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by three different platforms using either nuclear magnetic 
resonance spectroscopy or mass spectrometry. We selected 
24 T2D markers by using Least Absolute Shrinkage and 
Selection operator (LASSO) regression and tested their 
association to incidence of disease during follow-up.
Results  The 24 markers i.e. high-density, low-density 
and very low-density lipoprotein sub-fractions, certain 
triglycerides, amino acids, and small intermediate com-
pounds predicted future T2D with an area under the curve 
(AUC) of 0.81. The performance of the metabolic markers 
compared to glucose was significantly higher among the 
young (age < 50 years) (0.86 vs. 0.77, p-value <0.0001), 
the female (0.88 vs. 0.84, p-value =0.009), and the lean 
(BMI < 25 kg/m2) (0.85 vs. 0.80, p-value =0.003). The full 
model with fasting glucose, TRFs, and metabolic markers 
yielded the best prediction model (AUC = 0.89).
Conclusions  Our novel prediction model increases the 
long-term prediction performance in combination with 
classical measurements, brings a higher resolution over the 

Abstract 
Background  The growing field of metabolomics has 
opened up new opportunities for prediction of type 2 diabe-
tes (T2D) going beyond the classical biochemistry assays.
Objectives  We aimed to identify markers from different 
pathways which represent early metabolic changes and test 
their predictive performance for T2D, as compared to the 
performance of traditional risk factors (TRF).
Methods  We analyzed 2776 participants from the Eras-
mus Rucphen Family study from which 1571 disease free 
individuals were followed up to 14-years. The targeted 
metabolomics measurements at baseline were performed 
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complexity of the lipoprotein component, increasing the 
specificity for individuals in the low risk group.

Keywords  Type 2 diabetes · Prediction · Metabolomics · 
Early biomarkers · Metabolites · Prospective study

1  Introduction

Early lifestyle intervention is a cost-effective recommenda-
tion to reduce the incidence of type 2 diabetes (Knowler 
et  al. 2002; Li et  al. 2010; Nanditha et  al. 2014), asking 
for informative, sensitive and specific markers. Although 
the standard laboratory tests, such as fasting glucose, 
2-h postprandial glucose, and glycated hemoglobin A1c 
(HbA1c), provide strong evidence for the risk of type 2 
diabetes(Haffner et al. 1990; Shaw et al. 1999; Droumaguet 
et al. 2006), these predictors emerge after years of subclini-
cal metabolic dysfunction (Tabak et al. 2009). Traditional 
risk factors (TRFs) such as age, sex, body mass index 
(BMI), and waist circumference also explain considerable 
part of future risk (Gray et  al. 2010; Wilson et  al. 2007), 
but fail to capture the full complexity of the etiology and 
their predictive performance vary between different risk 
groups (Kengne et al. 2014). BMI has been put forward as 
the modifiable risk factor but, there are also metabolically 
unhealthy normal weight (MUHNW) as well as metaboli-
cally healthy obese (MHO) individuals, raising the ques-
tion to what extent BMI explain the mechanisms of the 
underlying metabolic disease (Mathew et al. 2016). There-
fore, there is an increasing interest in finding informative 
markers that indicate the particular metabolic dysfunctions 
before the manifestation of the disease. Hence, people iden-
tified at high risk would be able to take preventive lifestyle 
interventions or treatments targeted to their individual 
molecular profile, eventually personalizing their health 
care.

High throughput metabolomics offers an opportu-
nity to test multiple metabolic markers in large settings. 
Such approach led to the discovery of five amino acids 
by the prospective Framingham Heart Study (FHS) using 
a 12-year follow-up (Wang et  al. 2011). Branched chain 
amino acids (BCAA) from this panel were previously 
pointed out in a case-control setting (Suhre et al. 2010) and 
later in a follow-up study of limited size (Lu et al. 2016; Yu 
et al. 2016). Other metabolites including phospholipids, tri-
glycerides, acyl-carnitines, organic acids and small molecu-
lar weight compounds were also added to the list of metab-
olomics based predictors (Floegel et al. 2013; Walford et al. 
2014; Wang-Sattler et  al. 2012; Lu et  al. 2016; Yu et  al. 
2016; Suhre et  al. 2010), covering the glucose and phos-
pholipid metabolism. However, lipoprotein metabolism, 

which is one of the key components of metabolic dysfunc-
tion, has not been addressed.

In the present study, we aimed to identify novel meta-
bolic markers using a total of 261 metabolic features meas-
ured by either targeted mass spectrometry (MS) or by tar-
geted nuclear magnetic resonance (NMR). The chemical 
classes of tested molecules include sub-fractions of lipo-
proteins, triglycerides, phospholipids, amino acids, and 
small intermediate compounds. We estimated the predic-
tive performance of the selected marker set in comparison 
to other well-known predictors, including fasting glucose, 
TRFs, and the validated panel of amino acids.

