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Abstract

Background: RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence
of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem
of designing a sequence folding into a particular target structure has only more recently received notable interest.
With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a
growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is
bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and
efficient solution, the inverse RNA folding problem appears to be hard.

Results: In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims
of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the
multi-target inverse folding problem, while simultaneously designing a method with superior performance when
measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program
called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and
predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding
sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards
CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed
well, generating a perfect design for about 80% of the targets.

Conclusions: Our method illustrates that successful designs for the inverse RNA folding problem does not
necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to
become more difficult on larger structures when the target structures are real structures, while no deterioration was
observed for predicted structures. Design for two structure targets is considerably more difficult, but far from
impossible, demonstrating the feasibility of automated design of artificial riboswitches. The Python implementation is
available at http://www.stats.ox.ac.uk/research/genome/software/frnakenstein.
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Background
The function of the RNA molecule depends on the way
it folds – structural changes can change protein binding
sites, or affect activity for ribozymes, for example. RNA
folding allows the single strand of nucleotides to fold upon
itself and form more complex structures such as heli-
cal junctions and pseudoknots; almost as soon as RNA
started to be sequenced, methods were established to
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determine the structure from the sequence of nucleotides.
Early attempts include [1], who simply summed over all
possible secondary structures and evaluated them with
respect to free-energy functions. Biological and thermo-
dynamical principles have since been applied to formulate
more advanced free-energy functions facilitating more
accurate and efficient predictions, which have been used
to great effect in methods such as UNAFold [2] and
RNAfold [3]. Stochastic Context-Free Grammars have
also been used to great effect in programs such as Pfold
[4,5]. For a review of RNA secondary structure prediction,
see [6] or [7].
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The inverse RNA folding problem is defined as follows:
given a particular RNA secondary structure (target struc-
ture), find a sequence of base pairs that would fold into this
structure. One could adopt two possible solution tech-
niques: either find an exact match, i.e. a sequence whose
predicted structure matches the target structure exactly,
or look for a sequence whose predicted structure is as
close as possible to the target structure (a suboptimal
solution). Then, the inverse folding problem becomes an
optimization problem: the goal is to minimize the distance
metric defined between a given target structure and the
predicted structure of a sequence. Here we consider only
base pairs {A − U , U − A, C − G, G − C, G − U , U − G},
and, since experimental verification of the folded structure
is not feasible, the structure predicted computationally
by RNAfold is used as a proxy for the true secondary
structure of a designed sequence.

There are several existing approaches to the RNA
Inverse Folding Problem. RNAInverse [3] is the most basic
method, inspired by local guided search. Given a target
structure, it produces a random sequence that is then ran-
domly changed at points where its predicted structure
differs from the target structure. RNA-SSD [8], INFO-
RNA [9], NUPACK: Design [10], and Inv [11] are also local
guided search based methods, using various combinations
of intelligent initial sequence design and/or hierarchical
decomposition of the target structure. MODENA [12,13]
is the only algorithm that introduces a genetic algorithm
approach. This approach is multi-objective: it aims to
maximise the closeness to the target structure and min-
imize the free energy of a solution. It facilitates a better
exploration of the search space, and avoids the limited pre-
diction capabilities of the local guided search methods.
However, a strong focus on energy minimisation causes an
extreme bias towards C-G base pairs.

However, there are currently no implementations avail-
able capable of solving the inverse folding problem under
multiple structural constraints. To our knowledge, the
only existing method for inverse folding with multiple
structure targets was published by [14]. This method
has not been made publically available as part of the
Vienna package. With the current interest in using bio-
molecules in nano-technology, the ability to design arti-
ficial riboswitches reacting to changes in conditions will
become increasingly important. Hence an implementa-
tion capable of solving the inverse folding problem for
multiple structures is a key development in structure
design.

Methods
The inverse folding is implemented by a fairly standard
genetic algorithm (GA) approach [15], expanding a popu-
lation by mutations and recombinations and selecting the
most fit individuals for propagation to the next generation.

The main deviation from a completely generic GA is that
the method is aware of the aim of designing sequences
folding into one or more target structures. Rather than
search the full sequence space, we direct the search by
ensuring all sequences can fold into the target struc-
ture(s) forming only canonical base pairs. This can be
viewed as a similar approach to the local search/adaptive
walk on a hierarchical decomposition of the target
structure implemented by some methods [8,10,11,16],
except that the recombination operation chooses a
random decomposition and assesses two complemen-
tary structural components in conjunction, rather than
independently.

