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Simple Summary: In dairy farms, milking-related operations and procedures are often demanding,
time-consuming, and directly affect farm economics. Therefore, milking operations need to be
performed efficiently and effectively, with the proper pre-dipping and post-dipping operations, and
with the avoidance of overmilking. Several studies have been carried out on milking operations and
the parameters for shortening milking time without harming cows. The most important prerequisites
for ensuring high-level milking conditions are the appropriate pulsation ratio and detachment flow
rate. Both parameters were investigated in this study, where milking operations and parameters
were recorded for three months on a dairy cattle farm in Northern Italy. A comparison was made
between cows milked with a pulsation ratio of 60:40 vs. 65:35 and between cows milked with a
detachment flow rate of 600 g/min vs. 800 g/min. Machine learning was used to achieve automatic
adjustment of pulsation ratios and detachment flows for individual cows. The least-squares support
vector machine (LSSVM) classification model based on the sparrow search algorithm (SSA) applied
in this study outperformed other common machine learning models. Therefore, if implemented
on milking machines, this could help to automatically vary the machine’s settings based on cows’
specific characteristics, for the benefit of cows’ welfare.

Abstract: In dairy farming, milking-related operations are time-consuming and expensive, but are
also directly linked to the farm’s economic profit. Therefore, reducing the duration of milking
operations without harming the cows is paramount. This study aimed to test the variation in different
parameters of milking operations on non-automatic milking machines to evaluate their effect on
a herd and finally reduce the milking time. Two trials were set up on a dairy farm in Northern
Italy to explore the influence of the pulsation ratio (60:40 vs. 65:35 pulsation ratio) and that of the
detachment flow rate (600 g/min vs. 800 g/min) on milking performance, somatic cell counts, clinical
mastitis, and teats score. Moreover, the innovative aspect of this study relates to the development
of an optimized least-squares support vector machine (LSSVM) classification model based on the
sparrow search algorithm (SSA) to predict the proper pulsation ratio and detachment flow rate for
individual cows within the first two minutes of milking. The accuracy and precision of this model
were 92% and 97% for shortening milking time at different pulsation ratios, and 78% and 79% for
different detachment rates. The implementation of this algorithm in non-automatic milking machines
could make milking operations cow-specific.

Keywords: algorithms; dairy cows; detachment flow rate; milking time; pulsation ratio

1. Introduction

In dairy cattle farming, the milking-related operations are important and demanding
since the economic benefit gained by farmers is strongly correlated to milk production [1].
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Milk yield and composition are fundamental parameters for evaluating herd efficiency
and herd-related management operations [2]. In Italy, the most productive dairy cow
breed is the Italian Holstein, which has genetic traits aimed towards productivity and
can therefore achieve very high milk yields with satisfactory fat and protein content [3].
However, the side effect is that these animals are quite delicate and require great attention
to their management and health. In addition, their average lifetime is 2.2 lactations (about
4-5 years of age) [4]. A wide and comprehensive body of literature can be found on
all the aspects related to milking, prediction of milk production [2], and techniques to
monitor milk yield (with lactometers and software directly linked with automatic milking
systems and traditional milking systems with animal identification), e.g., in [5-7], udder
health, e.g., [8,9], welfare [10,11], feeding [12], milking operations, routine [6,13-15],
pre-dipping and post-dipping procedures, and manual pre-stimulation by the milker,
e.g., in[16,17].