2 � Research design and methods

2.1 � Study population

The Erasmus Rucphen Family genetic isolate study (ERF) 
is a prospective family based study located in Southwest of 
the Netherlands. This young genetic isolate was founded in 
the mid-eighteenth century and minimal immigration and 
marriages occurred between surrounding settlements due 
to social and religious reasons. The ERF study popula-
tion includes 3465 individuals that are living descendants 
of 22 couples with at least six children baptized. Informed 
consent has been obtained from patients where appropri-
ate. The study protocol was approved by the medical ethics 
board of the Erasmus Medical Center Rotterdam, the Neth-
erlands (Santos et al. 2006).

The baseline demographic data and measurements of 
the ERF participants were collected around 2002–2006. 
All the participants filled out questionnaires on socio-
demographics, diseases and medical history and lifestyle 
factors, and were invited to the research center for an 
interview and blood collection for biochemistry and phys-
ical examinations including blood pressure and anthropo-
metric measurements have been performed. The partici-
pants were asked to bring all their current medications for 
registration during the interview. Venous blood samples 
were collected after at least 8 h fasting. Hypertension was 
defined as systolic blood pressure ≥140  mmHg or dias-
tolic blood pressure ≥90  mmHg or treatment for hyper-
tension. The family history was coded as 0, 1, 2 based on 
no first-degree relatives has type 2 diabetes, one has type 
2 diabetes and more than one have type 2 diabetes. Base-
line type 2 diabetes was defined according to the fasting 
plasma glucose ≥7.0  mmol/L and/or anti-diabetic treat-
ment, yielding 212 cases and 2564 controls, totaling up 
to 2776. The follow-up data collection of the ERF study 
took place from March 2015 to May 2016 (9–14 years 
after baseline visit). During the follow up a total of 1935 
participants’ records were scanned for incidence of type 2 



Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study﻿	

1 3

Page 3 of 11  104

diabetes in general practitioner’s databases. Additionally, 
a questionnaire on type 2 diabetes medication surveyed 
on 1232 participants in June 2010 (4–8 years after base-
line visit) was referred if a participant were not included 
in May 2016 follow-up. This effort yielded the inclusion 
of 18 otherwise missed extra cases. To summarize, out 
of the 2564 controls at baseline, 1571 were followed-up 
for a mean 11.3 years (inter quartile range 11.0–12.2). 
Among those, 137 developed type 2 diabetes, whereas 
1434 did not, comprising together the analytical sample 
for prediction analysis.

2.2 � Metabolomics measurements

In total 261 metabolic marker molecules including sub-
fractions of lipoproteins, triglycerides, phospholipids, 
amino acids and small intermediate compounds, which 
throughout this article will be referred as “metabolites”, 
were measured by three different targeted platforms, 
either by NMR spectrometry or MS at baseline. The 
samples included in metabolomics measurements were 
not selected based on any disease. The platforms used in 
this research are: (1) Liquid Chromatography-MS (LC-
MS, 116 positively charged lipids, comprising of 39 tri-
glycerides (TG), 47 phosphatidylcholines (PC), 8 phos-
phatidylethanolamines (PE), 20 sphingolipids (SM), and 
2 ceramides (Cer), available in up to 2638 participants) 
measured in Netherlands Metabolomics Center, Leiden 
using the method described before (Gonzalez-Covarru-
bias et al. 2013), (2) small molecular compounds window 
based NMR spectroscopy (NMR-COMP, 41 molecules 
comprising of 29 low-molecular weight molecules and 12 
amino acids available in up to 2639 participants) meas-
ured in Center for Proteomics and Metabolomics, Lei-
den University Medical Center (Demirkan et  al. 2015; 
Verhoeven et  al. 2017), (3) lipoprotein window based 
NMR spectroscopy (NMR-LIPO, 104 lipoprotein parti-
cles size sub-fractions comprising of 28 very low-density 
lipoprotein (VLDL) components, 30 high-density lipo-
protein (HDL) components, 35 low-density lipoprotein 
(LDL) components, 5 IDL components and 6 plasma 
totals, available in up to 2609 participants) measured in 
Proteomics and Metabolomics, Leiden University Medi-
cal Center and lipoprotein sub-fraction concentrations 
were determined by the Bruker algorithm (Bruker Bio-
Spin GmbH, Germany) details were given previously 
(Kettunen et  al. 2016). Details over the quality control 
of samples in these platforms can be found in the Sup-
plementary Information. The laboratories had no access 
to phenotype information and the data pre-filtering and 
quality control for measurement errors were based on 
internal controls and duplicates.

