
123

Indian J. Microbiol. (June 2008) 48:195–201 195

REVIEW

Functional genomics as a tool in virus research

Ruchi Ratra · Sunil K. Lal

Received: 10 May 2008 / Accepted: 10 May 2008

Indian J. Microbiol. (June 2008) 48:195–201

Abstract Genomics is the study of an organism’s entire 

genome. It started out as a great scientifi c endeavor in the 

1990s which aimed to sequence the complete genomes of 

certain biological species. However viruses are not new to 

this fi eld as complete viral genomes have routinely been 

sequenced since the past thirty years. The ‘genomic era’ has 

been said to have revolutionized biology. This knowledge of 

full genomes has created the fi eld of functional genomics in 

today’s post-genomic era, which, is in most part concerned 

with the studies on the expression of the organism’s genome 

under different conditions. This article is an attempt to in-

troduce its readers to the application of functional genomics 

to address and answer several complex biological issues in 

virus research.
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Introduction

The genomics era has revolutionized the biological sciences 

and has heralded the emergence of new ‘omics’ methodolo-

gies such as transcriptomics (study of the gene expression 

and expression levels of mRNAs at a given time and con-

dition), proteomics (study of the entire protein content of 

a cell/tissue under various conditions, their structure and 

functions), metabolomics (study of the metabolite profi le 

of different cellular processes), phosphoproteomics (a 

branch of proteomics that characterizes proteins that are 

phosphorylated), interactomics/system biology (a science 

that unifi es transcriptomics, proteomics and metabolomics 

to look at the organism as a whole) and so on. For years the 

scientists have followed the reductionist approach, where 

a single gene and its functions and activities are studied in 

isolation. Although this branch of experimental biology is 

indispensable, biological processes are now being looked 

at as a whole. 

What is functional genomics?

Functional Genomics has been defi ned by Hieter and 

Boguski as 'the development and application of global 

(genome-wide or system-wide) experimental approaches 

to assess gene function by making use of the information 

and reagents provided by genome sequencing and map-

ping [1]. Functional genomics makes use of the vast wealth 

of data generated by the various genome projects (which

determine the complete genome sequence of an organism)

to describe the gene (and its encoded proteins), functions 

and its interactions. Functional genomics describes a 

biological process by taking into account the mutations and 
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polymorphism inherent in the genome that determine its 

functions as well as the dynamic aspects of gene expression 

(transcriptomics) and protein expression (proteomics) such 

as gene transcription, translation, and protein-protein inter-

actions. There is a huge surge in the number of sequences 

deposited in the sequence databases and it continues to 

grow in volume tremendously. Viruses were in fact the 

fi rst organisms for which the complete genome sequences 

were made available. In 1976, Walter Fiers was the fi rst to 

establish the complete nucleotide sequence of a viral RNA-

genome (bacteriophage MS2) [2]. The fi rst DNA-genome 

project to be completed was the Phage Φ-X174, by Fred 

Sanger in 1977 [3]. Several databases have been developed 

to access the various viral genomes sequenced [4, 5]. A 

review by Kellam and Alba [6] discusses the impact of 

bioinformatics on virology. One would get an idea of the 

burgeoning number of complete viral genome sequences 

available if you see that the NCBI Entrez Genomes cur-

rently contains 2798 Reference Sequences for 1843 viral 

genomes and 36 Reference Sequences for viroids as of 

22nd June, 2007 (http://www.ncbi.nlm.nih.gov/genomes/

VIRUSES/viruses.html) [7]. These complete genome se-

quences of the viruses serve as the starting point for func-

tional genomics. Sequence analysis and comparisons are 

the basis of molecular phylogeny and provide insights into 

virus evolution. Such studies in herpesviruses have led to 

the ideas of co-speciation and the pirating of cellular genes 

in this viral family [8, 9]. Functional genomics has been 

used to construct phylogenetic trees by defi ning the func-

tional gene content of the organism. Bioinformatics applied 

to the complete genome sequences has been used to identify 

families of conserved genes [10] or protein families based 

on the presence of conserved sequence motifs.

Frequently used techniques

The methods used in functional genomics are mostly high-

throughput techniques that can be applied to genome-wide 

scale and are used to generate large datasets to aid under-

standing of gene function. Some well standardized and 

widely used approaches are DNA microarrays [11–14] and 

SAGE (Serial analysis of gene expression) [15] for quanti-

fying the mRNA populations and two-dimensional gel elec-

trophoresis and mass spectrometry [16] or high-throughput 

yeast two-hybrid screens [17] for protein. To date, the most 

successful functional genomics tool is global gene expres-

sion analysis using DNA microarrays [18]. DNA arrays 

consist of synthetic oligonucleotides or PCR probes immo-

bilized onto solid surfaces such as glass or a nitrocellulose 

or nylon membrane. High density arrays, which have thou-

sands of individual probes per unit area, are referred to as 

microarrays. Data is obtained by hybridizations between the 

probes and labeled sequences in the applied samples that 

are revealed by scanning or imaging the array surface [19]. 