Even though it is important to estimate the individual milk yield, the task is hin-
dered by the animal being a complex time-invariant system (individuality) [18]. The
availability of technology to monitor animals individually has brought significant im-
provements to dairy cattle farming systems, especially the introduction of automatic
milking systems (AMSs) [5,12,18,19] and the subsequent possibility of making evalu-
ations for single animals/quarters [20,21]. When traditional non-automatic milking
systems are used, the milking routine substantially impacts the daily time budget of
workers, and they should work carefully and efficiently for a proper milk ejection [6,22].
Pre-dipping and pre-stimulation operations are key elements for a proper milking rou-
tine and adequate oxytocin release, milk ejection, and teat health [1]. After the cluster
detachment, post-dipping operations are important to avoid intramammary infections.
Actions can still be carried out to shorten milking duration without damaging teat tis-
sues. Some studies have reported that raising the b-phase of the milking vacuum by
acting on the pulsation rate (60 cycles/min) or the pulsation ratio (60:40) directly and
positively influences the peak milk flow rate and the milking speed [17,23]. Avoiding
teat congestion and hyperkeratosis when acting on this ratio is a key element. Similarly,
Bluemel et al. [24] reported on improving milk ejection and udder health quality by
acting on the c-phase and d-phase. Gleeson et al. [25] and Kaskous [26] reported that
small changes in the pulsation ratio (i.e., 65:35 and 67:33) do not negatively affect the teat
health, while the increase of this ratio can shorten milking time and increase milk yield.
Additionally, an anticipated cluster detachment can favor the preservation of teat health
by avoiding high vacuum levels when the milk flow is low [1]. Although these rules are
known, every farmed animal is characterized by specific biological and genetic traits
that can influence their response to exogenous conditions, both during the lactation
period and in the long term. Therefore, these differences need to be considered, thus
reinforcing the role of precision livestock farming (PLF) techniques [27]. PLF, together
with machine learning and advanced data analysis techniques, can bring continuously
new advancements in the improvement of animal farming, production efficiency, and
animal health and welfare status [28,29]. Suseendran and Duraisamy [30] proposed an
automated model based on machine learning technology to predict the milk production
of cows based on their health status, feed intake, and expected relative milk yield. Ji
et al. [31] demonstrated a framework that automatically trains models using the updated
farm data and predicts daily milk production, composition (fat and protein content), and
frequency of milking for individual cows over the following 28 days. The application of
such frameworks can be used to improve the management efficiency and animal welfare
of dairy farms, also adding new knowledge that can lead to the introduction of automatic
variations in milking machines. This applies mainly to contexts where farmers are not
interested in AMSs but can still benefit from technology and automatization.

The goal of this study was to understand how the milking time for a herd can be
reduced without harming cows’ udder health. The data on the milking operations were
collected to evaluate the effect of varied parameters of the milking machine on a sample
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of cows. The second aim was to develop a prediction model that depends on the first
2 min of milking to automatically adjust the settings of the milking machine to a proper
pulsation ratio and detachment flow rate at the individual cow level. This model can
bring valuable improvements to milking operations if implemented in milking machines,
because reducing the milking time of cows with high milking times can lead to an
increase in the homogeneity of the herd during milking, thus improving the efficiency of
milking operations.

2. Materials and Methods
2.1. Farm Description

In this study, a dairy cattle farm located in Northern Italy was monitored for three
months, from September to December 2021. The herd consisted of about 1000 cows, 59% of
which were primiparous and 41% multiparous. The farm was equipped with pedometers
mounted on the cows” hind legs and a milking monitoring system from the commercial
firm Afimilk® (Kibbutz Afikim, 1514800, Israel), from which milking data were collected
for each milking session throughout the experiment period. The data collected for every
cow included the milk production per session, average milking time, flow rate in the first
2 min (divided into 4 temporal sections, i.e., 0-15, 15-30, 30-60, and 60-120 s), and peak
and removal flows and times. Furthermore, the gynecological state, age, parity, and days
in milking (DIMs) were also accessible.

The cows were housed in a loose housing system and fed on a mixed ration. Two
milking sessions per day (8 a.m. and 8 p.m.) were performed by two groups of milkers
(each group was composed of 2 milkers and 1 worker that moved the animals from the
farming area in the barn to the holding area). The milking took place in a traditional
herringbone milking system with 15 + 15 stalls. The herd was divided into 9 groups
based on herd management criteria, of which 1 group included only cows that just
calved. In contrast, the others included primiparous or multiparous dairy cows. The
whole milking operation lasted about 9 h daily. Both milkers carried out pre-dipping
and post-dipping operations in both milking sessions, which was a good procedure for
the milk ejection and udder health but increased the duration of milking [6]. During
pre-dipping, the milkers stimulated and cleaned teats; they eliminated the first ejected
milk, applied a detergent, and then cleaned the teats with dedicated paper; finally, they
attached the cluster. About 1.5-2.0 min was the time required between stimulation and
cluster attachment. The first milker worked on the first 8 cows, while the second milker
on the other 7 cows in each line of stalls. After milking, post-dipping operations were
completed. The milking machine was set to a pulsation ratio equal to 60:40, a vacuum
pressure of 42 kPa, and the detachment of liners at 600 g/min, which was compliant
with the suggested values reported in the literature [13]. Triangular liners were used
and replaced when needed. Given the significant amount of time required for milking
operations, the farm manager asked that the duration of milking operations be reduced,
without the willingness to adopt an AMS. The attention was therefore paid to those cows
that were slow to eject milk (average milking time > 8 min) and thus prolonged the whole
duration of milking operations; moreover, attention was also paid to the possibility of
modifying the detachment flow rate of the milking machine (from 600 to 800 g/min) to
avoid the risk of overmilking and possibly further reduce milking time. The low-flow
period could last longer if the set detachment threshold was not achieved.