2.3 � Metabolite identification

The compounds measured by LC-MS and NMR-COMP 
were identified according to the metabolomics standards 
initiative (MSI) level 1 using information coming from at 
least 2 different sources (Sansone et  al. 2007). The avail-
able ChEBI ID were shown in Supplementary Table 1.

For metabolites measured by LC-MS, the identities of 
the lipids were assigned on the basis of accurate mass, frag-
mentation pattern, and retention times matched to authen-
tic standards where available. The detail of the metabolite 
identification can be found in previous publications (Hu 
et al. 2008).

For metabolites measured by NMR-COMP, the identi-
ties of the small components and molecules were assigned 
by the peaks which are annotated using the combined 
information from chemical shift databases, spiking experi-
ments, and correlation behaviors. The detail of the metabo-
lite identification can be found in the methodological paper 
(Verhoeven et al. 2017).

For lipoproteins measured by NMR-LIPO, the method is 
based on the analysis of signals in the 1H-NMR spectrum 
which are related to the lipoproteins. Differences in lipo-
protein composition, size and density translate into respec-
tive signal line shape differences, which can be used to 
extract information on lipoprotein main- and subclasses. As 
these are not real metabolites, the MSI criteria do not apply.

2.4 � Statistical methods

The distributions of individual metabolites were checked 
for non-normality by eye and outlying values that were 
more than four times standard deviation away from the 
mean were excluded from analysis. Non-normally distrib-
uted measurements were natural logarithm transformed, 
or rank transformed. Figure 1 shows the procedure that we 
followed for the selection of metabolites. Firstly, we tested 
the association between the 261 individual metabolites and 
prevalent type 2 diabetes using a logistic regression model 
adjusting for age, sex, and lipid-lowering medication. 
Residuals from the polygenic model (using “polygenic” 
function in the R package GenABEL), were used in all anal-
ysis to account for family relations among the ERF partici-
pants (Aulchenko et al. 2007). To control for multiple test-
ing, we applied a Bonferroni correction based on the effect 
number of independent vectors in the data which were 
estimated to be 81 independent equivalents using Matrix 
Spectral Decomposition (MSD) (Li and Ji 2005). Thus, 
a p-value less than 6.18 × 10− 4 (0.05/81) was used as the 
threshold for metabolome-wide significance. We repeated 
analysis stratifying the cases into medicated and non-med-
icated cases to test if the associations were attributed to the 
effect of anti-diabetic medication. Metabolites that did not 
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differentiate (p-value >0.05) between non-medicated dia-
betics (n = 68) versus controls (n = 2564) were not taken 
forward. These metabolite levels were assumed to be dif-
ferent due to the post medication metabolic changes in the 
diabetics. The remaining metabolites (n = 88, the list is 
given in Supplementary Table 1) and the TRFs (age, sex, 
family history, BMI, waist circumference, hypertension, 
HDL-cholesterol, and triglycerides) with scaled around 0 
and standard deviation as 1 were included in the prior to 
LASSO (Least Absolute Shrinkage and Selection Operator) 
regression to select the set of predictors that maximize the 
prediction performance. The LASSO regression was per-
formed using glmnet package in R (Friedman et al. 2010). 
We imputed these missing data points (i.e. 9.6–18.5% miss-
ing values) before selecting the independent predictors by 
LASSO regression which requires all the variables to be 
complete measurements. In order to select the best impu-
tation method suitable for our data, we first generated a 
training dataset with 20% missing values at random and 
compared three methods: (1) deterministic imputation, 
(2) random regression imputation, (3) multiple imputation 
with R package “mice” (Andrew and Jennifer 2006). After 
comparing the results to the initial correlation with glucose 
and the means between the imputed values and real values 

for each method, multiple imputation was selected. The 
sum of predicted values from the multiple random regres-
sion model divided by the number of imputations (n = 20) 
was used to replace the missing data. The outliers more or 
less than four times standard deviation were removed after 
imputation. With the selected independent type 2 diabetes 
metabolic predictors, we assessed their associations with 
fasting glucose by linear regression analysis in the non-
diabetic participants at baseline. To account for multiple 
testing in these 24 linear regression sets, a p-value <0.003 
(0.05/16) was used as the threshold after MSD of the 24 
metabolites that yielded 16 independent components.

