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Abstract 
The global efforts in the past few months have led to the discovery of around 200 drug 
repurposing candidates for COVID-19. Although most of them only exhibited moderate anti-
SARS-CoV-2 activity, gaining more insights into their mechanisms of action could facilitate a 
better understanding of infection and the development of therapeutics. Leveraging large-scale 
drug-induced gene expression profiles, we found 36% of the active compounds regulate genes 
related to cholesterol homeostasis and microtubule cytoskeleton organization. The expression 
change upon drug treatment was further experimentally confirmed in human lung primary small 
airway. Following bioinformatics analysis on COVID-19 patient data revealed that these genes 
are associated with COVID-19 patient severity. The expression level of these genes also has 
predicted power on anti-SARS-CoV-2 efficacy in vitro, which led to the discovery of monensin 
as an inhibitor of SARS-CoV-2 replication in Vero-E6 cells. The final survey of recent drug-
combination data indicated that drugs co-targeting cholesterol homeostasis and microtubule 
cytoskeleton organization processes more likely present a synergistic effect with antivirals. 
Therefore, potential therapeutics should be centered around combinations of targeting these 
processes and viral proteins. 
 
Main Text 
As of February 15th, 2021, SARS-CoV-2 has infected 108 million people and claimed 2 million 
lives. Vaccines are promising for a cure, yet the emerging mutations of SARS-COV-2 impose 
challenges to target the virus proteins; thus targeting host cells remains a viable therapeutic 
approach. The global efforts in the trailing months have led to the discovery of at least 184 drug 
repurposing candidates in vitro (Supplementary Table 1). Although the majority of them only 
exhibited moderate antiviral potential, gaining additional insights into their mechanisms will 
facilitate an enhanced understanding of infection and the development of better therapeutics for 
COVID-19. Through integrative bioinformatics analysis of transcriptomic profiles and in vitro 
experiments, we find those positive compounds regulate cholesterol homeostasis and 
microtubule cytoskeleton organization pathways, which also align with COVID-19 patients 
severity, compound efficacy and synergism with antiviral drugs (Figure 1A). 
  
Leveraging large-scale drug-induced gene expression profiles from the Library of Integrated 
Network-Based Cellular Signatures (LINCS) project 1, we computed the differential gene 
expression induced by 97 anti-SARS-CoV-2 positive compounds versus 7,782 others, which 
identified 63 genes specifically dysregulated (30 down-regulated and 33 up-regulated, 
Supplementary Methods, Supplementary Table 2). For example, NPC1, an intracellular 
cholesterol transporter, is highly up-regulated (z score >= 2) by 17 active compounds, much 
higher expression than in other compounds (p = 2.2E-09, Wilcox rank sums test, Figure 1B). In 
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addition, the expression change of NPC1 is positively correlated with drug EC50 (Spearman 
Correlation Rho = -0.44, p = 8.2E-05, Supplementary Table 2). The expression change upon drug 
treatment was further confirmed in human lung primary small airway cells (Supplementary Figure 
S1A). An opposite pattern exists in CCNA2, a G1/S and G2/M transition regulator (p = 6.69E-11, 
Rho = 0.50, Figure 1B and Supplementary Table 2). 
 
The 63 genes differential expression might serve as a cellular response signature for anti-SARS-
CoV-2 candidates. We then validated this signature with five independent genome-wide CRISPR 
screening datasets from 2–6. These studies identified 49 host factor genes critical in SARS-CoV2-
infection (Supplementary Table 3), termed pro-viral genes. Assuming that knock-down of 
individual pro-viral genes might benefit the host cell in SARS-CoV-2 challenging, we computed 
the similarity between the anti-SARS-CoV-2 compound signature and the expression profiles 
perturbed by shRNA of each pro-viral gene through a gene-set enrichment analysis (adopted from 
RGES) 7. The RGES values of 49 pro-virus genes knock-down are significantly higher than the 
remaining 4321 genes (p = 7.38E-03, Wilcox rank sums test, Figure 1C), suggesting inhibition of 
pro-viral genes has similar effects with the active compounds, and the anti-SARS-CoV-2 signature 
captures key biological processes involved in viral infection. 
 
By incorporating the gene co-expression knowledge, we performed Gene ontology (GO) 
enrichment analysis with a background beyond LINCS 978 genes. For the 33 up-regulated genes, 
cholesterol biosynthetic and metabolic processes (“cholesterol homeostasis” 8 hereafter) were 
enriched, with genes NPC1, INSIG1 and HMGCS1 involved (Supplementary Figure S2A). For the 
30 down-regulated genes, the “microtubule cytoskeleton organization” process was enriched, with 
genes DAG1, CCNB1, AURKA, PSRC1, STMN1, KIF20A, TUBB6, and MYBL2 annotated to this 
term (Supplementary Figure S2B). Although mitotic cell cycle related pathways were significant, 
we didn’t further investigate them because of the biased distribution of the cancer enriched genes 
in the LINCS data. Overall, 36% of the active compounds change the expression of the cholesterol 
homeostasis or microtubule cytoskeleton organization pathway members (average z score  >= 
1.5, Figure 1D). Strikingly, these compounds are not antivirals, and their primary mechanism of 
action varies, such as NF-kB inhibitors, selective estrogen receptor modulators and histamine 
receptor antagonists. Therefore, their antiviral activity might be an off-target or indirect effect on 
cholesterol homeostasis and/or microtubule cytoskeleton organization.   
 
