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Background: Ipsilateral breast tumor recurrence (IBTR) following breast-conserving surgery (BCS) has 
been considered a risk factor for distant metastasis (DM). Limited data are available regarding the subsequent 
outcomes after IBTR. Therefore, this study aimed to determine the clinical course after IBTR and develop a 
magnetic resonance imaging (MRI)-based predictive model for subsequent DM.
Methods: We retrospectively extracted quantitative features from MRI to construct a radiomics cohort, 
with all eligible patients undergoing preoperative MRI at time of primary tumor and IBTR between 2010 and 
2018. Multivariate Cox analysis was performed to identify factors associated with DM. Three models were 
constructed using different sets of clinicopathological, qualitative, and quantitative MRI features and compared. 
Additionally, Kaplan-Meier analysis was performed to assess the prognostic value of the optimal model.
Results: Among the 183 patients who experienced IBTR, 47 who underwent MRI for both primary and 
recurrent tumors were enrolled. Multivariate analysis demonstrated that the independent prognostic factors 
were human epidermal growth factor receptor 2 (HER2) status [hazard ratio (HR) =5.40] and background 
parenchymal enhancement (BPE) (HR =7.94) (all P values <0.01). Furthermore, four quantitative MRI 
features of recurrent tumors were selected through the least absolute shrinkage and selection operator 
(LASSO) method. The combined model exhibited superior performance [concordance index (C-index) 0.77] 
compared to the clinicoradiological model (C-index 0.71; P=0.006) and radiomics model (C-index 0.70; 
and P=0.01). Furthermore, the combined model successfully categorized patients into low- and high-risk 
subgroups with distinct prognoses (P<0.001).
Conclusions: The clinicopathological and MRI features of IBTR were associated with secondary events 
following surgery. Additionally, the MRI-based combined model exhibited the highest predictive efficacy. 
These findings could be helpful in risk stratification and tailoring follow-up strategies in patients with IBTR.
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Introduction

Breast cancer is the most commonly diagnosed cancer 
and the leading cause of cancer-related death among 
women worldwide (1). Clinical trials have suggested that 
patients with early-stage breast cancer who undergo breast-
conserving surgery (BCS) followed by radiotherapy have 
comparable survival to those who undergo mastectomy (2,3), 
with the added benefit of enhanced satisfaction and quality 
of life (4). However, ipsilateral breast tumor recurrence 
(IBTR) has an annual incidence of approximately 0.5–1.5% 
in those with invasive carcinoma, with an overall incidence 
ranging from 5% to 10% after a 10-year follow-up, posing 
significant challenges in routine clinical practice (3,5,6). 
Notably, the occurrence of IBTR is psychologically 
distressing for patients, requiring salvage therapy and 
resulting in the loss of cosmetic effects, and is additionally 
associated with a high risk of distant metastasis (DM) (7-9).  
In population-based real-world studies (10), three distinct 
clinical outcomes of IBTR after BCS for early-stage breast 
cancer have been identified, with each being associated 
with a distinct prognosis: isolated IBTR (55%), IBTR 
with synchronous DM (30%), and metachronous DM 
after IBTR surgery (15%). However, in the absence of 
standardized treatment guidelines, clinicians should strive 
to predict the clinical course of patients with IBTR solely 
on retrospective clinical data and to estimate the risk 
for subsequent recurrence (11). Therefore, there is an 
increasing need to determine the outcomes after IBTR 
and identify the patient populations at high risk for a 
second event. Previous studies have identified various 
clinicopathological factors that may influence the prognosis 
of patients with IBTR after BCS, including age, disease-
free interval (DFI), biological characteristics, initial disease 
stage, systemic therapy for primary cancer, radiotherapy, 
and resectable surgery after IBTR (8,12). However, these 
factors alone remain insufficient for the accurate prediction 
of the prognosis of patients with IBTR (9), highlighting the 
necessity for additional predictive tools.

The use of magnetic resonance imaging (MRI) is 
widespread for patients with breast cancer due to its 
superior soft tissue resolution. Several MRI radiological 
features, including background parenchymal enhancement 
(BPE), peritumor edema, and nonmass enhancement, have 

been shown to be associated with the prognosis of patients 
who undergo BCS for breast cancer (13-17). Furthermore, 
radiomics, an emerging technology leveraging quantitative 
analysis to identify correlations between imaging 
characteristics and clinical outcomes, has demonstrated 
promising performance in predicting prognosis for various 
cancers (18-21). Nevertheless, few studies have investigated 
the radiological and radiomics features related to the 
prognosis of patients who have undergone IBTR resection.