2.5 � Prediction of incident type 2 diabetes

The metabolites selected from the baseline population were 
tested to predict the incidence of type 2 diabetes during the 
follow-up time. Area under the receiver operator character-
istics (ROC) curve (AUC) of logistic regression together 
with continuous Net Reclassification Improvement (NRI) 
was performed to estimate the discrimination and reclassi-
fication in different models (Pencina et al. 2012). The mod-
els compared were: ERF metabolite model (the metabolites 
those selected in the current study only), FHS metabolite 
model, (the amino acids reported by the FHS research: iso-
leucine, leucine, valine, tyrosine, and phenylalanine), and 
the TRF model (age, sex, family history, BMI, waist cir-
cumference, hypertension, HDL-cholesterol, and triglyc-
erides) and glucose only model (fasting plasma glucose 
measured at baseline) and combination of those. As some 
of the previous studies showed the association between 
metabolites and covariates, i.e. age, sex and BMI (Dunn 
et  al. 2015; Lawton et  al. 2008), we also tested the mod-
els in subgroups of sex, age (<50 vs. ≥50 years), and BMI 
(<25 vs. ≥25  kg/m2). A p-value <0.05 here was used as 
a cut off for significance improvement across the models. 
Meanwhile, the specificity with fixed 80% sensitivity in dif-
ferent prediction models is compared. Analyses were con-
ducted using R (version 3.2.3).

3 � Results

Table  1 displays the baseline characteristics of the par-
ticipants stratified by prevalent cases at baseline and inci-
dent cases in the follow-up. Compared to the participants 
who did not develop type 2 diabetes, those with type 2 
diabetes were older, more often had a family history of 
the disease, suffered from hypertension, and have been 
using lipid-lowering medication. They had higher levels 
of BMI, waist circumference, blood pressure, triglycer-
ides, fasting glucose, and lower levels of HDL-choles-
terol. The participants with incident type 2 diabetes had 

Fig. 1   Flow chart of the metabolite selection
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higher fasting glucose at baseline compared to the indi-
viduals who did not develop type 2 diabetes during the 
follow up.

3.1 � Metabolites associated with type 2 diabetes 
at baseline

We identified 24 independent metabolites together with 
five TRFs (age, sex, family history, waist circumference, 
and HDL-cholesterol) from LASSO regression maxi-
mizing the discrimination at baseline. These metabolites 
and their associations with prevalent and incident type 2 
diabetes, as well as fasting glucose at baseline are listed 
in Table  2. Four of them (i.e. PC(O-34:2), L-HDL-free 
cholesterol, XXL-LDL-phospholipids and L-LDL-cho-
lesterol) are associated with decreased risk of type 2 dia-
betes, whereas twenty of them associated with increased 
risk; including three triglycerides, seven lipoprotein par-
ticles, three amino acids, and seven small intermediate 
compounds. Among the seven lipoprotein particles, two 
are sub-fractions of HDL, two are of LDL, and three are 
of VLDL (See details in Table 2). Out of the 24 metabo-
lites, PC(O-34:2), XXL-LDL-triglycerides, HDL-tri-
glycerides, L-HDL-ApoA2, and M-HDL-ApoA2 are not 
associated with fasting glucose in the non-diabetic popu-
lation at baseline and incident type 2 diabetes.

3.2 � Predicting incident type 2 diabetes

Figure  2 shows the AUC comparisons across the differ-
ent prediction models. The ERF metabolites discriminate 
future type 2 diabetes with an AUC [95% confidence inter-
val] of 0.81 [0.77, 0.85]. The AUC of the ERF metabolite 
model was significantly higher than of the FHS metabo-
lite model [AUC 0.81 (0.77, 0.85) vs. 0.77 (0.73, 0.81), 
NRI = 0.42, p-value <0.0001]. It is of note that tyrosine 
and isoleucine, which were previously selected by FHS, 
were also selected in the ERF metabolite model. The AUC 
for the model including both ERF and FHS metabolites 
together was significantly higher than the AUC for models 
with either set of predictors [AUC 0.83 (0.79, 0.86) vs. 0.77 
(0.73, 0.81), NRI = 0.67, p-value <0.0001 for ERF and FHS 
metabolites vs. only FHS metabolites; AUC 0.83 (0.79, 
0.86) vs. 0.81 (0.77, 0.85), NRI = 0.29, p-value =0.0015 
for ERF and FHS metabolites vs. only ERF metabolites]. 
The AUC of the ERF and FHS combined metabolite model 
did not differ from that of fasting glucose [AUC 0.83 (0.79, 
0.86) vs. 0.84 (0.81, 0.88), p-value =0.45]. However, com-
bining the ERF metabolites and fasting glucose together in 
a model improved the predictive performance significantly 
over the performance of fasting glucose [AUC 0.88 (0.84, 
0.91) vs. 0.84 (0.81, 0.88), NRI = 0.66, p-value <0.0001]. 
Adding TRFs to fasting glucose and metabolite model 
maximized the AUC to 0.89 [0.86, 0.92]. The specificity 
with fixed 80% sensitivity increases from 70 to 80% when 

Table 1   Characteristics of the study population

Data are means ± standard deviations (SD), medians (inter-quartile range), or n (%). Triglycerides were natural logarithm transformed prior to 
analysis
*p-value <0.05 after adjusting age, sex and/or lipid-lowering medication