Next we examined the expression of the genes involved in the two pathways using two 
independent COVID-19 patient cohorts (33 samples from PBMC and 50 samples from blood). As 
shown in Figure 1E and Supplementary Table 4, the comparison between the patient and healthy 
group showed a reversal pattern to the summarized active drug effect, while the transcriptional 
changing pattern of convalescent serum treatment was in line with active compounds. We 
designed a Cholesterol homeostasis and Microtubule Cytoskeleton organization (ChoMCyto) 
score to quantify the reversal (negative) or mimicking (positive) pattern. This score associates 
with patients’ severity and treatment. Of note, tocilizumab treatment did not affect these genes 
(ChoMCyto approximately zero), probably because it’s an immune-suppressor, not aiming to 
target viral infection processes. Together, cholesterol homeostasis and microtubule cytoskeleton 
organization pathways are associated with COVID-19 severity, and co-targeting these two 
pathways may improve the outcome. 
 
We then investigated if the ChoMCyto score has predictive power on anti-SARS-CoV-2 activity. 
Cortese et al. 9 found SARS-CoV-2 caused cytoskeleton remodeling imperative for viral replication. 
After testing a few drugs altering cytoskeleton integrity and dynamics, they only observed 
withafterin A had a robust antiviral effect. Gene expression profiles of these drugs suggested they 
acted differently on ChoMCyto genes, although targeting cytoskeleton proteins. Withaferin A 
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showed a similar pattern with the active drugs, while paclitaxel showed a significantly opposite 
pattern (Figure 1F). In addition, withaferin A strongly regulated cholesterol homeostasis, while the 
other three didn’t (Figure 1F); thus, withaferin A achieved a higher ChoMCyto score. A stronger 
pattern was observed for the positive control, cepharanthine (EC50 = 4.47 µM 10). It was reported 
blocking cholesterol trafficking via targeting NPC1 11. We also observed that cepharanthine 
inhibited actin expression in human lung primary small airway cells (Supplementary Figure S1B). 
Further, ChoMCyto score was applied to all LINCS compounds (Supplementary Table 5). Among 
the FDA-approved drugs, two top candidates, lomitapide (MTTP inhibitor for 
hypercholesterolemia treatment) and monensin (an ionophore reported anti-MERS activity) were 
not evaluated yet, thus selected to test anti-SARS-CoV-2 activity in vitro. We found that monensin 
inhibited SARS-CoV-2 replication in Vero cells with IC50 of 11 µM, and its CC50 was > 50 µM 
(Figure 1G). It also induced expression of NPC1, INSIG1 and HMGCS1 in small lung airway cells 
(Figure 1G). Although lomitapide was inactive under this experimental setting (Supplementary 
Figure S3), Mirabelli et. al.12 reported its IC50 as 765 nM in Huh7 cells. In addition, among the top 
20 candidates, bazedoxifene, dronedarone and osimertinib were already reported active 13. This 
suggests that regulating cholesterol homeostasis and microtubule cytoskeleton organization 
might contribute to antiviral efficacy. Comparison between cytotoxic (CC50 < 50 µM) and non-toxic 
hits suggests that ChoMCyto genes expression change doesn’t significantly contribute to the 
cytotoxicity (Supplementary Table 6). 
 
Since SARS-CoV-2 entry and infection of cells comprises multiple critical biological processes 
inside of infected cells, we further evaluated the combination of targeting ChoMCyto genes and 
other processes such as viral replication in COVID-19 treatment. To do so, we elicited a recent 
combination screening study from NCATS 14,15, where 15 host-targeting compounds were 
combined with at least one of 11 antivirals (9 known antivirals, two potent SARS-CoV-2 
candidates nitazoxanide and hydroxychloroquine) (Figure 1H, Supplementary Table 7). For each 
host-targeting compound, we summarized its synergistic effect with the 11 antivirals (see Methods) 
as well as the ChoMCyto score. The drugs with higher ChoMCyto scores are more likely to 
present a synergistic effect with antivirals (Spearman correlation of -0.70, Supplementary Figure 
S4). For instance, the melfloquine effect on ChoMCyto genes shares a similar pattern with 
reported anti-SARS-CoV-2 active compounds, and it strongly synergizes with arbidol, a viral 
envelope fusion inhibitor. While leflunomide has a negative ChoMCyto score, and antagonizes 
with lopinavir or nelfinavir. Remdesivir showed a synergistic effect with amodiaquine, nitazoxanide 
and emetine, it may retain a potential synergistic effect with triflupromazine, which was not tested 
yet, but with the highest ChoMCyto score. Among the top of all repurposing candidates, 
cepharanthine (ChoMCyto = 9.44, Supplementary Table 5) was also reported synergism with 
remdesivir, that 2.5 µM of both could inhibit > 95% cytopathic effect in vitro, while only 35% and 
10% for each single agent 14. Although either agent alone only presented weak antiviral activity 
(EC50 at micromolar level), their combination exerted a marked effect. This suggests the 
therapeutic potential of the anti-inflammatory drug cepharanthine combined with antiviral 
treatment such as remdesivir. 
  