Therefore, the aim of this study was to develop a 
predictive model that incorporates routine clinicopathological 
variables along with MRI qualitative and quantitative 
features of primary and IBTR tumors to assess the risk of 
DM in patients with IBTR. In pursuit of this goal, the study 
proposed a prognostic nomogram to serve as a valuable 
reference for precision medicine. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/qims-
23-1831/rc).

Methods

Study population 

This study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013) and was approved by the 
Ethics Committee of the Institutional Review Board (IRB) of 
Fudan University Shanghai Cancer Center (FUSCC) (No. 
050432-4-2307E). Individual consent for this retrospective 
analysis was waived. The analysis included consecutive 
patients who underwent BCS between 2010 and 2018 at 
FUSCC in Shanghai, China, and who experienced IBTR 
without distant metastases during follow-up. All IBTR 
cases were confirmed surgically, and clinicopathological and 
pretreatment MRI data of the primary and recurrent tumors 
were collected. The detailed inclusion and exclusion criteria 
and enrollment process are shown in Figure 1.

Clinicopathological data collection and follow-up

The factors analyzed in this study encompassed patient 
and tumor characteristics, including age at initial diagnosis, 
DFI, lymph node (LN) status, tumor size, histological 
type, histological grade, estrogen receptor (ER) status, 
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progesterone receptor (PR) status, human epidermal 
growth factor receptor 2 (HER2) status, Ki-67 index, and 
lymphovascular invasion (LVI). Additionally, treatment 
parameters after the initial surgery and IBTR was examined, 
which included the extent of surgery (repeat lumpectomy 
and mastectomy), postsurgical radiotherapy, and systemic 
therapy such as endocrine therapy, chemotherapy, and anti-
HER2 therapy. ER and PR statuses were defined as positive 
if immunohistochemistry (IHC) staining results were 
greater than 1% (22). HER2 status was considered positive 
if the IHC staining result was 3+ or if the fluorescent  
in situ hybridization results showed positive findings (23). 
Additionally, the DFI was defined as the duration from the 
initial BCS to the detection of the first IBTR event(s).

The primary endpoint of this study was distant 
metastasis-free survival (DMFS), defined as the time from 
the resection of the recurrent tumor to the first occurrence 

of DM, death from breast cancer, death from non-breast 
cancer, or death from an unknown cause (24). DM was 
defined as the presence of disease extending beyond the 
ipsilateral breast, contralateral breast, or regional LNs as 
confirmed through pathological evaluation of metastatic 
lesions. The follow-up period ranged from 1.4 to 101.1 
months, and DMFS probabilities were calculated at 2, 3, 
and 5 years postsurgery.

Analysis of clinicopathological and MRI features

All patients included in the study underwent preoperative 
dynamic contrast-enhanced MRI (DCE-MRI) to evaluate 
both primary and recurrent breast tumors. The DCE-MRI 
acquisition protocol is described in detail in Appendix 1  
(Supplementary Method 1) and Table S1. The data 
obtained from MRI, including qualitative and quantitative 

Distant metastasis
(N=15)

Non distant metastasis
(N=32)

Breast cancer patients undergoing 
BCS in FUSCC from 2010–2018 

(N=6,807)

IBTR during follow-up 
(N=183)

119 patients excluded:
• 55 for no breast MRI for primary  tumor
• 60 for no breast MRI for recurrent tumor
• 4 for inaccessible MRI data abstraction

17 patients excluded:
• 1 for having radical radiotherapy
• 14 for having DM 
• 1 for having inflammatory recurrence
• 1 for having DM before IBTR

IBTR received surgery 
(N=166)

Eligible patients with paired 
preoperative breast MRI for primary 

tumor and IBTR 
(N=47)

Figure 1 Flowchart of the patient selection. BCS, breast-conserving surgery; FUSCC, Fudan University Shanghai Cancer Center; IBTR, 
ipsilateral breast tumor recurrence; DM, distant metastasis; MRI, magnetic resonance imaging.
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Figure 2 Flowchart of the study design. DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; LASSO, least absolute 
shrinkage and selection operator; C-index, concordance index; DCA, decision curve analysis; KM curve, Kaplan-Meier curve. 

features, were analyzed together with conventional 
c l inicopathological  features .  The procedures for 
determining the qualitative characteristics and extracting 
the quantitative features are described in Appendix 1 
(Supplementary Method 2).