Baseline (n = 2776) Follow-up (n = 1571)

Controls (n = 2564) Cases (n = 212) Controls (n = 1434) Cases (n = 137)

Male [n (%)] 1132 (44.1) 108 (50.9) 595 (41.5) 78 (56.9)*
Age (years) 48.2 ± 14.3 59.8 ± 11.8* 47.7 ± 13.9 57 ± 10.7*
Diabetes in first-degree relatives
 0 individuals [n (%)] 1711 (76.6) 71 (55.0) 966 (76.4) 63 (53.8)
 1 individual [n (%)] 428 (19.2) 37 (28.7) 248 (19.6) 38 (32.5)
 ≥2 individuals [n (%)] 95 (4.3) 21 (16.3)* 50 (4.0) 16 (13.7)*

Body mass index (kg/m2) 26.7 ± 4.6 30.0 ± 5.9* 26.6 ± 4.4 30.1 ± 5.1*
Waist circumference (cm) 86.7 ± 13.1 99.3 ± 14.2* 86.2 ± 12.8 98.9 ± 13.4*
Systolic blood pressure (mmHg) 139 ± 20 154 ± 21* 137.7 ± 19.6 152.4 ± 21.8*
Diastolic blood pressure (mmHg) 80.3 ± 10.0 82.9 ± 9.9 79.7 ± 9.6 84.8 ± 9.8*
Hypertension [n (%)] 1282 (50) 170 (80.2)* 674 (47.0) 111 (81.0)*
HDL-cholesterol (mmol/l) 1.3 ± 0.4 1.1 ± 0.3* 1.3 ± 0.4 1.1 ± 0.3*
Triglycerides (mmol/l) 1.2 (0.8, 1.6) 1.6 (1.1, 1.9)* 1.2 (0.8, 1.6) 1.7 (1.1, 2.1)*
Fasting glucose (mmol/l) 4.5 ± 0.7 7.4 ± 2.2* 4.4 ± 0.6 5.3 ± 0.7*
Lipid-lowering medication [n (%)] 265 (10.3) 99 (46.7)* 136 (9.5) 42 (30.9)*
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metabolites are added to the glucose only model (Supple-
mentary Fig. 1).

3.3 � Predicting incident type 2 diabetes in different 
baseline risk groups

The AUC of the combined ERF, and FHS metabolite mod-
els and of fasting glucose model in subpopulations stratified 
by age, sex, and BMI is shown in Fig. 3. In the group with 
age < 50 years, the AUC of the combined metabolite model 
is significantly higher than that of fasting glucose model 
[AUC 0.86 (0.78, 0.94) vs. 0.77 (0.67, 0.87), NRI = 0.72, 
p-value <0.0001], whereas the AUCs of these two models 
are not statistically different in the elderly group [AUC 0.83 
(0.78, 0.87) vs. 0.84 (0.80, 0.88), p-value =0.06]. The AUC 
of the metabolite model is significantly higher than that of 
fasting glucose in the female group [AUC 0.88 (0.83, 0.92) 
vs. 0.84 (0.79, 0.90), NRI = 0.44, p-value =0.001], whereas 
in the male group there is an opposite trend (0.78 [0.72, 
0.84] vs. 0.83 [0.79, 0.88], NRI = −0.40, p-value =0.001). 
Similarly, in the group with normal BMI, the AUC of 

metabolite model is significantly higher than that of fast-
ing glucose model [AUC 0.85 (0.75, 0.95) vs. 0.80 (0.66, 
0.93), NRI = 0.49, p-value =0.04]. In the overweight and 
obese group, the trend is opposite but not significantly dif-
ferent [AUC 0.81 (0.76, 0.85) vs. 0.83 (0.79, 0.87), p-value 
=0.13]. When the sensitivity is fixed to 80%, the specific-
ity rises from 59% (glucose only model) to 87% (glucose 
and metabolite model) in the young (age < 50 years), which 
is much higher increase than in the old (age ≥ 50 years, 
from 66 to 82%). The specificity also grows when we add 
metabolites or TRFs to the prediction model. (Supplemen-
tary Fig. 1) The ROC curves for the models and subgroups 
are given in the Supplementary Fig. 2 and Supplementary 
Fig. 3. The separation shown by time to event curves across 
different risk groups are given in Supplementary Fig. 4.