In addition to a random search, our method also imple-
ments several strategies for more directed evolution.
Instead of making uninformed evolutionary changes and
leave it to the selection part of the GA to direct the search,
it is also possible to bias the choice of change towards
e.g. mutating positions with a predicted structure that
does not match the target, or in a recombination towards
parts that have a good match to the target structure in
the regions where they contribute sequence. These strate-
gies are all available through command line options (and
as classes when the implementation is used as a library
rather than stand-alone program) to allow experimenta-
tion and tailoring to specific applications. Through exper-
imentation, a set of parameters was found which worked
reasonably on all types of structure, which is set as a pre-
defined default. In the following, we will use T = {τ }τ∈T
to denote a target consisting of a non-empty set of struc-
tures, all of length n, and s to denote a sequence in the GA
population.

Positional fitness
A key concept in the GA is the fitness of positions. This
allows directing evolutionary changes by choosing unfit
positions for mutations – an approach also taken in [8,10]
and to a lesser extent in [3,9,11] – and regions with fit posi-
tions for recombination. Positional fitnesses take a value
of 1 for maximally unfit positions and a value of 0 for
maximally fit positions.

We define positional fitness schemes relative to a sin-
gle target structure τ . If T consists of multiple target
structures, the final positional fitness is computed as the
average positional fitness over all structures in T . Let
τ [ i] denote the required structure for position i in τ ,
i.e. either forming a base pair with another position j or
unpaired. Let σ denote the optimum structure predicted
for s (i.e. the minimum free energy structure), and let
S[ i] denote the set of possible structures for position i,
i.e. base pairs with position i as one base in the pair and
the unpaired configuration. Finally, let p : S[ i] �→ R be
the marginal Boltzmann probability in the form of a map-
ping from positional structure to marginal probability.
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Our method provides the following choices for the fitness
of position i, denoted f [ i].

Scheme 1. Binary indicator of whether position has cor-
rect predicted structure, f [ i] = 1 − δσ [i],τ [i] where δ is
the Kronecker delta. This corresponds to the μ(s, τ) based
objective in [10], providing a binary view of whether
the design matches at position i that may be too coarse
grained. However, it does also capture σ is correct at
position i, or the design needs to change.
Scheme 2. Boltzmann probability of target structure,
f [ i] = 1 − p(τ [ i] ). This corresponds to the n(s, τ) objec-
tive in [10], providing a measure of how likely a structure
drawn from the Boltzmann ensemble is to match τ at posi-
tion i. This provides more fine grained information than
scheme 1, but measures proximity rather than match to τ .
Scheme 3. Truncated negative logarithm of Boltzmann
probability of target structure, f [ i] = min{− log(p(τ [ i] ))/

100, 1}. This penalises decreasing probability to match τ

with increasingly severity, and is particularly useful for
multiple structure targets where the average corresponds
to a sum of logarithms, thus penalising designs failing
to match just one of the target structures. Truncation is
performed to allow mapping to [ 0, 1].
Scheme 4. Binary indicator of whether probability of tar-
get structure exceeds threshold θ , f [ i] = 1p(τ [i])<θ . This
allows requiring all elements of τ to be present with a
given probability when sampling the Boltzmann ensem-
ble, but being oblivious to further improvements beyond
that. It is particularly useful when T specifies a multi-
stable design, i.e. a target with multiple structures for the
same temperature, by measuring the number of target
structures the design matches with probability at least θ at
position i.
Scheme 5. Sigmoid transformed difference between
Boltzmann probability of target structure and most prob-
able alternative structure, f [ i] = 1

2 + 3
4 x − 1

4 x3 where
x = maxν∈S[i]\{τ [i]}{p(ν)}− p(τ [ i] ). This allows accepting
lower probabilities of τ [ i] in regions where the structure
is generally less well defined, although a position is still
most fit iff p(τ [ i] ) = 1. The transformation corresponds
to

∫ x
−1 −(y + 1)(y − 1)dy, normalised to yield values in

[ 0, 1], and causes changes to have larger effects when the
probability of τ [ i] and the most probable alternative are
close to being equal.

The p and σ are computed at the temperature specified
for τ , and may thus differ between the τ ’s when a multiple
structure target is specified.

Finally, the following positional fitness schemes specifi-
cally designed for multiple structure targets T are defined.

Scheme 6. Minimum Boltzmann probability of target
structures, f [ i] = 1 − minτ∈T {p(τ [ i] )}.

Scheme 7. Product of Boltzmann probabilities of target
structure, f [ i] = 1 − ∏

τ∈T p(τ [ i] ).