Initially, qualitative characteristics were collected based 
on the lexicon provided by the Breast Imaging Reporting 
and Data System (BI-RADS). Univariate and multivariate 
Cox regression analyses were then used to identify 
significant prognostic factors for clinicopathological and 
radiological qualitative variables.

After image preprocessing, quantitative features were 
extracted using the PyRadiomics package (version 3.0; 
https://pyradiomics.readthedocs.io/en/latest/index.html), 
with the entire tumor region of interest (ROI) being 
delineated. In total, 204 features were acquired, including 
shape, first-order, and texture features. Specifically,  
102 features were extracted from the primary tumors, and 
an additional 102 features were extracted from the recurrent 
tumors. For the quantitative imaging analysis, all features 
were standardized to a normal distribution with z-scores 
before further analysis to eliminate differences in the value 
scales of the data. A three-step procedure was employed 
to identify the robust features. First, a reproducibility test 
was performed, and features with an interclass correlation 
coefficient <0.75 were excluded. Second, a Pearson 
correlation analysis was conducted to eliminate redundant 
features. Correlated features with an absolute value of the 
Pearson correlation coefficient greater than or equal to 
0.95 were excluded. Finally, the least absolute shrinkage 
and selection operator (LASSO) Cox regression algorithm 
with penalty parameter tuning via 10-fold cross-validation 

was employed. Consequently, only four features were 
selected for the final quantitative analysis, which were then 
calculated as the radiomics score (Radscore).

Development and performance of the prediction model

Three Cox regression classi f ier-based prediction 
models were developed: (I) a clinicoradiological model 
incorporating signif icant cl inicopathological  and 
radiological variables, (II) a radiomics model incorporating 
only the Radscore, and (III) a combined model that 
integrated significant clinicopathological and radiological 
variables with the Radscore. The models’ performance was 
evaluated based on discrimination, calibration, and clinical 
utility. Discrimination performance was quantified using 
the Harrell concordance index (C-index) and the time-
dependent area under the curve (AUC). Internal bootstrap 
resampling was applied for model verification. Calibration 
curves were generated to assess model calibration, and 
decision curve analyses (DCAs) were conducted to evaluate 
clinical utility. To support clinicians in predicting DMFS 
quantitatively, a nomogram was developed based on the 
best-performing model. The nomogram classified patients 
into high- and low-risk groups using X-tile analyses (25). 
Kaplan-Meier survival analysis was performed to evaluate 
the survival differences between the high- and low-risk 
groups. A flowchart of the proposed study design is shown 
in Figure 2.

Statistical analysis

To estimate DMFS probabilities, we used the Kaplan-

https://cdn.amegroups.cn/static/public/QIMS-23-1831-Supplementary.pdf
https://pyradiomics.readthedocs.io/en/latest/index.html
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Meier method and compared the results via the log-rank 
test. Univariate and multivariate Cox regression analyses 
of qualitative clinicopathological and radiological features 
were used to identify independent risk factors. Any features 
with a univariate Cox regression result of P<0.1 were 
included in the multivariate Cox regression. Furthermore, 
we used a stepwise regression method based on the 
Akaike information criterion (AIC) to extract independent 
prognostic factors. The quantitative feature analysis is 
described above. We constructed models using the Cox 
regression classifier, with model discrimination evaluated 
using the Harrell C-index and compared C-index with a 
previously described method (26). The time-dependent 
AUC was derived from every point measured between 24 
and 60 months to assess the prognostic accuracy at varying 
time points. The model fit was assessed using a calibration 
plot with 500 bootstrap resamples. The clinical utility of 
the model was evaluated using DCAs. The optimal cutoff 
point for the nomogram was obtained using X-tile software 
(version 3.6.1; Yale University School of Medicine, New 
Haven, CT, USA; RRID:SCR_005602).