4 � Discussion

In the present study, we showed that the combined effect 
of 24 metabolites including ten lipoprotein sub-fractions 

Table 2   Association of LASSO regression selected metabolites with type 2 diabetes and fasting glucose

Odds ratio (OR) and 95% confidence interval (CI) estimates provided from logistic regression and Effect from linear regression with age- sex- 
and lipid-lowering medication-adjusted in the standardized metabolite variables

Metabolites ChEBI ID Prevalent cases versus controls Incident cases versus controls Fasting glucose

OR [95%CI] p-value OR [95%CI] p-value Effect p-value

PC(O-34:2) CHEBI:64544 0.6 [0.5, 0.7] 1.3 × 10− 7 0.9 [0.7, 1.1] 0.19 −0.01 0.28
Isoleucine CHEBI:24898 2.4 [2.0, 2.9] 2.7 × 10− 20 2.0 [1.6, 2.5] 4.4 × 10− 9 0.09 3.6 × 10− 8

Methionine CHEBI:16811 1.4 [1.2, 1.6] 1.2 × 10− 4 1.3 [1.1, 1.6] 7.4 × 10− 3 0.05 2.6 × 10− 4

Tyrosine CHEBI:18186 1.5 [1.2, 1.7] 1.6 × 10− 5 2.0 [1.6, 2.5] 5.3 × 10− 10 0.13 6.0 × 10− 18

2-hydroxybutyrate CHEBI:64552 2.0 [1.7, 2.5] 2.5 × 10− 13 2.0 [1.6, 2.6] 2.6 × 10− 10 0.15 2.8 × 10− 27

1,5-AG CHEBI:16070 2.3 [1.9, 2.7] 5.0 × 10− 19 1.5 [1.2, 1.8] 3.3 × 10− 4 0.09 4.5 × 10− 10

2-oxoglutaric acid CHEBI:30915 1.5 [1.3, 1.8] 2.70 × 10− 6 1.8 [1.4, 2.2] 6.0 × 10− 7 0.13 8.9 × 10− 20

Glycine betaine CHEBI:17750 2.2 [1.8, 2.6] 2.50 × 10− 17 1.5 [1.2, 1.9] 2.3 × 10− 4 0.12 1.8 × 10− 14

Glycerol CHEBI:17754 2.3 [1.8, 2.8] 2.1 × 10− 14 1.7 [1.3, 2.1] 1.5 × 10− 5 0.13 9.1 × 10− 18

Lactate CHEBI:24996 1.7 [1.4, 1.9] 4.9 × 10− 11 1.5 [1.2, 1.7] 3.1 × 10− 5 0.11 3.1 × 10− 15

Pyruvate CHEBI:15361 1.6 [1.4, 1.8] 3.0 × 10− 9 1.5 [1.3, 1.8] 3.3 × 10− 6 0.14 1.3 × 10− 25

TG (48:0) CHEBI:85870 1.4 [1.2, 1.6] 2.3 × 10− 5 1.6 [1.3, 1.9] 9.3 × 10− 7 0.08 2.0 × 10− 8

TG (48:1) CHEBI:85726 1.4 [1.2, 1.6] 1.3 × 10− 4 1.5 [1.3, 1.9] 8.0 × 10− 6 0.07 5.1 × 10− 8

TG (50:5) CHEBI:90301 1.3 [1.1, 1.4] 2.3 × 10− 3 1.5 [1.2, 1.7] 6.5 × 10− 6 0.06 1.4 × 10− 5

VLDL-free cholesterol – 1.4 [1.2, 1.7] 7.2 × 10− 7 1.6 [1.4, 1.9] 8.2 × 10− 8 0.08 1.7 × 10− 9

XXL-VLDL-cholesterol – 1.3 [1.1, 1.5] 4.9 × 10− 4 1.5 [1.3, 1.7] 2.9 × 10− 6 0.08 1.1 × 10− 8

VLDL-triglycerides – 1.4 [1.2, 1.6] 3.2 × 10− 6 1.5 [1.3, 1.8] 1.0 × 10− 6 0.09 3.3 × 10− 10

XXL-LDL-phospholipids – 0.6 [0.5, 0.7] 4.4 × 10− 9 0.7 [0.6, 0.9] 2.9 × 10− 3 −0.06 6.4 × 10− 5

XXL-LDL-triglycerides – 1.4 [1.2, 1.6] 2.4 × 10− 4 0.9 [0.7, 1.1] 0.16 0.01 0.34
L-LDL-cholesterol – 0.5 [0.5, 0.6] 8.1 × 10− 14 0.7 [0.6, 0.9] 1.7 × 10− 3 −0.05 1.9 × 10− 4

XS-LDL-ApoB – 1.4 [1.2, 1.7] 3.6 × 10− 6 1.6 [1.3, 1.9] 3.7 × 10− 7 0.05 2.2 × 10− 4

L-HDL-ApoA2 – 1.4 [1.2, 1.6] 2.1 × 10− 4 1.0 [0.8, 1.2] 0.94 0.02 0.14
L-HDL-free cholesterol – 0.5 [0.4, 0.6] 3.9 × 10− 12 0.7 [0.5, 0.8] 1.5 × 10− 4 −0.09 3.2 × 10− 10

