise
A: Activity of three sample units in the recurrent network at three different levels of noise. 

Blue: “template” trajectory (no noise); Red: “test” trajectory (continuous noise in each unit). 

The standard deviation of the noise current I0 was 0.001, 0.1, and 1.0 (top to bottom panels; 

noise amplitude as a fraction of total absolute incoming synaptic weights to each unit 

averaged across units is 0.007%, 0.7%, and 7%, respectively). B: Average data from 10 

different networks. Performance was measured as the averaged Pearson correlation 
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coefficient between template (blue) and test trajectories (red) for each condition (after Fisher 

transformation), mean ± SEM across networks.
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Figure 6. Suppression of chaos
A: Average logarithmic distance between original and perturbed trajectories for each of ten 

networks, for the trajectories triggered by Input1 (the trained input) before and after training. 

A straight portion with a positive slope indicates chaotic dynamics; the value of the slope is 

the estimate for the Largest Lyapunov Exponent (λ). After training, the original and 

perturbed trajectories no longer diverge (except for one network). B: The pre-training 

trajectories triggered by both inputs displayed positive λ, indicative of chaotic dynamics 

(Input1: λ=7.12 ± 0.35, mean ± SEM across the ten networks, values significantly different 

from zero t-test p=10−8; Input2: λ=7.29 ± 0.45, p=4×10−8; all reported λs have units of 1/s). 

After training, the trajectory triggered by Input1 was locally stable, as indicated by a non-

positive mean λ (λ=0.05 ± 0.45, p=0.90); Input2, however, still produced diverging 

trajectories as evidence by λ significantly above zero (λ=3.05 ± 0.70, p=0.0016). After 

training the trajectories outside the trained window had a positive mean λ in response to both 

inputs (Input1: λ=2.75 ± 0.70, p=0.0035; Input2: λ=2.27 ± 0.60, p=0.0039), with some 

networks displaying chaotic activity (8/10) and some entering limit cycles (2/10). The 

interaction effect is significant (F2,18=20.7, p=2×10−5, a 2×3 two-way ANOVA with 

repeated measures, factors “Input” and “Training”). In addition to this stimulus-specific 

effect of training, there was a global nonspecific effect of decreased divergence of 

trajectories after training, represented by a lower though still positive λ for Post-train Input2 

and Post-outside Input1 and Input2.
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Figure 7. Effects of training on network structure
A: Distribution of the nonzero recurrent weights. Thin lines represent the distributions of the 

weights of ten networks before (blue) and after (red) training. Thick lines represent the 

averages across the 10 networks. Pre-training: networks are Gaussian by construction. Post-

training: all networks are non-Gaussian (Lilliefors test, p<0.001 for each of the ten 

networks). Median absolute synaptic weights significantly increased after training. B: 
Numerical simulation of one trained network before and after shuffling the weights of its 

recurrent matrix WRec (two runs each, without noise), showing that the stability properties 

of the shuffled network are lost despite having the same weight distribution and the same 

connectivity. C: Distribution of local weighted cyclic clustering coefficients. Training leads 
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to an increase in the cyclic clustering coefficients. Shuffling (green) of the weights of the 

Post-train recurrent matrix WRec significantly changed the cyclic clustering distribution. 

Insets reflect the possible circuit motifs in relation to a reference unit shown in gray. D: 
Distribution of local weighted non-cyclic clustering coefficients. Training also increased the 

median non-cyclic clustering coefficients.
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