Statistical analysis was performed with R software 
(version 4.2.1; The R Foundation of Statistical Computing; 
RRID:SCR_001905; http://www.r-project.org) and SPSS 
software (version 22.0; IBM Corp., Armonk, NY, USA; 
RRID:SCR_019096). A two-sided P value <0.05 was 
indicative of a statistically significant difference.

Results

Patient characteristics

A total of 6,807 patients underwent BCS at FUSCC 
between 2010 and 2018. Of these patients, 183 (2.7%) 
were diagnosed with IBTR. Ultimately, 47 cases were 
included in the study (Figure 1), with a mean age at primary 
breast cancer diagnosis of 46.8 years [standard deviation 
(SD) 11.7]. The clinicopathological characteristics of the 
patients are presented in Table 1. The median follow-
up duration after IBTR was 22.0 months and ranging 
from 1.4 to 101.1 months. Out of the included patients,  
15 developed metastases during the follow-up period  
(Table S2), with a median time of 17.2 months (ranging 
from 1.9 to 37.5 months) from the IBTR resection. 
The estimated DMFS rates 2, 3, and 5 years after IBTR 
resection were 69.5% [95% confidence interval (CI): 54.8–
84.2%], 62.4% (95% CI: 46.3–78.5%), and 58.2% (95% 
CI: 41.1–75.3%), respectively. 

Analysis of clinicopathological and MRI features

On univariate analysis, several clinicopathological variables 
showed a marginal significance with time to metastasis, 
including age at diagnosis of the primary tumor, LN 
status of the primary tumor, HER2 status of the primary 
tumor, and tumor size of IBTR (all P values <0.1), while 
HER2 status of IBTR was significantly associated with 
time to metastasis (P<0.05) (Table S3). Of the radiological 
qualitative features, the BPE grade of IBTR was positively 
associated with time to metastasis. In multivariate analysis, 
we identified two independent predictors by employing 
stepwise analysis with the lowest AIC score: HER2 status 
of IBTR [hazard ratio (HR) =5.40; P<0.01) and IBTR 
BPE grade (HR =7.94; P<0.001) (Table 2). For quantitative 
imaging feature analysis, four features extracted from 
recurrent tumors were selected using the reproducibility 
test,  correlation test,  and LASSO Cox regression  
(Figure S1). These features were used to calculate the 
Radscore according to the following formula: 

Radscore 0.08682969 shape_LeastAxisLength
0.31556798 firstorder_Skewness
0.11918178 glcm_Contrast
0.25963933 glcm_Id

= ∗
− ∗
− ∗
+ ∗

 [1]

Development and performance of the prediction models

Three models were established using independent 
predictors and the Radscore. For the clinicoradiological 
model, the HER2 status of IBTR (HR =5.40; P<0.01) and 
IBTR BPE grade were included and yielded a C-index of 
0.71 in the original cohort and 0.72 in the internal bootstrap 
validation (Table 3). For the radiomics model compose of the 
Radscore achieved a C-index of 0.70 and 0.71 in the original 
cohort and internal bootstrap validation, respectively. The 
combined model incorporating the independent predictors 
and Radscore obtained a C-index of 0.77 in the original 
cohort and 0.80 in the internal bootstrap validation. 

For DMFS prediction, the performance of the combined 
model was superior to that of the clinicoradiological 
(Z=9.15; P=0.006) and radiomics models (Z=7.47; P=0.01). 
Using time-dependent AUC analysis, we found that the 
combined model improved the prediction of DMFS in 
patients with IBTR as compared with the clinicoradiological 
and radiomics models at most time points (Figure S2). 
Moreover, according to the Delong test, the differences 
of AUCs between the clinicoradiological and combined 
models were marginally significant for the AUCs at  

http://www.r-project.org
https://cdn.amegroups.cn/static/public/QIMS-23-1831-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1831-Supplementary.pdf
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Table 1 Clinicopathologic characteristics of primary and recurrent 
tumors for patients with IBTR (N=47)

Characteristic Classification Patients, n (%)

Presentation at primary cancer

Age (years) ≤40 16 (34.0)

>40 31 (66.0)

ALN Negative 30 (63.8)

Positive 17 (36.2)

Tumor size (cm) ≤2 25 (53.2)

>2 22 (46.8)

Histological subtype Ductal 45 (95.7)