2.2. Experimental Setup

The whole herd was submitted to a trial where some parameters in the milking
operations varied, and the udder health was monitored. In particular, the full set of
data that could be collected with the informatization of milking operations was available,
including cow ID, milk yield (kg/session), average milking time (minutes), and the flow
rate in the first 2 min (g/min), and split into 4 groups (0-15, 15-30, 3060, and 60-120 s),
peak flow (g/min), peak time (min), and removal flow (g/min) per each session of milking
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as well as the average milk yield of the previous 10 days. The removal flow did not
identify the instantaneous flow at the detachment of the cluster, but it was the average flow
measured for some seconds before the detachment.

With respect to the udder health, in the same period in which the milking was mon-
itored, an expert observed the udder health through the teat-end score (TS) test every
3 weeks to evaluate possible damages to teats. In total, 5 observations were performed
for the herd, renamed with the TS code from 1 to 5 (TS-1 to TS-5) in chronological order.
A score from 1 to 4 was given to each teat of the udder based on its hyperkeratosis level:
1 for normal teats, 2 for smooth, 3 for rough, and 4 for very rough [32]. This operation was
carried out concurrently with the morning session of milking. Additionally, the somatic
cell count (SCC) was determined every month for each cow after the analysis of milk
samples. Finally, the possible presence of clinical mastitis in the experimental period was
investigated to determine if some cows had more clinical mastitis than others.

For this experiment, 2 trials were performed in which the pulsation ratio or the
detachment flow rate was changed. The trials were carried out simultaneously, with one
group of cows dedicated to the first trial and another group to the second trial. No temporal
or managerial difference needed to be considered because the animals’ management and
routine were the same for both trials. The selection of cows was carried out according to
average days in milk (DIMs); since the experiment lasted 3 months, cows with DIM > 200
were excluded from the random selection to prevent them from being dried off before the
end of the experiment. A second restriction was included in the trial on the pulsation ratio
because only those cows with an average milking time (AMT) longer than 8 min were
included in this trial. This selection was applied because reducing the AMT of cows that
had AMT > 8 mins made the whole milking operation more homogeneous and finally
shorter. Based on these prerequisites, the following 2 trials were carried out:

e  Trial 1 —Pulsation ratio: from the list of cows with an average milking time (AMT) > 8 min,
54 cows were randomly selected for the trial group, and the pulsation ratio was set to
65:35 (noted as Trial 1—puls 65:35); the control group including 54 cows was kept at
60:40 (noted as Trial 1—puls 60:40).

e  Trial 2—Detachment: from the remaining dairy cows of the herd, a group of 60 cows
was randomly selected and set to a detachment (or removal) flow of 800 g/min
(Trial 2—detach800), while the control group including 60 cows was maintained with
a removal flow set to 600 g/min (Trial 2—detach600).

The cows selected for both trials had, on average, a DIM of 93 and parity of 1.6.
Therefore, changes during the lactation period were not affected by the differences in DIM
or parity. To determine the conditions of the herd before the start of the trial, the measured
SCC was calculated as a linear score, and the average of all the tested animals was equal to
2.67 & 2.09 linear score (logarithmic linear scale based on the number of cells/mL).

Descriptive statistics on the data collected were performed with the software SAS 9.4.
Moreover, multivariate statistics were also carried out to test the trials and the statistical
significance. A mixed procedure (proc mixed) was carried out to predict the variables
of AMT, milk yield, total low flow, peak time, peak flow, and removal flow. A random
statement was introduced for the cows and a repeated statement for the repetitions of
measurements, i.e., 2 milkings per day. Corrected least-square means (LSMs) and statistical
differences with Tukey test were calculated between the tested trials. In particular, LSMs
were calculated separately for Trial 1—puls60:40 vs. puls65:35 and Trial 2—detach600 vs.
detach800. As mentioned above, the reason for the analysis being carried out separately was
that the two trials were not interconnected. Then, a GLIMMIX procedure (proc GLIMMIX)
was used to evaluate if statistical differences could be found within the trials with respect
to the health status determined by the measurements of TS and SCC. Additionally, in this
case, the Tukey test was used.
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2.3. Prediction of Individual Cow Milking Times and Removal Flow Based on SSA-LSSVM

This study aimed at automizing the changes in the settings of the milking machine
for individual cows, based on data of the average milk yield for the previous 10 days
and flow rates of 0-15, 15-30, 3060, and 60-120 s. Through this, automatic adjustment
of milking parameters for individual cows and improved milking efficiency and farm
welfare can be achieved. Hence, if the individual cow’s milking time can be predicted, it is
possible to reduce milking time by adjusting the pulsation ratio for cows with high milking
time. Moreover, if individual cow removal flow rates can be predicted, milking time can
be reduced by adjusting the removal flow threshold for individual cows with too low a
removal flow rate. By processing the collected data, the prediction of the individual cow
milking times and removal flows will allow a precise milking parameter customization for
individual cows.