For single structure targets, they are equivalent to the
Boltzmann scheme, scheme 2. For multiple structure
targets, scheme 6 exclusively focuses on the worst fit-
ness over all target structures, while scheme 7 includes
Boltzmann probabilities from all target structures. How-
ever, by multiplying the probabilities, having a low fitness
on just a single target structure will have a much more
notable effect, than under the sum implicit in the averag-
ing of scheme 2.

In addition to a single of the above schemes, there is
the possibility of using a weighted combination of any
subset of them to define positional fitness. E.g. combin-
ing the first two schemes would divide positions based
on whether they have a predicted structure matching the
target, but further graduate the fitness by the marginal
Boltzmann probability of the target structure at each posi-
tion.

The concept of positional fitness underpins most oper-
ations of the GA: mutation, recombination, selection, and
termination. Whenever fitness of a region (for recombi-
nation cross over point selection) or the entire sequence
(for selection and termination) is needed, this is obtained
as the sum of the positional fitnesses in the region or
sequence. Different positional fitness schemes can be used
for these four aspects, with the limitation that negative
logarithms of Boltzmann probabilities are only used for
mutation, and product of Boltzmann probabilities cannot
be used for mutation.

Fitness and objective
Often fitness and objective of GAs are considered equiv-
alent, but we make the distinction of using fitness for the
selection in each round of the GA and objective for deter-
mining when an adequate solution has been found and
the search can be terminated. In a standard design prob-
lem where the aim is to find a sequence folding to one
specific target structure, it is natural to base the objective
on whether positions are correct in the predicted struc-
ture and terminate when the number of errors reaches
0. However, a more fine grained selection may be desir-
able, for example substituting or combining the number
of errors with scheme 2 – instead of choosing randomly
between two sequences with e.g. 10% positions that are
wrong in the predicted structure, we would prefer the one
with higher probabilities of positions being correct.

A global, i.e. non-positional, scheme

Scheme 8. Logarithm of structure probabilities in
Boltzmann ensemble and their variance: f = x̄ +
ξ

(
1

|T |
∑

τ∈T xτ
2 − x̄2

)
where x̄ = 1

|T |
∑

τ∈T xτ and xτ =
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− log pτ is the negative logarithm of the probability of tar-
get structure τ in the Boltzmann ensemble of sequence s,
and ξ ≥ 0 is the weight assigned to the contribution from
the variance

based on the cost functions discussed in [14] and corre-
sponding to the π(s, τ) objective in [10], is also available
for defining fitness and objective. This provides a means
of requiring an exact match to the target structures, rather
than basing the fitness on the distance to predicted or
expected structure as in e.g. schemes 1 and 2. This is par-
ticularly relevant when designing for multiple structures
at the same or very similar temperatures, where some of
the position based schemes may be confused by designs
where positions exhibit a good match to varying subsets
of the target structures.

Finally, to maintain diversity in the GA population, the
fitness can be augmented with a weighted contribution
from the average Hamming distance to already selected
sequences. If P denotes the set of sequences already
selected in the selection stage at the end of a genera-
tion in the GA, each remaining candidate sequence s has
its fitness augmented by ζ

∑
t∈P(n − h(s, t))/|P|, where

h(s, t) is the Hamming distance between sequences s and
t, and ζ > 0 is the weight assigned to the contribution
from diversity, before selecting the next individual carried
forward.

Mutation
The position targeted for mutation in a sequence is chosen
either uniformly at random, or with probability propor-
tional to positional fitnesses. Similarly, sequences can be
chosen for mutation either equally many times, uniformly
at random, or with probability proportional to the recip-
rocal of the sequence fitness (with sequences with fitness
0 given twice the probability of the otherwise most fit
sequences).

When choosing a new nucleotide for a position cho-
sen for mutation, we want to maintain compatibility
with all target structures. That is, the modified sequence
should fold into each target structure using only canonical
Watson-Crick and GU wobble base pairs. When the tar-
get consists of a single structure, unpaired positions can
be updated independent of the rest of the sequence, while
base pairing positions can be updated by sampling a new
base pair for the two positions independent of the rest
of the sequence. However, with two or more target struc-
tures, dependencies can extend to more positions, as a
position can be base paired to multiple other positions in
the different target structures.