Lobular 1 (2.1)

Others 1 (2.1)

Histological grade Grade I or II 15 (31.9)

Grade III 26 (55.3)

Unknown 6 (12.8)

LVI Negative 31 (66.0)

Positive 16 (34.0)

ER status Negative 27 (57.4)

Positive 20 (42.6)

PR status Negative 28 (59.6)

Positive 19 (40.4)

HER2 status Negative 29 (61.7)

Positive 18 (38.3)

Ki-67 index ≤20% 8 (17)

>20% 39 (83)

Chemotherapy No 14 (30.0)

Yes 33 (70.0)

Radiotherapy No 18 (38.3)

Yes 29 (61.7)

Endocrine therapy No 36 (76.6)

Yes 11 (23.4)

Anti-HER2 therapy No 40 (85.1)

Yes 7 (14.9)

Table 1 (continued)

Table 1 (continued)

Characteristic Classification Patients, n (%)

Presentation at IBTR

DFI (years) ≤2 26 (55.3)

>2 21 (44.7)

Resection Lumpectomy 5 (10.6)

Mastectomy 42 (89.4)

Tumor size (cm) ≤2 34 (72.3)

>2 13 (27.7)

Histological subtype Ductal 42 (89.4)

Lobular 1 (2.1)

Other 4 (8.5)

Histological grade Grade I or II 12 (25.5)

Grade III 23 (48.9)

Unknown 12 (25.5)

ER status Negative 32 (68.1)

Positive 15 (31.9)

PR status Negative 37 (78.7)

Positive 10 (21.3)

HER2 status Negative 25 (53.2)

Positive 22 (46.8)

Ki-67 index ≤20% 18 (38.3)

>20% 29 (61.7)

Chemotherapy No 10 (21.3)

Yes 37 (78.7)

Radiotherapy No 41 (87.2)

Yes 6 (12.8)

Endocrine therapy No 32 (68.1)

Yes 15 (31.9)

Anti-HER2 therapy No 31 (66.0)

Yes 16 (34.0)

IBTR, ipsilateral breast tumor recurrence; ALN, axillary lymph 
node; LVI, lymphovascular invasion; ER, estrogen receptor; PR, 
progesterone receptor; HER2, human epidermal growth factor 
receptor 2; DFI, disease-free interval.
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Table 2 Multivariable Cox regression analysis of predictors of DMFS in the clinicoradiologic model and combined model

Variable
Clinicoradiologic model Combined model

Hazard ratio P value Hazard ratio P value

HER2 status (negative vs. positive) 5.44 (1.54–19.18) 0.008** 3.75 (1.07–13.19) 0.04*

BPE grade (moderate or marked vs. minimal or mild) 7.90 (2.32–26.95) <0.001*** 5.96 (1.72–20.65) 0.005**

Radscore NA NA 6.75 (1.47–31.00) 0.01*

The numbers in parentheses are the 95% confidence interval. *, P<0.05; **, P<0.01; ***, P<0.001. DMFS, distant metastasis-free survival; 
HER2, human epidermal growth factor receptor 2; BPE, background parenchymal enhancement; NA, not applicable.

Table 3 Prognostic performance of the combined model compared with other models

Model
Training cohort Internal bootstrap validation

P value
C-index Time-dependent AUC C-index (95% CI) Time-dependent AUC

Clinicoradiological 0.71 0.75 0.72 (0.55–0.87) 0.76 Ref.

Radiomics 0.70 0.84 0.71 (0.56–0.85) 0.84 0.19

Combined 0.77 0.88 0.80 (0.66–0.93) 0.89 <0.01*

The time-dependent AUC represents the median AUC at various time points. All P values were obtained from analyses comparing the C 
indexes of various models. *, P<0.05. AUC, area under the curve; confidence interval.

2 years (P=0.06), 3 years (P=0.05), and 5 years (P=0.07) 
(Table S4). The corresponding calibration curves for 
predicting the probability of DM at 2, 3, or 5 years after 
surgery for each model are presented in Figure 3A-3C and 
demonstrated satisfactory consistency between the model-
predicted survival and the actual observed survival. The 
DCA indicated that compared to the clinicoradiological 
and radiomics models, the combined model provided a 
greater net benefit within a reasonable range of threshold 
probabilities (Figure 3D).