M-HDL-ApoA2 – 1.4 [1.2, 1.7] 5.8 × 10− 5 1.1 [0.9, 1.3] 0.61 0.04 4.1 × 10− 3
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yield a powerful discrimination model for predicting future 
type 2 diabetes. The ERF metabolite model significantly 
improved the prediction performance of FHS metabo-
lite model and fasting glucose. We showed that combined 

metabolite model predicts future type 2 diabetes better than 
fasting glucose in the population who are female, younger 
than 50 years, or those with normal weight. In addition, we 
confirmed the conclusion from the FHS that isoleucine and 

Fig. 2   AUC comparisons in 
different prediction models. 
Continuous Net Reclassifica-
tion Improvement (NRI) indices 
were performed to compare 
different prediction models. 
FG fasting glucose, TRFs all 
traditional risk factors—age, 
sex, family history, BMI, waist 
circumference, hypertension, 
HDL-cholesterol, triglycerides

Fig. 3   AUC comparisons in different subgroups. Continuous Net 
Reclassification Improvement (NRI) indices were performed to com-
pare different prediction models. Black bars metabolite model; white 

bars fasting glucose model. (/): Number of controls and incident 
cases analyzed in the follow-up
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tyrosine are predictors of type 2 diabetes independent of 
other factors (Wang et al. 2011).

The ERF metabolite model includes molecules from 
five classes: triglycerides, amino acids, lipoproteins, phos-
pholipids and small intermediate compounds. Among 
those, metabolites such as 1,5-anhydro-d-glucitol (1,5-
AG), 2-hydroxybutyrate, pyruvate, phosphatidylcholines, 
betaine, some triglycerides, and BCAA have been previ-
ously reported to be potential predictive and diagnostic 
markers for type 2 diabetes. (Wang et  al. 2011; Nanditha 
et al. 2014; Wang-Sattler et al. 2012; Kim et al. 2016; Park 
et al. 2015; Yousri et al. 2015). Despite the fact that LASSO 
regression method is used to select independent compo-
nents of our model, various metabolites from the same bio-
chemical class were selected, supporting the view that the 
sub-fractions of some classical measurements play inde-
pendent functions in the pathogenesis of type 2 diabetes 
(Kotronen et al. 2009). In line with this, the ERF metabo-
lite model points out lipid perturbations evident in the very 
early stage of the disease. For example, levels of different 
triglycerides [e.g. TG (48:0), TG (48:1)] show independent 
effects. Our results on HDL and LDL sub-fractions are par-
ticularly interesting. We found them associated with both 
increased and decreased risk. L-HDL-ApoA2, M-HDL-
ApoA2, XS-LDL-ApoB and XXL-LDL-triglycerides are 
associated with increased risk of type 2 diabetes, whereas 
L-HDL-free cholesterol, XXL-LDL-phospholipids and 
L-LDL-cholesterol are associated with decreased risk of 
type 2 diabetes. This suggests different roles for HDL and 
LDL particles and their content. Our results highlight the 
importance of reclassifying lipoproteins of clinical value 
into sub-fractions of HDL, LDL and VLDL, as the meas-
urement techniques develop in the coming decade.

We also demonstrated that PC(O-34:2) is inversely asso-
ciated with type 2 diabetes, which is in line with a recent 
study performed in the population based KORA study that 
showed decrease in PC(O-34:2) levels in patients with 
impaired glucose tolerance (Wang-Sattler et  al. 2012). 
Phosphatidylcholine is a key element in lipoproteins (Park 
et al. 2015). Elevated plasma levels of choline and betaine 
mark cardiovascular risk in diabetes (Lever et  al. 2014), 
while increased level of isoleucine was significantly associ-
ated with an increased risk of hypertriglyceridemia (Mook-
Kanamori et  al. 2014). 2-hydroxybutyrate appears to be 
useful as an early indicator of insulin resistance in non-
diabetic subjects (Gall et al. 2010), and its elevated serum 
levels have recently been indicated to predict worsening of 
glucose tolerance (Ferrannini et al. 2013).

Among the other ERF metabolites, our results on two 
(1,5-AG and glycerol) are inconsistent with the previous 
studies in terms of direction of association: Suhre et  al. 
studied on 40 diabetes cases and 60 healthy male con-
trols in the German population (Suhre et  al. 2010); Lu J. 

et al.’s study included 22 Chinese cases and 22 healthy con-
trols (Lu et  al. 2012), and the study by Shaham O. et  al. 
was done in 47 healthy academic students (Shaham et  al. 
2008). Considering the larger sample size, our study should 
have yielded more reliable estimates compared to the above 
studies. It has been shown that levels of 1,5-AG metabolite 
reflect glycemic changes, and recent clinical studies dem-
onstrated significant differences in 1,5-AG levels between 
diabetic patients receiving different treatments, consistent 
with their individual glucose profiles (McGill et  al. 2004; 
Moses et al. 2008).