2.3.1. Data Normalization

Data normalization is an essential preprocessing technique used to prevent wide
variation in the data, which can influence the predictive abilities of the developed system.
Therefore, a mean normalization approach was adopted in this study. A reclassification
was performed for the different parameters using the following formula (Equation (1)).

X:
XNji = ?1 )
where Xyj; is the normalized parameter of sample i, X; is the original parameter of sample
i, and X is the average of all parameters.

2.3.2. Least-Squares Support Vector Machines (LSSVMs)

A support vector machine (SVM) is a type of generalized linear classifier that is used
to classify data in a supervised learning manner, where the decision boundary is the
maximum-margin hyperplane over the learned samples and is part of statistical learn-
ing theory. Although SVM has a strong generalization capability, its inequality function
is complicated. Suykens and Vandewalle [33] proposed a least-squares support vector
machine (LSSVM) algorithm that uses a least-squares linear system as a loss function to
change the inequality constraint into an equation constraint by letting the training sample
be N {(x1, y1),(x2,y2) ... (xi, yi)} where X, y are the n-dimensional input and output of
the training sample, respectively, and given the LSSVM objective optimization function J,
as shown in Equation (2)

T
Jowe) = SN @
where ( is the controllable parameter, w is the weight vector, and C is the regularization
parameter used to fit the error; e; is the error, which needs to satisfy Equation (3).

yi:wTd)(xi)+b+ei,1:1,2,...,N (3)

where ¢(x;) is the mapping function and b is the bias value; then, the Lagrangian function
is given by Equation (4).

N
L=]J(w,e)— Zi:l o [ngo(xi) +b+e — yi} 4)
where o is the Lagrangian multiplier, with the derivative yields (Equation (5)):

AL —05w=yN, ae(x),

% =0-1N mo(x) =0,

%:0—>oq:§ei,
aafL=0—>WT(p(Xi)+b+ei—yi=0

&

Q)
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Solving the linear equation, eliminating w and e, gives Equation (6).

o Bl =[]

where Iy is the n-dimensional unit matrix, 1 m = [11, 12, 13, ..., 1m] is a vector of ones,
and Q) is calculated by the following formula from Mercer’s theorem as given in Equation (7).

Q= 0 () @) = K(x) @)
Then, the decision function y(x) of the LSSVM is obtained as in Equation (8).
N

Z O(iK(Xi, X]) + b
i=1

y(x) = sgn (8)

Additionally, the radial basis function K (x;, xj) is given by:

_1 e |12
K(xi,xj) = exp(zHXlX]H> )

o2

where o is the kernel function width factor, and || x; — |? is the squared Euclidean
distance between two vectors.

2.3.3. SSA-LSSVM

The sparrow search algorithm (SSA) is a novel swarm intelligence optimization algo-
rithm proposed by Xue and Shen [34]. It is a heuristic algorithm that mimics the cooperative
behavior of a flock of sparrows during foraging to improve the exploration and use of val-
ues of parameters in the optimal search space. Since the parameter significantly influences
the prediction performance of the LSSVM algorithm, it needs to be optimized based on the
SSA algorithm, which can address the problem of blind selection of the parameters and the
difficulty of jumping out of local extremes.

2.3.4. Quantification of Prediction Model Performance

A five-fold cross-validation strategy with 10 repetitions defined by Siegmann and
Jarmer [35] was applied to evaluate the classification performance of all the tested machine
learning algorithms based on accuracy (Equation (10)), precision (Equation (11)), recall
(sensitivity) (Equation (12)), and the F-measure (Equation (13)).

(TP + TN)
A = 10
Y = TP + TN + FN + TN) (10)
TP
ision = -—————— 11
Precision (TP + FP) (11)
TP
= 12
Recall (TP + N) (12)
F — meastre — 2 x (Precision x Recall) (13)

(Precision + Recall)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives.

3. Results and Discussion
3.1. The Effect of Pulsation Ratio and Removal Flow on Milking Characteristics

The use of the mixed model to predict the variables of AMT, milk yield, total low flow,
peak time, peak flow, and removal flow allowed us to achieve interesting insights into the
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studied herd. The results with statistical differences for Trial 1 (puls 60:40 vs. puls 65:35)
and Trial 2 (detach 600 vs. detach 800) are reported in Tables 1 and 2, respectively.