The target dependency graph (TDG) (denoted depen-
dency graph in [14]) implied by T is the graph on nodes
{1, . . . , n} where two nodes i, j are connected by an edge
iff ∃τ ∈ T : i · j ∈ τ , where i · j denotes a base pairing

of positions i and j. The compatibility of a position will
depend, directly or indirectly, on all positions in the con-
nected component it belongs to in the TDG, so the entire
connected component may have to be updated in a muta-
tion. It can be observed from ([14], Theorems 1 & 2),
that with canonical base pairing compatible sequences
will exist iff the TDG is bipartite, and if |T | ≤ 2 the TDG
will be bipartite. If |T | ≥ 3, no compatible sequence may
exist. For example, if three target structures contain base
pairs i · j, j ·k, and i ·k, respectively, then there is no assign-
ment of nucleotides to positions i, j, and k that will leave
all base pairs canonical.

In [14] formulas for sampling an assignment of
nucleotides on a connected component when the maxi-
mum degree of any node is at most 2 is provided. However,
we have chosen a simpler, heuristic update algorithm for
two reasons. First, our method was developed to also cope
with larger sets of target structures. Secondly, even for
|T | = 3 the maximum node degree may be 3 and hence
one may suspect assignment of nucleotides, i.e. colouring
of the nodes, uniformly at random to be difficult – with
a three letter nucleotide alphabet with base pairs allowed
between any two non-identical nucleotides, the problem
becomes #P hard [17]. Finally, it is unclear whether sam-
pling uniformly from the set of compatible assignments is
the best strategy. As G’s and U’s can pair with two other
types of nucleotides, while C’s and A’s can pair with only
one other type, the set of compatible assignments will be
biased towards a high GU content.

The following forms our method for sampling
nucleotides on a connected component in the TDG, start-
ing with position i, ensuring all positions form canonical
base pairs following the update.

Choose σ from {A, C, G, U} \ {s[ i] } and set s[ i] = σ

F = {i}, N = {j | i · j}
while N �= ∅ do

Choose j ∈ N uniformly at random
Choose σ from ∩k∈F :j·kC(s[ k] ) and set
s[ j] = σ

F = F ∪ {j}, N = N ∪ {k | j · k} \ F

end while

where j · k denotes that two nodes are connected by an
edge in the TDG and C(σ ) is the set of nucleotides com-
patible with σ . It performs a traversal of the connected
component of i, at each step choosing a random node
neighbouring the already updated nodes. New nucleotides
are drawn from a distribution which can be specified
– if the default uniform distribution is used, this will
tend to favour high GU content for the same reason
as for choosing complete compatible assignments uni-
formly at random discussed above – truncated to the
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possibilities allowed. If the current nucleotide is among
the choices, there is an option either always to keep
the current nucleotide (to limit collateral effects of a
mutation) or to bias the draw with 1 − f [ i] for the
current nucleotide and f [ i] for alternatives (to allow
the current positional fitness to affect the probability of
a change).

Recombination
Due to the hierarchical nature of RNA secondary struc-
tures, the GA uses recombination mimicking gene conver-
sion rather than cross over, i.e. an infix of one sequence
is recombined with the corresponding prefix and suffix
of the other sequence. The easiest way to keep all base
pairs canonical, is to always take two positions forming a
base pair in a target structure from the same sequence.
If we create a recombinant on sequences s and t from a
crossover point i, j by forming the sequence s[ 1..i] t[ i +
1..j] s[ j + 1..n], no base pairing positions come from dif-
ferent sequences iff there are no base pairs in the target
structure(s) for which one of i + 1 and j is inside the base
pair and the other one is outside the base pair. This means
that we can partition break points into sets of pairwise
permissible points, such that the aim of taking base pairing
positions from the same sequence is achieved iff crossover
points are chosen as pairs of points from the same set
in this partition. For single structure targets, these sets
are exactly the loops of the structure, when stacking base
pairs are viewed as internal loops of size 0, and the set of
all external positions. The following outlines the proce-
dure used for constructing the sets of pairwise permissible
points, where sets of size 1 are discarded. The target is
denoted by T , and when the algorithm terminates C is
the set of non-singleton sets of points that are pairwise
permissible.

C = {{0, . . . , n}}
for τ ∈ T , i · j ∈ τ do

C′ = ∅
for S ∈ C do

C′ = C′∪{
X ∈ { S∩[ i, j[ , S ∩ (

[ 0, i[ ∪[ j, n]
) } : |X|>1

}

end for
C = C′

end for

As a starting point, pairs of points are chosen by first
choosing a set of pairwise permissible points with prob-
ability proportional to the set size, then choosing a pair
from the set uniformly at random, ensuring an overall uni-
form probability that a point is chosen. This distribution
can be biased proportional to

φ
s,t
i,j =

n∑
k=1

⎧⎨
⎩

fs[ k] if k ≤ i or k > j

ft[ k] if i < k ≤ j

where fs and ft are positional fitnesses for s and t respec-
tively. Similarly, the pair of sequences s, t can be cho-
sen uniformly at random, based on individual fitness as
described for mutations above, or based on the sum over
all pairs i, j of permissible points of (φ

s,t
i,j )

2 to preferentially
choose pairs of sequences complementing each other.