Bioinformatics or computational biology is a crucial tool 

used to manage, analyze and integrate the huge amounts 

of experimental data generated by these techniques [20]. 

Other techniques and methodologies for high-throughput 

genome-wide analysis that are now becoming popular are 

chromatin immunoprecipitation arrays/chip-on-chip [21], 

tiling arrays [22], high content fl uorescent microscopy [23], 

and RNA interference screens [24]. A detailed discussion on 

the techniques is beyond the scope of this article.

Functional genomics applications

Functional genomics approach has been routinely applied 

to study viral replication, gene expression, evolution, and 

diagnostics and so on. Categorized below are few of the 

areas of research in virus biology to which the fi eld of 

functional genomics has been successfully applied. The 

list of included research areas or the examples sited are not 

exhaustive and only serve as an introduction to the fi eld, 

outline its vastness and highlight its limitless potential in 

solving seemingly complex problems in virology.

Functional genomics as a tool to study host-virus inter-

actions

DNA microarrays, proteomics and bioinformatic analysis 

are routinely used to analyze changes in host and viral gene 

and protein expression that occur in a virus infected cell 

[25]. Whole genome arrays have been constructed for the 

representatives of alpha, beta and gamma herpesviruses 

[26–29]. Such arrays have been used to study immediate 

early, early and late gene expression for human cytomega-

lovirus and herpes simplex virus type 1 or to study the re-

activation of latent HSV infection. Host arrays are used to 

study the effects of viral infection on the host transcriptome 

and have been used successfully for retroviruses [30], her-

pesviruses [31–33], orthomyxoviruses [34], hepatitis B and 

C viruses [35, 36] and papilloma viruses [37].

Functional genomics approach has also been used to 

study the cellular innate immune response to virus. By 

transfecting HeLa cells with wild-type or heat-inactivated 

infl uenza virus and then monitoring cellular gene expres-

sion demonstrated that infl uenza virus modulates cellular 

events by both replication-dependent and independent 

pathways [34]. It has also been confi rmed that the NS1 

gene product of infl uenza virus functions as an interferon 
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antagonist as infection with a virus lacking this gene results 

in a signifi cant increase in the expression of genes involved 

in interferon signaling [38, 39]. Such studies have provided 

new insights into infl uenza virus pathogenesis. Similar stud-

ies when carried out for adenovirus infection of HeLa cells 

showed that the virus modulates expression of a limited set 

of cellular genes. The E1A protein of the virus regulating 

E2F-dependent transcription was found to be a major path-

way for modulation of cellular gene expression. Among 

other genes found to be up - or down-regulated, several cy-

tokines involved in the innate immune response were found 

to be down-regulated [40]. A functional genomic analysis 

of herpes simplex virus type 1 infection in mouse embryo 

fi broblasts demonstrated that the expression and function of 

the viral gene product ICP34.5 at early times post-infection 

has a pivotal role in the ability of HSV-1 to usurp host meta-

bolic and biosynthetic processes for virus propagation and 

by simultaneously evading the innate immune response by 

dephosphorylation of eIF2α it helps maintain an environ-

ment for successful viral replication [41]. 

Paul Ahlquist’s group at the Howard Hughes Medical 

Institute have applied the functional genomics approach 

to address fundamental questions in virus replication, gene 

expression and virus-cell interactions particularly to the 

positive-strand RNA viruses (including hepatitis C virus, 

SARS coronavirus and Brome mosaic virus) and DNA 

tumor viruses (hepatitis B virus). To globally identify the 

host factors that function in viral replication, transcription 

and translation, BMV RNA replication was assayed in each 

strain of an ordered genome-wide set of yeast single gene 

deletions [42, 43]. Approximately 4500 yeast deletion 

strains were screened. This functional genomics approach 

revealed nearly 100 genes whose absence inhibited or 

stimulated BMV RNA replication and/or gene expression 

by 3 - to >25-fold. Several genes were identifi ed that were 

involved in RNA, protein, or membrane modifi cation path-

ways, amongst which many were known players in BMV 

replication.