Table 1. Corrected least-square means (LSMeans), standard errors (S.E.s), and related statistical
differences of Trial 1, where 2 pulsation ratios were tested. The control had the pulsation ratio set to
60:40, and the experiment had the pulsation ratio set to 65:35.

Trial 1
Parameter Unit S.E. P
Puls60:40 Puls65:35
AMT min 8.42 7.97 0.09 0.0003 **
Yield kg/session 18.8 19.2 0.30 0.2769 n.s.
Total Low Flow min 1.10 1.40 0.07 0.0028 **
Peak Time min 4.47 4.23 0.08 0.0409 *
Peak Flow g/min 3684.4 3823.9 97.4 0.3145 n.s.
Removal Flow g/min 860.6 880.5 14.8 0.3438 n.s.

Note: significance levels: n.s.: not significant; *: <0.05; **: <0.001.

Table 2. Corrected least-square means (LSMeans), standard errors (S.E.s), and related statistical
differences of Trial 2, where 2 detachment flows were tested. The control had the detachment flow set
to 600 g/min, and the experiment had the detachment flow set to 800 g/min.

Trial 2
Parameter Unit S.E. P
Detach600 Detach800
AMT min 4.94 5.02 0.05 0.2793 n.s.
Yield kg/session 18.5 17.8 0.24 0.0485 *
Total Low Flow min 0.76 0.64 0.04 0.0387 *
Peak Time min 2.27 2.28 0.04 0.8638 n.s.
Peak Flow g/min 6432.2 6651.3 120.7 0.1973 n.s.
Removal Flow g/min 1083.6 12139 24.9 0.0003 i

Note: significance levels: n.s.: not significant; *: <0.05; **: <0.001.

Regarding the trial performed for the pulsation ratio (Trial 1), from the results it was
found that there was no statistically significant difference in the milk yield, peak flow, or
removal flow when the pulsation ratio was 60:40 compared to 65:35 (p > 0.05). Instead,
milking time (AMT) was significantly reduced, from 8.42 min to 7.97 min (p < 0.0001); the
peak time was significantly reduced, with a decrease of 7%, and the total low flow increased
significantly, from 1.10 to 1.40 min. Milk yield increased slightly but not significantly in
this sample (from 18.8 to 19.2 kg per session). Therefore, with the modification of the
pulsation ratio from 60:40 to 65:35, the goal of reducing milking time was achieved. These
results concur with studies on milking operations which concluded that the pulsation ratio
needs to be varied so as to reduce the milking time [17,25,26]. However, as suggested
by Kaskous [26], the reduction in milking time while increasing the pulsation ratio may
compromise the udder health. Therefore, every change in the machine settings needs to be
investigated in detail.

In Trial 2, the two different detachment flows were tested, which resulted in the
differences shown in Table 2. No statistically significant difference was found in the
AMT, peak time or peak flow between the experimental group with a detachment equal
to 800 g/min and the control group with a detachment of 600 g/min (p > 0.05). Milk
yield was statistically significantly lower (p < 0.05) (18.5 and 17.8 kg in detach600 and
detach800, respectively), as well as the total low flow (0.76 and 0.64 min in detach600
and detach800, respectively). The removal flow significantly improved (p < 0.001) from
1.0 kg/min to 1.2 kg/min. Stauffer et al. [36] found no differences in milk production
when the cluster detachment flow changed, similarly to the findings of this study. This
similarity was achieved even if Stauffer et al. [36] used different detachment thresholds
than in this experiment. Moreover, Besier and Bruckmaier [37] stated that the earlier cluster
detachment can slightly reduce milk yield with the benefit of milking time and teat health.
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Their study concluded that the best removal flow would be at least 600 g/min, which is
consistent with this experiment.

Furthermore, in the literature, many researchers highlight the relevance of the vacuum
pressure, showing that values around 43 kPa are optimal for both milk ejection and teat
health. However, in this study the vacuum pressure was not changed.

3.2. The Effect of Pulsation Ratio and Removal Flow on SCC, Mastitis Incidences, and TS

To evaluate if the tested parameters influenced the udders” health, the somatic cell
count (SCC), expressed as a linear score, and the teat-end score (TS) were measured, and
the statistical difference for each group was established. As reported in Atakan et al. [38], it
is important to monitor the TS because hyperkeratosis on the teat end is caused mainly by
errors, high vacuum pressure of the milking machine, increased milk yield, prolongation of
milking, dirtiness of the animals, and insufficient bedding. Therefore, reducing the milking
time may help to reduce the TS of cows with a high average milking time. However,
the higher vacuum pressure and other characteristics that were not monitored in this
experiment (e.g., dirtiness and bedding) could also affect this result. Additionally, the TS
is also important due to its relationship with a higher risk for mastitis and high SCC [39].
However, as stated by Sharma et al. [39] there are several reasons for a high concentration
of SCC.