Initialisation
Initialisation of sequences in the starting population can
either be done randomly, by sampling nucleotides for each
connected component in the TDG as outlined for muta-
tion, but without the presence of current nucleotides, or
by running RNAinverse from a random starting point.
The latter option, an approach also used by RNAexinv
[18], allows solutions to be found rapidly for easier tar-
gets. When RNAinverse is used and the target T consists
of multiple structures, a random τ ∈ T is chosen for each
run. Hence, the initial sequences may not be compatible
with T . Additionally there is also the option to read the
initial sequences from file, for example if specific sequence
motifs are present it may be desirable to litter the ini-
tial population with them – it does also provide a simple
means for using an alternative inverse folding method to
create the initial population of sequences.

Data
Data was taken from two main sources, to benchmark
Frnakenstein and other inverse folding methods. The first
data set used in our benchmarks is the data set used in
[12]. This was downloaded from the MODENA website.
It consists of a structure from each of the 29 out of the
first 30 families in Rfam [19], with the tmRNA family
(RF00023) left out due to a high content of pseudoknot
forming base pairs. We refer to this data set throughtout
as the Rfam data set.

Secondly, data was taken from RNASTRAND [20],
which itself takes data from many sources [21-25].
The data was filtered so that the sequences and struc-
tures could ensure reliability of predictions. We removed
identical sequences and disregarded synthetic data and
sequences with ambiguous base pairs. Further, any
sequences with greater than 80% base pair similarity with
another structure in the data set were removed, as well as
all sequences with pseudoknots, as RNAfold does not pre-
dict pseudoknots. The resulting data set consisted of 397
RNA molecules, containing 363 unique secondary struc-
tures with a total length of 55,025, which we refer to as the
RNASTRAND data set.
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However, with both data sets, it may be possible that
there is no sequence which RNAfold will fold into the ref-
erence structure, and so the method might not be able to
acheive 100% accuracy, due to RNAfold, not the search
heuristic. Consequently the sequences corresponding to
the structures in the RNASTRAND data set were re-
folded using RNAfold, so there is known to be at least
one sequence which will correctly fold. This dataset will
be denoted as the RNASTRAND-Refolded, and consists of
383 unique structures with a total length of 56,606.

Results and discussion
Multi-structure targets
One of the main objectives of Frnakenstein was to develop
a method capable of solving the inverse folding prob-
lem under multiple structural constraints. As mentioned
earlier, the only existing method for inverse folding with
multiple structure targets was published by [14]. This
method has not been made part of the Vienna package,
so we were unable to benchmark against this method.
However, the paper does provide an example of a 115
nucleotide RNA molecule, SV11, that exists in two major
conformations, a meta-stable multicomponent structure
and a rod-like native state. They present a design for these
two structures as target in ([14], Figure seven). Applying
Frnakenstein to this two-structure target we obtained the
design shown in Figure 1. This provides an almost perfect
match to the target, including the isolated base pair 33 ·79
completely missing in ([14], Figure seven) – as observed in
[9,16], designing sequences for targets with isolated base
pairs is at best difficult and sometimes impossible.

For all benchmarks on multiple structure targets we
set the number of generations to the total target length,
i.e. the number of structures in the target multiplied by the
length of the sequence to be designed. Again Frnakenstein
was run with default values, which means that compared
to the single structure target default outlined above, posi-
tions for mutations were chosen based on a 1 : 1 : 1 com-
bination of schemes 1, 2, and 3; cross over points were
chosen based on a 1 : 1 : 2 combination of schemes 1, 2,
and 7; fitness was based on a 1 : 1 : 2 : 4 combination of
schemes 1, 2, and 7, and the diversity maintaining con-
tribution from Hamming distances, except for the SV11
example above where a fitness based on scheme 8 with
ξ = 1 and an objective based on scheme 4 with θ = 1/3
was used.