Based on the combined model, a nomogram was 
constructed to stratify the post-IBTR patients into low- 
and high-risk groups (Figure 4A). The optimal cutoff point 
used for stratification was 89.7 according to the X-tile 
analysis. Kaplan-Meier survival curves showed that the 
DMFS rates of high-risk patients were poorer than those of 
low-risk patients (P<0.001; Figure 4B). To further support 
the proposed nomogram, Figure 4C shows two cases 
representing both low- and high-risk patients, respectively, 
illustrating their survival outcomes after IBTR resection. 

Associations between MRI features and clinicopathological 
variables

The associat ions  between the  MRI features  and 
clinicopathological variables are shown in Table 4. BPE 

showed significant differences in terms of ER status. 
Patients with ER-positive tumors were more likely to 
show high BPE (P<0.05). Furthermore, in order to 
better understand the relationship between Radscore and 
clinicopathological characteristics, we used the median of 
Radscore as the cut-off point to classify patients into low 
Rad-risk and high Rad-risk. Rad-risk was correlated with 
the tumor size of IBTR and the change of HER2 status 
from primary tumor to IBTR (P<0.05). Specifically, patients 
with high Rad-risk had larger IBTR tumors, while patients 
with low Rad-risk had proportionately more changes in 
HER2 status (change in patients with low Rad-risk: 5/24, 
20.8%; change in patients with high Rad-risk: 0/23, 0%), 
with 80% of those experiencing HER2 status change (4/5) 
switching from negative to positive (Figure 5). There was no 
statistical difference between BPE and Rad-risk and other 
pathological characteristics (P>0.05).

Discussion

Patients with breast cancer who experience IBTR 
demonstrate an elevated and sustained risk of DM 
following surgery (27). Risk stratification has emerged as 
a crucial factor in predicting the eventual development of 
metachronous distant metastases. Our study sheds light on 
the importance of both quantitative and qualitative MRI 

https://cdn.amegroups.cn/static/public/QIMS-23-1831-Supplementary.pdf
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Figure 3 Calibration curves and decision curve analysis of the three models. (A-C) The calibration curves of the clinicoradiologic model, 
radiomics model, and combined model for DMFS prediction in the original cohort at the (A) 2-year, (B) 3-year, (C) and 5-year time points. 
(D) Decision curve analysis for each model in the original cohort at the 2-, 3-, and 5-year time points. The y-axis represents the net benefit. 
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follow-up of all patients (grey line) or no patients (horizontal black line) across the most range of threshold probabilities at which a patient 
would choose to undergo imaging follow-up in the training cohort. DMFS, distant metastasis-free survival. 

features, specifically those of recurrent tumors, in patients 
with IBTR. The combined model, in particular, exhibited 
enhanced prognostic efficacy (C-index 0.77; all P values 
<0.05) and improved clinical utility compared to the other 
two models. Furthermore, the combined model effectively 
stratified IBTR cases into low- and high-risk subgroups, 
resulting in significant prognostic differentiation (P<0.001). 
Essentially, our study introduced a noninvasive approach to 
predicting outcomes in patients with resectable IBTR, which 
holds profound implications for personalized follow-up.

In this study, we enrolled 47 patients with IBTR from 
a cohort of 6,807 individuals who underwent BCS. All 

of these patients had undergone preoperative MRI scans 
that included matched imaging of primary tumors and 
recurrent lesions. To the best of our knowledge, this 
study represents the first attempt to use matched MRI for 
predicting the subsequent clinical course after IBTR. Our 
findings revealed a close correlation between the qualitative 
and quantitative MRI characteristics of recurrent tumors 
and patient prognosis. However, primary MRI features 
may not hold significant predictive value for outcomes. 
Specifically, the Radscore, derived from four quantitative 
features of recurrent tumors, effectively reflects the risk 
of postoperative metastasis and demonstrates unique 
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advantages in predicting survival. Furthermore, our study 
provides evidence supporting that a high BPE grade is an 
independent, significant risk factor for patients with IBTR 
(HR =7.94; P<0.001), and these results are consistent with 
previous studies (14,15). The association between BPE 
grade and the prognosis of patients with IBTR may stem 
from the potential misinterpretation of enhancement 
in multifocal or multicentric malignant lesions as BPE, 

thereby influencing patient outcomes. However, the 
pathological origins of BPE remain unclear. Several studies 
have reported an association between BPE and increased 
vascular permeability and metabolic activity that is linked to 
hormones (28). In our study, further analysis indicated that 
ER-positive patients exhibited higher BPE levels. These 
results provided further evidence of the hormone-sensitive 
nature of BPE, indicating a potential role for BPE as an 
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Table 4 The association between independent MRI features and routine clinicopathological variables