As a first consideration, the SCC was calculated as a linear score, so that values above
4 mean that the SCC was excessively high (>300,000 cells/mL). SCCs were also measured
before the start of the trial, with the SCC-0 measurement referring to the measurement of
SCC before the start of the trial. SCC-1, SCC-2, and SCC-3 refer to the three measurements
taken during the experiment.

In the statistical analysis carried out with the GLIMMIX procedure, SCC-0 was in-
cluded in the model, and SCC-1, SCC-2, and SCC-3 were predicted. From the model
outcomes, the results shown in Tables 3 and 4 were achieved. In particular, in Trial 1
(shown in Table 3), SCCs were always higher when the pulsation ratio was set to 60:40;
only in the second measurement was this difference not significant (p > 0.05). In the
three observations, the LSMs were below the threshold of 4, meaning somatic cells were
<300,000/mL.

Table 3. Least-square means (LSM), standard error (S.E.), and statistical difference (p-value) of the
somatic cell count in the 3 measurements (1-3) in chronological order for Trial 1.

Trial 1
Parameter S.E. 14
Puls60:40 Puls65:35
SCC_1 3.11 2.38 0.06 <0.0001 i
SCC_2 3.28 3.23 0.07 0.1946 n.s.
SCC_3 2.72 2.58 0.06 <0.0001 ook

Note: significance levels: n.s.: not significant; ***: <0.0001.

Table 4. Least-square means (LSM), standard error (S.E.), and statistical difference (p-value) of the
somatic cells count in the 3 measurements (1-3) in chronological order for Trial 2.

Trial 2
Parameter S.E. 14
Detach600 Detach800
SCC_1 2.66 2.73 0.03 0.0137 i
SCC_2 3.56 2.68 0.05 <0.0001 i
SCC_3 4.29 3.86 0.04 <0.0001 *HE

Note: significance levels: **: <0.001, ***: <0.0001.

Running the same model for Trial 2, the SCC of detach600 was always significantly
different from detach800. In SCC-1, the linear score was lower for detach600, while in
SCC-2 and SCC-3 it was significantly higher (p < 0.0001). Furthermore, in this case, it must
be highlighted that the SCC_3 was above 4, which corresponded to an SCC > 300,000/mL.
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Considering the TS, five measurements were carried out in the experimental period,
from September (TS-1) to December (TS-5). According to the classification by Mein et al. [32],
a teat-end score from 1 to 4 was given to each teat of the udder based on its hyperkeratosis
level. Each TS was averaged for the front teats and for the back teats of each cow.

Table 5 shows the teats’ scores, averaged for front and back teats, for the experimental
and control groups in the two separate trials. The mean TS was higher in the experimental
group than in the control group in both trials. Teats showed a general increase in the
hyperkeratosis with the progress of the experiment. Moreover, the TS of the back teats
showed less damage than the front ones. However, fluctuations were observed. According
to the data and the incidences of clinical mastitis, the reason for the fluctuations was due to
some cows having developed serious mastitis in the period of the previous TS test, and
after the antibiotics treatment, cows had a lower score.

Table 5. Teat scores of cows (TS-1 to TS-5) in chronological order, distinguished between front and
back teats for Trial 1 and Trial 2. Cells background is colored with green for the low TS values and it
becomes red when the TS values worsen (higher TS values).

Trial Teats Group TS-1 TS-2 TS-3 TS-4 TS-5
puls60:40 2.10 2.09 223 2.35 257

_ Front puls65:35 2.23 2.29 2.33 2.43 2.65
Trial 1 puls60:40 2.03 2.11 2.11 AT 2.39
Back puls65:35 2.25 2.24 2.28 2.36 241

Eront detach600 2.03 1.98 2.04 2.07 1.97

, detach800 2.11 2.15 218 2.20 2.24
Trial 2 detach600 2.00 1.97 2.00 2.00 1.93
Back detach800 2.08 2.11 2.09 2.14 2.13

Considering that the cows in Trail 1 were randomly selected from a herd with an
average milking time higher than 8 min, it could be inferred that the longer milking time
negatively influenced teat health, as also suggested by Odor¢ic et al. [1].

In order to understand the statistical significance of these differences, the GLIMMIX
model was carried out for the different TS. The results are reported in Table 6 for Trial 1,
and in Table 7 for Trial 2.