To some extent the SV11 target poses an impossible
challenge, as we cannot find a sequence having both
conformations as the most stable structure. Hence, for bi-
stable targets, we cannot measure performance by simply
reporting successes and failures. To avoid this problem, we
decided to test the performance of multiple structure tar-
get design by providing target structures at two different
temperatures. We folded the 304 sequences with at most

200 nucleotides of the RNASTRAND data set under 20°C
and 37°C, simulating a change from room temperature to
normal body temperature. After eliminating duplicates,
291 two structure targets remained.

177 targets, with a total of 11,188 nucleotides, had iden-
tical structures at the two temperatures. 114 targets, with
a total of 10,578 nucleotides, had different structures at
the two temperatures, with an average of 16.9 positions
where the structures differed. Even when the structures
differ, it will be possible to design a sequence that success-
fully folds to the correct target structure at each temper-
ature, allowing a simple and easy to understand measure
on performance of number of successes. This does not
directly test the ability to design a bi-stable molecule.
However, it does test performance on multiple structure
targets in a related realistic scenario for inverse RNA fold-
ing, where the aim is to design a molecule that under
different conditions, either remains stable or performs as
a riboswitch reacting to the change in conditions.

Table 1 shows the performance of Frnakenstein on this
data set. Results are categorised based on whether target
consisted of identical or different structures, and whether
the best design was successful for both, one, or none of
the target structures. A success is Frnakenstein finding a
sequence which folds correctly into the target structure.
For each category we list the number of targets in the cat-
egory (n), the average length of the targets (l̄), and where
relevant the average number of differences between the
targets (d̄) and the average number of differences between
target and design per target structure the design failed on
(�̄). Note that identical structures mean that a sequence
has to fold into the same structure at both 20°C and 37°C.

Successful designs were obtained for 227 targets. Of the
remaining 64 targets, the design folded correctly at one
temperature for 32 targets, with an average of 8.1 posi-
tions where the predicted structure of the design differed
from the target at the other temperature. For the remain-
ing 32 targets, the design did not fold correctly at either
temperature, with an average of 8.8 positions being wrong.
It should be remembered that targets were created by
folding a specific sequence at two different temperatures
using RNAfold, so in all cases we know that a perfect
design does exist. Comparing this to the results obtained
on RNASTRAND-Refolded, it is evident that the multi-
ple structure target problem is considerably more difficult
than the single structure target problem, in particular
when the target structures differ.

Single-target structures
Since Frnakenstein works for single targets too, the
performance of our method on single targets could
be benchmarked against other methods that are pub-
licly distributed as source code or executables. This
includes RNAinverse [3], MODENA [12], INFO-RNA [9],
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Figure 1 Design of artificial SV11 RNA. Dot plot of base pair Boltzmann probabilities for the designed sequence for the bistable SV11 target.
Superimposed on the dot plot is a plot of base pairs in the two metastable SV11 structures, shown with open squares in different shades of grey.
The secondary structures are also shown in the same shades of grey. Dots reflecting Boltzmann probabilities were rescaled by a factor of 0.75 to
clearly separate them from any enclosing square representing a structure base pairs. The two conformations, that share no base pairs, are also
show:, the native state (top) and meta-stable state (bottom).

NUPACK: Design [10], and Inv [11]. All benchmarks were
done on a 48 core Dell PowerEdge with 2.3GHz AMD
Opteron processors and 128GB 1.3GHz memory. Despite
the availability of source code of RNA-SSD [8,16], it could
not be successfully compiled, so the web server was used
where appropriate.

For each method being benchmarked, efforts were made
to give it the same number of attempts at the prob-
lem, despite them employing different search heuristics.
Our method and MODENA were both run 10 times
with a population size of 50, and a number of gener-
ations equal to the number of positions in the struc-
ture (with a minimum of 50 generations). RNAinverse,
RNA-SSD, INFO-RNA, NUPACK: Design, and Inv were
all run 500 times with default parameters. All methods

apply the Vienna RNA package for structure prediction,
except for NUPACK: Design that uses the NUPACK
suite, and Inv, which uses its own thermodynamic model.
NUPACK allows interior loops of arbitrary sizes, whereas
the Vienna package limits interior loops to a maximum
size of 30. This allows NUPACK: Design to report a
successful design on target structures with large interior
loops, where all other methods will necessarily fail due
to this limitation of RNAfold. Notably this is seen on the
RF00016 and RF00024 structures in the Rfam data set,
which contains interior loops with 83 and 67 unpaired
nucleotides, respectively. Inv is even more restrictive on
permissible structures, allowing only structures with a
minimum stack size of 3, and minimum arc length of 4.
This means that many trusted structures in, for instance,

Table 1 Performance on two structure targets

Both One None

n l̄ d̄ n l̄ d̄ �̄ n l̄ d̄ �̄

Identical structures 173 61.5 – 0 – – – 4 139.0 – 3.3

Different structures 54 71.5 7.5 32 94.1 19.9 8.1 28 132.5 31.8 9.6

Performance on 291 two-structure targets generated by folding shorter RNASTRAND at 20°C and 37°C.
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the Rfam database it deems as invalid, and thus will pro-
duce an error, suggesting it will perform badly in the
benchmarks.