Another study from the same lab identifi ed the molecular 

mechanisms by which EBV-associated epithelial cancers 

are maintained [44]. The expression of all human genes in 

31 nasopharyngeal carcinoma (NPC) tissue samples and 

10 normal nasopharyngeal tissues were studied. Global 

gene expression profi les clearly distinguished tumors 

from normal healthy epithelium. The expression of viral 

genes: EBNA1, EBNA2, EBNA3A, EBNA3B, LMP1, and 

LMP2A were found to be correlated among themselves 

and inversely correlated with the expression of a large 

subset of host genes, such as multiple MHC class I HLA 

genes involved in regulating immune response via antigen 

presentation. This association between EBV gene expres-

sion and inhibition of MHC class I HLA expression might 

facilitate immune evasion by tumor cells, and/or such tumor 

cells sustain higher levels of EBV. Further, the functional 

genomics approach established that key proteins involved 

in apoptosis, cell cycle checkpoints, and metastasis were 

deregulated and their expression was closely correlated 

with the levels of EBV gene expression in NPC. 

Functional Genomics on potato virus A was used to map 

sites essential for virus propagation [45]. Using transposi-

tion-based in vitro insertional mutagenesis, a viral genomic 

15-bp insertion mutant library was generated. The profi -

ciency of 1125 such mutants to propagate in tobacco pro-

toplasts was analyzed simultaneously mapping the genomic 

insertion sites. Over 300 sites critical for virus propagation 

were thus identifi ed, and many of them were located in 

positions previously not assigned to any viral functions. 

The methodology described is applicable to a detailed func-

tional analysis of any viral nucleic acid cloned as DNA and 

can be used to address many different processes during viral 

infection cycles.

Functional genomics applied to diagnosis of disease and 

identifi cation of antiviral targets

Not only the viral genome but also the host genome is es-

sential for the viral life cycle. The viral and host factors that 

determine whether a viral infection would result in viral 

replication and propagation or its elimination by the host 

immune response are still largely unknown. Besides target-

ing specifi c viral genes, the host genes essential for the viral 

cycle may serve as antiviral targets based on the fact that 

viruses employ several strategies to alter host gene expres-

sion. Many experimental studies have gone into establish-

ing the different cellular pathways modulated by the virus, 

and whether a common theme exists for all viruses or each 

virus behaves differently? An understanding of how a cell 

responds to a viral infection and its fi nal outcome and the 

identifi cation of potential targets by global, systematic ap-

proaches may lead to novel diagnostic techniques depend-

ing on the ‘molecular signature’ of the virus.

One such example is the identifi cation of eIF2Bγ and 

eIF2γ as cofactors of hepatitis C virus translational machin-

ery using a functional genomics approach [46]. The 5' un-

translated region of HCV functions as an internal ribosome 

entry site (IRES) to initiate translation of HCV proteins. Us-

ing a randomized retroviral vector ribozyme gene library, 

two ribozymes that inhibit HCV IRES-mediated transla-

tion but did not inhibit cap-dependent protein translation 

or cell growth were identifi ed. The functional targets of 

these ribozymes were identifi ed as the gamma subunits of 
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human eukaryotic initiation factors 2B and 2, respectively. 

In addition to leading to the identifi cation of cellular IRES 

cofactors, ribozymes obtained from this cellular selection 

system could be directly used to specifi cally inhibit HCV 

viral translation, thereby facilitating the development of 

new antiviral strategies for HCV infection.

Microarrays are also now being used increasingly in vi-

ral diagnosis. A microarray for the detection of fi ve viruses, 

11 prokaryotes and two eukaryotes, that are potential agents 

for biological warfare, has been developed by Wilson et al 
[47]. A spot array has been described for specifi c detection 

of enterovirus 71 [48]. DNA microarrays have also found 

their application in molecular typing of pathogenic viruses 

for detection of the presence or absence of specifi c viruses 

for patient management, epidemiological surveillance and 

transmission studies, or vaccine use. The Affymetrix HIV-

1 GeneChip was the fi rst commercial microarray used in 

clinical virology. It was initially developed for genotyping 

the protease gene, and later also for the reverse transcriptase 

gene [49]. An infl uenza virus microarray based on four hae-

magglutinin, three neuraminidase and two matrix protein 

gene targets from fi ve different infl uenza virus strains has 

been described [50]. Similar microarray has been developed 

for molecular typing of rotaviruses [51].

Fuctional genomics in understanding viral evolution 

and phylogenetic analysis

Using bioinformatics analysis methods, Simmonds et 
al [52], identifi ed genome-scale ordered RNA structure 

(GORS) in many genera and families of positive-strand 

animal and plant RNA viruses. The authors observed genus-

associated variability in members of the family Flaviviridae 

(e.g. unlike as seen in the related pestivirus and fl avivirus 

genera, hepaciviruses showed evidence for extensive inter-

nal base-pairing), the Picornaviridae, the Caliciviridae, and 

many plant virus families. The existence of such evolution-

arily conserved GORS correlated strongly with the ability 

of each genus to persist in their natural hosts indicating 

towards the possible role for GORS in the modulation of 

innate and acquired host immune response.