Table 6. Least-square means (LSMs), standard error (S.E.), and statistical difference (p-value) of the
teat-end scores (TS-1 to TS-5) in chronological order for Trial 1.

Trial 1
Parameter S.E. p
Puls60:40 Puls65:35
TS_1 2.25 2.34 0.01 <0.0001 g
TS_2 2.33 2.46 0.02 <0.0001 x
TS_3 2.49 2.58 0.02 <0.0001 o
TS 4 2.44 2.57 0.02 <0.0001 i
TS_5 2.78 2.83 0.02 <0.0001 wHx

Note: significance levels: ***: <0.0001.

Table 7. Least-square means (LSM), standard error (S.E.), and statistical difference (p-value) of the
teat-end scores (TS-1 to TS-5) in chronological order for Trial 2.

Trial 2
Parameter 14
Detach600 Detach800
TS 1 2.09 2.10 0.01 0.0187 **
TS 2 1.99 2.11 0.01 <0.0001 x
TS 3 2.02 2.10 0.01 <0.0001 i
TS 4 2.10 2.17 0.01 <0.0001 i
TS_5 2.18 2.34 0.02 <0.0001 i

Note: significance levels: **: <0.001; ***: <0.0001.
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In Trial 1, differences between the puls60:40 and puls65:35 were all significant. In all
cases, the TS was higher in puls65:35 than puls60:40.

Regarding Trial 2, in all cases statistical differences were present between detach600
and detach800, with a better TS achieved when detaching the cluster at 600 g/min instead
of 800 g/min.

Concerning the clinical mastitis, Figure 1 shows the frequency of incidence of clinical
mastitis during the tested trials. In all the cases, most of the cows were not infected during
the experimental period. In Trial 1, 9-10% of cows had one case of clinical mastitis; in
Trial 2, between 11 and 16% of cows encountered one case of clinical mastitis, with the
control trial showing a higher frequency. Only 2% of cows had >2 cases of clinical mastitis,
all in Trial 2.

18% ‘
R 16% I
) |
£ 14% !
é 12% i
= 10% :
O
£ 8% |
£ 6% i
§ 4% :
s 29 !
o
8 | N |
|
1 2 2 1 2 211 2 > 1 2 2
|
puls 60:40 puls 65:35 I detach600 detach800
|
Trial 1 l Trial 2

n. clinical mastitis

Figure 1. Percentage of cows with clinical mastitis infection during the experimental period, distin-
guished between Trial 1 (puls60:40 vs. puls 65:35) and Trial 2 (detach600 vs. detach800). The number
of cases of clinical mastitis was 1, 2, or >2.

3.3. Prediction of AMT and Removal Flow Based on SSA-LSSVM

The test environment for this study was CPU core i5-1135G7, 2.4 GHz, 16 G RAM,
programmed with MATLAB R2019a (The MathWorks Inc., Natick, MA, USA). To compare
the prediction performance of SSA-LSSVM with other machine learning models, i.e., the
K-nearest neighbor (KNN), naive Bayes, decision tree, and linear discriminant analysis
(LDA) were trained. Based on the above model, binary predictions were made for AMT
(>8 min and <8 min) and for removal flow (>600 g/min and <600 g/min).

One thousand randomly selected samples were used to test the prediction perfor-
mance of each model. Tables 8 and 9 show the evaluation metrics of each model for the
AMT prediction model and the removal flow prediction model, respectively. As shown
in Table 8, it can be observed that SSA-LSSVM achieved an accuracy equal to 92% and
had the highest F1 score of 0.95, which makes it the best predictor of AMT. Additionally,
Table 9 presents that the removal flow prediction test results of SSA-LSSVM had the best
performance, with the highest prediction accuracy (78%) and the highest F1 score (0.88).
Based on the evaluation metrics of the model, it can be concluded that the prediction
model developed is satisfactory for AMT and acceptable for removal flow. In addition,
the same model had different predictive abilities for different objects. For example, LDA,
which is only second to SSA-LSSVM in predicting AMT, was the worst among several
models in predicting removal flow. From both Tables 8 and 9, it can be observed that the
LSSVM model optimized by SSA had a better accuracy, precision, recall, and F1 score
than the unoptimized model (with no SSA). Therefore, the optimization of the LSSVM
using the SSA algorithm was valid and effective.
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Table 8. AMT prediction model performance.
Tested Models Accuracy Precision Recall F1 Score
SSA-LSSVM 0.92 0.97 0.94 0.95
LSSVM 0.90 0.96 0.93 0.94
Naive Bayes 0.82 0.83 0.96 0.89
Decision Tree 0.87 0.94 091 0.93
KNN 0.89 0.93 0.94 0.94
LDA 0.90 0.97 0.91 0.94
Table 9. Removal flow prediction model performance.
Tested Models Accuracy Precision Recall F1 Score
SSA-LSSVM 0.78 0.78 0.99 0.88
LSSVM 0.75 0.78 0.93 0.85
Naive Bayes 0.76 0.79 0.94 0.86
Decision Tree 0.64 0.79 0.73 0.76
KNN 0.67 0.79 0.80 0.79
LDA 0.58 0.80 0.61 0.69