Frnakenstein was run with default values, which means
mutation was biased towards fit sequences, positions were
chosen based on a 2 : 1 combination of schemes 1 and
2; recombination was biased towards pairs of sequences
with good complementary match and cross over points
chosen based on a 1 : 1 combination of schemes 1 and 2;
fitness was based on a 1 : 1 : 2 combination of schemes
1 and 2, and the diversity maintaining contribution from
Hamming distance to already selected sequences, while
objective was simply the number of erroneous posi-
tions in the predicted structure, cf. scheme 1. As one

cannot determine statistically what fitness, mutation, and
recombination schemes will optimise success of the algo-
rithm, the defaults were determined heuristically to make
Frnakenstein most likely to find a successful sequence for
the target structure.

Rfam structures
Results from benchmarking on the Rfam data set are
shown in Table 2. Accession numbers have in the table
been shortened by replacing the three leading 0s with ·. A
‘success’ indicates that the program has found a sequence
which folds in silico into the target structure, with
RNAfold being used by all excepting NUPACK: Design,
which uses its own thermodynamic folding model similar

Table 2 Performance on Rfam data set

Acc. Len. Frnakenstein MODENA RNA-SSD INFO-RNA RNAinverse NUPACK Inv

01 117 1.0 / 1204 1.0 / 17 0.01 / 8.2 0.95 / 1.2 0.01 / 61 0.29 / 11613 ∗
02 151 1.0 / 13505 1.0 / 19 0.0 / – 0.0 / 175 0.0 / 277 0.0 / 141999 ∗
03 161 0.1 / 9997 1.0 / 37 0.0 / – 0.01 / 112 0.0 / 304 0.0 / 50698 ∗
04 193 1.0 / 198 1.0 / 27 0.0 / – 0.27 / 64 0.10 / 164 1.0 / 5597 ∗
05 74 1.0 / 0.14 10. / 4.8 1.0 / 0.34 0.99 / 0.31 0.87 / 1.4 1.0 / 148 0.29 / 9.2

06 89 1.0 / 27 1.0 / 5.9 0.98 / 3.4 0.66 / 4.6 0.06 / 20 0.99 / 299 ∗
07 154 1.0 / 115 1.0 / 22 0.05 / 5.1 0.85 / 7.4 0.08 / 70 0.95 / 1611 ∗
08 54 1.0 / 0.09 1.0 / 2.8 0.96 / 0.05 1.0 / 0.15 0.95 / 0.22 1.0 / 47 0.22 / 1.1

09 348 1.0 / 129057 1.0 / 123 0.0 / – 0.0 / 4127 0.01 / 7100 0.78 / 111487 ∗
10 357 0.0 / 245868 0.0 / 180 0.0 / – 0.0 / 4046 0.0 / 8007 0.0 / 92211 ∗
11 382 0.0 / 500078 0.0 / 184 0.0 / – 0.0 / 7040 0.0 / 16634 0.0 / 77273 ∗
12 215 1.0 / 5455 1.0 / 35 0.0 / – 0.01 / 329 0.01 / 558 0.98 / 2825 ∗
13 185 1.0 / 65 1.0 / 27 0.0 / – 0.37 / 61 0.09 / 127 1.0 / 190 ∗
14 87 1.0 / 0.15 1.0 / 7.3 0.94 / 0.09 1.0 / 0.30 1.0 / 0.27 1.0 / 34 ∗
15 140 1.0 / 333 1.0 / 13 0.0 / – 0.51 / 29 0.05 / 118 1.0 / 40696 ∗
16 129 0.0 / 18734 0.0 / 11 0.0 / – 0.0 / 102 0.0 / 124 0.48 / 10167 ∗
17 301 1.0 / 318 1.0 / 117 0.0 / – 0.94 / 21 0.23 / 263 1.0 / 703 ∗
18 360 1.0 / 210591 1.0 / 180 0.0 / – 0.01 / 4260 0.01 / 5305 0.0 / 101125 ∗
19 83 1.0 / 1.0 1.0 / 6.3 0.4 / 0.63 0.98 / 0.52 0.57 / 3.7 1.0 / 46 ∗
20 119 0.0 / 3149 0.0 / 10 0.0 / – 0.0 / 7.8 0.0 / 15 0.0 / 810 ∗
21 118 1.0 / 0.23 1.0 / 13 0.99 / 0.44 1.0 / 0.77 0.96 / 1.7 1.0 / 130 ∗
22 148 1.0 / 293 1.0 / 16 0.0 / – 0.15 / 46 0.02 / 97 1.0 / 5335 ∗
24 451 0.0 / 138348 0.0/ 182 0.0 / – 0.0 / 1530 0.0 / 4170 0.23 / 8533 ∗
25 210 1.0 / 11838 1.0 / 29 0.0 / – 0.06 / 132 0.0 / 463 1.0 / 10420 ∗
26 102 1.0 / 290 1.0 / 6.1 0.0 / – 0.04 / 50 0.02 / 60 1.0 / 1429 ∗
27 79 1.0 / 0.23 1.0 / 8.1 1.0 / 0.29 1.0 / 0.49 0.82 / 1.2 1.0 / 112 0.86 / 9.7