Characteristic
BPE Rad-risk

Minimal or mild (n=39) Moderate or marked (n=8) P value Low-risk (n=24) High-risk (n=23) P value

Tumor size (cm) 　 　 0.67 　 　 0.02

≤2 29 (74.4) 5 (62.5) 　 21 (87.5) 13 (56.5) 　

>2 10 (25.6) 3 (37.5) 　 3 (12.5) 10 (43.5) 　

Histological subtype 　 0.30 　 　 0.69

DCIS 7 (17.9) 0 (0.0) 　 4 (16.7) 3 (13.0) 　

IDC 28 (71.8) 8 (100.0) 　 19 (79.2) 17 (73.9) 　

Others 4 (10.3) 0 (0.0) 　 1 (4.2) 3 (13.0) 　

Histological grade 　 0.32 　 　 0.66

Grade I/II 11 (28.2) 4 (50.0) 　 9 (37.5) 6 (26.1) 　

Grade III 21 (53.8) 4 (50.0) 　 11 (45.8) 14 (60.9) 　

Unknown 7 (17.9) 0 (0.0) 　 4 (16.7) 3 (13.0) 　

ER status 　 　 0.009 　 　 0.09

Negative 30 (74.3) 2 (25.0) 　 19 (79.2) 13 (56.5) 　

Positive 9 (25.6) 6 (75.0) 　 5 (20.8) 10 (43.5) 　

PR status 　 　 1 　 　 0.49

Negative 31 (79.5) 6 (75.0) 　 20 (83.3) 17 (73.9) 　

Positive 8 (20.5) 2 (25.0) 　 4 (16.7) 6 (26.1) 　

HER2 status 　 　 0.45 　 　 0.30

Negative 22 (56.4) 3 (37.5) 　 11 (45.8) 14 (60.9) 　

Positive 17 (43.6) 5 (62.5) 　 13 (54.2) 9 (39.1) 　

Ki-67 index 　 　 0.69 　 　 0.77

≤20% 16 (41.0) 2 (25.0) 　 10 (41.7) 8 (34.8) 　

>20% 23 (59.0) 6 (75.0) 　 14 (58.3) 15 (65.2) 　

Data are represented as number (%). MRI, magnetic resonance imaging; BPE, background parenchymal enhancement; DCIS, ductal 
carcinoma in situ; IDC, invasive ductal carcinoma; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth 
factor receptor 2. 

imaging marker of hormonal exposures in the breast (15). 
Additional research is needed to evaluate the correlation 
between BPE and prognosis. Consistent with prior studies, 
our findings suggest that a high BPE grade serves as a 
significant risk factor for poor outcomes. The addition of 
MRI at the time of IBTR could be used selectively based on 
clinical concern.

In order to comprehensively understand the pathological 
basis of radiomics features, we investigated the correlation 
between Radscore and pathological variables of recurrent 
tumors. The results showed that patients with high Rad-risk 
had larger tumor size. Furthermore, patients with low Rad-
risk were more likely to exhibit alterations in HER2 status 
(change in patients with low Rad-risk: 5/24, 20.8%; change 
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in patients with high Rad-risk: 0/23, 0%), with 80% (4/5) 
of those experiencing HER2 status change switching from 
negative to positive. This finding suggests that Rad-risk 
may be a biomarker for anti-HER2 targeted therapy.