As shown in Table 2, all metabolites are associated with 
prevalent diabetes, but some are not associated with inci-
dent case control status. We kept those in the ERF predic-
tion model as this could be due to their small effect sizes 
which need more sample size (power) to be detected since 
the effect estimates were in the expected direction. Another 
explanation could be that some metabolite levels change 
depending on the duration and progression of the disease 
that we cannot control for in the statistical model. A third 
explanation is that it could as well be due to anti-diabetic 
medication effect but we have already filtered the associa-
tions controlling for that. The addition of ERF metabolites 
can complement the type 2 diabetes prediction by fasting 
glucose and TRFs, yielding the best model when com-
bined. This is partly a result of our selection approach per-
formed independently of TRFs but may also be due to the 
assumption that high resolution metabolites reflect differ-
ent possible etiologies of type 2 diabetes. Thus, improve-
ment of predictive performance with additional metabo-
lites implies that potential metabolic ramifications may 
extend far beyond and prior to impaired glucose metabo-
lism. It is of note that each metabolite contributed equally 
to the improvement of the AUC except tyrosine, exclusion 
of which dropped the AUC significantly. The AUC of the 
model without tyrosine is 0.79, and is significantly lower 
than the AUC of ERF metabolite model which is 0.81 
(NRI = 0.38, p-value <0.0001), suggesting that tyrosine is 
an important component of the model.

In the present study, we found a higher AUC of the 
metabolite model in lower risk population as female, 
younger, or leaner subgroups. For the optimum cut-off 
value of the ROC curve, we observed the biggest differ-
ence in specificity especially in the young age group, such 
that if the sensitivity of the prediction model is set to 80%, 
the metabolite only model yielded a specificity of 0.82, 
whereas the glucose model is as low as 0.59. This suggests 
that the metabolomics information may have better utility 
for type 2 diabetes prediction specifically in those with-
out the risk condition, which is in agreement with previ-
ous study from Walford et  al.(Walford et  al. 2014). Inter-
estingly, low risk population that develop type 2 diabetes 
were reported to have higher risk of mortality (Carnethon 
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et al. 2012), raising the importance of more specific predic-
tors suited for different underlying mechanisms. Markers 
which reflect the metabolic condition both dependent and 
independent of BMI that may partially help to address the 
different active pathways underlying to the MUHNW and 
MHO phenotypes (Mathew et al. 2016).

Two additional platforms measured among subsets of 
the ERF population which were not included in our main 
analysis due to sample size restrictions gave us the oppor-
tunity to compare some of the associations using these 
different measurement methods. These were electrospray-
Ionization MS, measured in 878 participants, using the 
method described before (Demirkan et  al. 2012) and 
AbsoluteIDQTM p150 Kit of Biocrates Life Sciences AG 
measured in 989 participants as details mentioned before 
(Draisma et  al. 2015). Supplementary Fig.  5 shows the 
x–y plots of the effect estimates per standard error (i.e. Z 
score) in the 62 lipids and 9 amino acids that were meas-
ured in duplication. The Z scores between these platforms 
are strongly correlated with correlation coefficients ranging 
from 0.74 to 0.87.

The present study has a strong design such that the 
new cases develop among the control group in the base-
line. However, due to the wide metabolite spectrum in the 
present study, validation of the full model in an external 
sample is not available yet. One limitation can be that in 
the present study, 46.7% of the type 2 diabetes patients at 
baseline took lipid-lowering medication compared 10.3% 
in the non-diabetics. To reduce the bias, all the participants 
were fasted overnight before taking the blood sample and 
we adjusted for lipid-lowering medication in each step of 
statistical analysis. It also needs mentioning that the metab-
olite set that predicts type 2 diabetes is assumed to point 
out the biochemical pathways disrupted before the disease 
onset. However, these metabolites may not be necessar-
ily in the causal pathway. We have previously shown that 
most these metabolites are partially heritable (Demirkan 
et al. 2015; Kettunen et al. 2016; Draisma et al. 2015) and 
our increasing knowledge about their genetic determinants 
opens up new opportunities for testing causal inference 
using Mendelian randomization (Kettunen et al. 2016).

Conducting a 14-years prospective study with compa-
rably large sample size and wide metabolite spectrum, we 
developed a novel prediction model which includes inform-
ative markers of dyslipidemia, and which also increases 
the specificity for the young individuals. Importantly, this 
model has a high potential to result with better understand-
ing of the biological mechanisms leading to glycemic dete-
rioration in prediabetes and diabetes.
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