Standarc; deviation

Model Performance with Dimensionality Reduction

To determine the predictive power of the data variable, a dimension reduction tech-
nique was performed, and the performance of the SSA-LSSVM was evaluated (based only
on the high predictive power variables). Figure 2 presents a parallel coordinate plot of the
1000 test samples after data normalization. It can be observed that the three features, ‘flow
rate 15-30", “flow rate 30-60’, and ‘flow rate 60-120’, were more centrally and distinctly
classified and thus had a high predictive power. Therefore, only these three features were
used to retrain the two prediction models based on the SSA-LSSVM. The performance of the
retrained model on the test set is shown in Table 10. For the prediction of AMT, the model
trained with only these three features showed a significant reduction in performance in all
aspects. However, for the prediction of the removal flow, the model with the downscaled
data was the same as the model with the complete data, with no reduction in any indicators.
Therefore, it can be stated that the feature ‘average milk yield” contributes to the prediction
of AMT but not to the prediction of the removal flow.

1 o ~ ResponselLabels
0
44 -4 -4 1

Averagemilkingyield FlowRate15t030s FlowRate30to60s FlowRate60to120s

Figure 2. Feature parallel coordinate plot.
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Table 10. Performance of the SSA-LSSVM model based on reduced dimensional data.

Accuracy Precision Recall F1 Score
Trial 1 0.87 0.68 0.33 0.44
SSA-LSSVM Trial 2 0.78 0.79 0.99 0.88

3.4. Potential Applications and Challenges

In this study, the machine learning prediction model was developed to predict the AMT
and removal flow of individual cows, achieving satisfactory performance on the validation
set. The method to implement the prediction of milking parameters for individual cows
is different from some prediction studies on cow milking [31,40,41]. It is more dynamic,
practical, and completely innovative, focusing on individual cows in real time (based only
on the first 2 min of data during the milking).

The objective of this study was to improve milking efficiency by reducing milking
time through precision milking parameter settings for individual cows. Its potential use
is very promising, but some challenges exist in the application. The milking equipment
currently used in dairy farms does not have the capability of adjusting milking parame-
ters in real time. The integration of this research in milking systems could be a challenge
to realizing the application of this research. In addition, since the milking is continuous,
high demands are placed on the real-time nature of the prediction model. Relying on this
study can promote more innovative and practical developments. For example, when the
predicted results deviate significantly from the actual outcome, it might be possible to
identify a cow with stress or health problems, and precise treatment of individual cows
can be achieved, for example, by adjusting environmental parameters [42] and adjusting
cow nutrition [43]. Therefore, its implementation could also serve as an early-warning
technique for stress or illnesses.

4. Conclusions

This study collected a full set of data about milking operations on a dairy cattle farm
located in Northern Italy. Somatic cell count, clinical mastitis, and teat-end score were also
considered for evaluating the results on the udder health of cows. The experiment included
a trial with the change in settings for the pulsation ratio and another trial for the change
in settings of the detachment flow rate. With respect to the need of reducing the duration
of milking operations, results are in line with literature findings, showing the benefits of
a pulsation ratio set at 65:35 to reduce the milking time, although this involved higher
hyperkeratosis. Concerning the increase in the detachment flow rate to 800 g/min, milk
yield was reduced and SCC improved, although the teat scores worsened slightly.

However, to evaluate the possibility of automatically modifying the milking param-
eters during milking, based on cows’ specificities, the optimized SSA-LSSVM algorithm
developed in this study achieved very interesting results in the prediction of the average
milking time and of the removal flow rate of each cow. This model, if implemented on
milking machines on farms, could permit automatically adjusting the parameters of the
milking machine based on the first 2 min of milking of each cow. Therefore, it could
represent a valuable improvement for milking operations in terms of duration, production,
and health. In the future, the potentialities of technology, data science, and IoT will further
increase and influence the sector in the continuous search for efficiency improvements.
Moreover, the possibility of using algorithms that can be learned based on single cows’
characteristics will also improve the health and welfare needs of each farmed animal and
will support the early warning of illnesses by monitoring the milk ejection.
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