Our study further discovered that HER2-negativity 
in recurrent tumors is a poor prognostic factor for DM 
following IBTR surgery, which is consistent with previous 
studies (8,9,12,29). One possible explanation for this may 
be the escalating anti-HER2 regimens after IBTR. In 
the setting of primary breast tumor, 12 out of 19 (63.2%) 
patients with HER2-positive disease did not receive anti-
HER2 therapy (trastuzumab) due to drug accessibility and 
economic limitations. In contrast, 16 out of 22 (72.7%) 
patients were administered anti-HER2 treatment. By 
integrating qualitative and quantitative MRI features 
with routine clinicopathological variables, our derived 
model could be interpreted to provide a multimodal and 
comprehensive understanding of IBTR outcome. Our 
combined model exhibited a noteworthy C-index of 0.77, 
outperforming our alternative models and the model 
described in a previous study (9). Wu et al. developed a 

model based on 10 clinicopathological factors to predict 
outcomes in patients with locally recurrent breast cancer, 
which achieved a final C-index of 0.72 in the validation 
set (9). Consequently, our combined model demonstrated 
significant advancements in the accuracy of prognostic 
prediction for this specific patient cohort. Moreover, 
the calibration curves for the combined model displayed 
excellent performance, and DCA indicated that our 
proposed model yielded greater net benefits for patients 
compared to the models using either clinicoradiological or 
radiomics alone. These findings emphasize the potential of 
MRI-based features in providing supplementary prognostic 
information alongside clinical characteristics, which aligns 
with earlier studies (19,30). Huang et al. explored the 
prognostic potential of radiomics in 282 patients with 
early-stage no-small cell lung cancer and revealed that the 
integrated nomogram (C-index =0.720) exhibited superior 
predictive capabilities compared with the clinical model 
(C-index =0.629) and radiomics signature (C-index =0.617) 
(30). An integrated analysis of clinicopathological and MRI 
imaging information may provide a more comprehensive 
understanding of patient prognosis. 

Similar to treatment decisions, surveillance strategies 
should be carefully balanced in terms of risks and  
benefits (31). Our model effectively stratified patients with 
IBTR into a low and high risk of subsequent recurrence, 
demonstrating consistent predictive performance in the 
postoperative period. These findings have implications for 
risk stratification and individualized follow-up strategies in 
those with IBTR. High-risk patients should receive more 
intensive follow-up, especially after 1 year, accompanied 
by tailored systemic therapies. Incorporating whole-body 
imaging techniques, such as positron emission tomography-
computed tomography (PET/CT), is a reasonable approach 
in these cases. Previous studies have highlighted the 
efficacy of PET/CT in detecting previously unrecognized 
distant metastases, underscoring its value for postsurgical 
surveillance (32,33). The incorporation of PET/CT into 
the postoperative surveillance protocol can enhance the 
detection of potential metastatic disease and thus lead to 
improved patient outcomes.

This study involved certain limitations which should be 
acknowledged. First, we employed a retrospective, single-
center design. In addition, the incidence of IBTR after 
BCS is low, and preoperative MRI for BCS and IBTR 
surgery is not mandatory in our institution; thus, it was 
difficult to collect matched MRI scans. As a result, the 
generalizability of our findings may be limited. Additionally, 

Figure 5 Changes in HER2 status from primary tumor to IBTR. 
Five (5/47, 10.6%) patients had a change in HER2 status from 
the primary tumor to the IBTR, four of whom (4/5, 80.0%) 
changed from HER2-negative to positive and one (1/5, 20.0%) 
from HER2-positive to negative. HER2, human epidermal growth 
factor receptor 2; IBTR, ipsilateral breast tumor recurrence.
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the lack of external validation emphasizes the need for 
further validation. Although we used a bootstrap-based 
internal validation technique to assess the generalizability, 
prospective multicenter validation is necessary to establish 
the robustness of our findings. Second, our study confirmed 
the predictive value of quantitative features derived from 
DCE-MRI for assessing the metastatic risk in IBTR. 
Subsequent research endeavors should focus on applying 
multiparametric MRI. Finally, multiomics analysis is a 
rapidly evolving field in research (34-36). Our objective 
is to extract quantitative radiomics features and integrate 
multiomics data, which may lead to the development of 
therapeutic targets for mitigating the risk of recurrence  
in IBTR. 

Conclusions

Both qualitative and quantitative MRI features of recurrent 
lesions demonstrated promising value in predicting the 
prognosis of patients with IBTR following resection. 
Furthermore, the integration of clinicopathological features 
and MRI data exhibited efficacy in predicting metastatic risk 
and has the potential to inform tailored follow-up strategies. 
Additional multicenter, prospective studies are necessary 
to comprehensively investigate the clinical utility of MRI-
based characteristics.
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