In summary, our survey of the positive hits from screenings reveals they share common 
mechanistic effects through the regulation of cholesterol homeostasis and microtubule 
cytoskeleton organization. We designed a ChoMCyto score to quantify this summarized drug 
effect pattern, which is associated with COVID-19 patient severity and treatment. By applying the 
ChoMCyto pattern to predict anti-SARS-CoV-2 efficacy, we discovered monensin with EC50 of 11 
µM in vitro. Literature survey suggested the antiviral mechanism of monensin might be via 
blocking viral transport within the Golgi complex 16. This indirect antiviral mechanism inspired us 
to investigate the synergism between established antiviral drugs and repurposed drugs targeting 
host cellular ChoMCyto genes. Our findings corroborate the emerging evidence from other studies. 
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For instance, the analysis of clinical data reports hypolipidemia is associated with the severity of 
COVID-19 17. Zang et. al. 18 found that cholesterol 25-hydroxylase suppresses SARS-CoV-2 
replication by blocking membrane fusion. In addition, its product 25-hydroxycholesterol was 
elevated in a fatal COVID-19 patient and infected mice 19. The large-scale profiling of SARS-CoV-
2 virus-host interactions found that viral proteins Orf8 and Orf9c directly bind to NPC2 and SCAP 
20, important components for cholesterol transport and monitoring. In addition, host protein targets 
of viral NSP10 and NSP13 are enriched with microtubule-based process 20. In our recent work 21, 
10 out of 11 ChoMCyto genes showed a contrasting expression pattern with that dysregulated by 
coronavirus infection. Together, we conclude that cholesterol homeostasis and microtubule 
cytoskeleton organization pathways are disrupted by viral infection, and anti-SARS-CoV-2 
compounds tend to restore these biological processes inside the host cells. Co-targeting the two 
pathways might boost the efficacy of known antiviral drugs for COVID-19 treatment. 
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Figure 1. Reported anti-SARS-CoV-2 compounds regulate genes related to cholesterol homeostasis and microtubule 
cytoskeleton organization, which are associated with COVID-19 patients’ severity and synergism with antivirals. A, 
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the workflow of this research. B, Example genes were induced or suppressed by anti-SARS-CoV-2 compounds. The 
Y-axis indicates the LINCS z-score of a specific compound and a higher score means higher expression change. P 
values were derived from Wilcox rank-sum tests, and further corrected across all LINCS 978 genes. C, A boxplot 
comparison between anti-SARS-CoV-2 CRISPR screening gene hits and non-hits. A higher RGES score on Y-axis 
indicates a query host cell shRNA knockdown-induced gene expression profile more closely resembles the 
summarized gene expression signature of anti-SARS-CoV-2 active compounds. X-axis denotes whether a query host 
gene knock-out makes the cells resistant to SARS-CoV-2 infection. D, Expression of genes involved in cholesterol 
homeostasis or microtubule cytoskeleton organization was changed by 38 anti-SARS-CoV-2 compounds but not by 
three randomly selected compounds namely heliotrine, telenzepine and dipivefrine. E, The expression change of the 
selected ChoMCyto genes in different COVID-19 patient groups. In the heatmap, the log2 fold change values from 
different comparisons were converted into gene rankings within a transcriptome. The overall ChoMCyto scores are 
shown in the bar plot. TOC: tocilizumab. Patient severity dataset: SRP267176; treatment dataset: SRP301622. F, Drug 
effect on ChoMCyto genes is associated with the antiviral efficacy in vitro. G, Top: the dose-response (blue) and dose-
viability (red) curves of monensin, with IC50, CC50, and selectivity index labeled. Bottom: mRNA fold changes 
(compared with TBP) of NPC1, INSIG1 and HMGCS1 induced by DMSO (control), 0.5 µM monensin or 2.5 µM 
monensin. H, The drug effect on ChoMCyto genes correlates with antiviral synergism. The top and bottom panels 
share drug columns. HCQ: hydroxychloroquine. The top panel illustrates synergistic effects between host-targeting 
drugs and antivirals (white: missing values, purple: synergism, orange: antagonism). The last row “Synergism” 
summarizes the average synergistic effect of antiviral drugs in all rows for each specific compound in the X-axis. The 
middle row illustrates the ChoMCyto scores multiplied by -1, for a better color agreement with the row above it. The 
bottom panel shows the expression change of ChoMCyto genes induced by each drug. In all the heatmaps except the 
synergistic one, red indicates up-regulation, and blue means down-regulation. Gene symbols colored with red are up-
regulated by anti-SARS-CoV-2 compounds, and those colored with blue are down-regulated. *: p < 0.05; **: p < 
0.001. P values were derived from randomly shuffled signatures permutation (Supplementary Methods). 
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