Viruses are classifi ed broadly into seven groups on the 

basis of the composition of their nucleic acids and strat-

egy for replication. Despite major differences among these 

classes, recent results revealed that there are multiple, 

detailed structural and functional parallels among the repli-

cation complexes of four of these seven virus classes: posi-

tive-strand RNA viruses, retroviruses and dsRNA viruses 

[53]. These viruses share several underlying features in 

genome replication and might have emerged from common 

ancestors. This has implications for virus function, evolu-

tion and control.

Functional genomics and new pathogen discovery 

There is a huge demand for new methods for viral discov-

ery (to identify and characterize novel or unrecognized 

viral pathogens in human and animal diseases) because 

of the constant threat posed by emerging and reemerging 

viral infectious diseases. Besides this, the etiological agents 

of many diseases are largely unknown; for example, ap-

proximately 70% of cases of viral encephalitis and 30% 

of respiratory tract infections are of unknown etiologies. 

David Wang’s group has previously described a prototype 

DNA microarray designed for highly parallel viral detection 

with the potential to detect novel members of known viral 

families [54]. This microarray contained approximately 

1600 oligonucleotides representing 140 viruses. A more 

comprehensive second-generation DNA microarray-based 

platform for novel virus identifi cation and characterization 

was further developed by Wang’s group [55]. This microar-

ray contained the most highly conserved 70mer sequences 

from every fully sequenced reference viral genome in 

GenBank (as of August 15, 2002), to maximize the prob-

ability of detecting unknown and unsequenced members 

of existing families by cross-hybridization to these array 

elements. On average, ten 70mers were selected for each 

virus, totaling approximately 10,000 oligonucleotides from 

approximately 1,000 viruses. This pan-viral microarray was 

used as part of the global effort to identify a novel virus 

associated with severe acute respiratory syndrome (SARS) 

in March 2003 [56, 57]. During an outbreak of severe acute 

respiratory syndrome (SARS) in March 2003, hybridization 

to this microarray revealed the presence of a previously 

uncharacterized coronavirus in a viral isolate cultivated 

from a SARS patient. To further characterize this new vi-

rus, approximately 1 kb of the unknown virus genome was 

cloned by physically recovering viral sequences hybridized 

to individual array elements. Sequencing of these fragments 

confi rmed that the virus was indeed a new member of the 

coronavirus family. This combination of array hybridization 

followed by direct viral sequence recovery should prove to 

be a general strategy for the rapid identifi cation and charac-

terization of novel viruses and emerging infectious disease. 

Functional genomics in cancer biology

Functional genomics approach has been used extensively in 

cancer biology to identify tumor specifi c pathways [58–61]. 

Microarray based methods have been used to distinguish 
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HBV and HCV chronic hepatitis based on differentially

expressed genes [62, 63]. Broad analysis of the types of 

genes involved showed that HBV genes involved in apop-

tosis, cell cycle arrest and extracellular matrix degradation 

were up-regulated, whereas for HCV genes involved in 

cell cycle acceleration and extracellular matrix storage 

were up-regulated. In a related study of hepatocellular 

carcinoma (HCC), the major difference between HBV and 

HCV derived tumors was the up-regulation in HCV and 

down-regulation in HBV of genes involved in activating 

chemotherapeutic drugs or detoxifying xenobiotic carcino-

gens [62]. Thus functional genomics approach has been 

successfully used to study HBV and HCV virus biology 

and pathogenesis.

Conclusions

Functional genomics involves the use of the genome se-

quence information of an organism coupled with experi-

mentally derived transcriptomics and proteomics data to 

study the organism as a whole. As reviewed here, such 

studies further advance our knowledge of basic and ap-

plied virology and provide a greater understanding of viral 

pathogenesis. Functional genomics studies have aided in 

the development of new viral diagnostics and therapeutics. 

As more and more viral genomes are sequenced and new 

more advanced computational tools are made available 

to analyze, integrate, model and interpret the burgeoning 

amount of data, new and valuable information about viral 

systems will emerge. Functional genomics data needs to be 

made publicly available to hasten the pace of research in 

this fi eld. Such studies have provided further insight into 

host and pathogen interactions and will continue to do so 

in future. Functional genomics studies are increasingly ex-

panding into the boundaries of various traditional biological 

disciplines. This fi eld is still in its infancy, but growing at 

a steady rate.
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