28 344 0.3 / 197498 0.0 / 125 0.0 / – 0.01 / 4627 0.0 / 6003 0.09 / 31920 ∗
29 73 1.0 / 33 1.0 / 4.1 0.82 / 1.4 0.67 / 0.58 0.2 / 1.5 0.72 / 229 ∗
30 340 1.0 / 133627 1.0 / 115 0.0 / – 0.01 / 1896 0.0 / 5011 0.0 / 118373 ∗

Total successes 24 23 10 22 19 22 3

Comparison of five inverse folding methods on 29 Rfam structures.



Lyngsø et al. BMC Bioinformatics 2012, 13:260 Page 9 of 12
http://www.biomedcentral.com/1471-2105/13/260

to RNAfold. Each entry then lists the fraction of runs that
successfully designed a sequence for the target, with non-
zero fractions in bold, followed by the average running
time in seconds. RNA-SSD results were obtained from
the RNA-SSD server, with run times as reported from the
server – run times are only reported for successful runs,
so the average run time listed is the average over success-
ful runs. An asterisk for Inv indicates that Inv reported
that the target structure it was given was invalid and so
did not make an attempt. Several of the NUPACK: Design
benchmarks could not be fully completed, as each of the
500 independent searches were still incomplete after sev-
eral days of run time, having neither found a successful
design nor terminated the search.

This data set was sufficiently small that RNA-SSD could
be included in the benchmark by manually uploading
the targets to the RNA-SSD server. Our method and
MODENA, the only two genetic algorithm based meth-
ods in the benchmark, exhibits the best performance,
each successfully designing sequences for 23 of the 29 tar-
gets. INFO-RNA also performs well, with 21 successful
designs, while RNA-SSD and RNAinverse have more lim-
ited success, and Inv performing poorly. Every target Inv
considered to not be invalid it succeeds with, but it is so
limited on what it permits that it does not attempt the
majority of structures.

Of the 5 target structures for which all RNAfold based
method failed, two (RF00016 and RF00024) have inter-
nal loops with more than 30 nucleotides, which makes it
impossible to reach a successful design as discussed above.
All methods, including NUPACK: Design, failed on the
remaining three (RF00010, RF00011, and RF00020). These
all contain a bulge of a single nucleotide separated from
either a large hairpin loop or the exterior of the structure
by an isolated base pair. With the current energy param-
eters, it is impossible to design a sequence where the
same structure with the isolated base pair removed would
not be more stable [16]. Hence, Frnakenstein is the only

method which does design sequences for all targets which
are possible. For the remaining targets, the best designs
differ in one or at most a few base pairs, e.g. by introduc-
ing an isolated base pair separating the large internal loops
into two parts.

If we look at how nucleotides and base pairs are utilised
by the different methods, Table 3 shows the distribution
of base pairs and nucleotides in the successful designs
for each method. The first group shows the distribution
over the three types of base pairs in paired positions in
the targets, the second group shows the nucleotide dis-
tribution for unpaired positions in the targets, and the
last group shows the overall nucleotide distribution in
the sequences. MODENA, INFO-RNA, and to an extent
NUPACK: Design clearly differs from the rest of the meth-
ods, by having a base pair distribution heavily biased
towards GC base pairs. This should come as little surprise.
INFO-RNA starts from a sequence designed to have low-
est possible free energy over all sequences when folding
in to the target structure. MODENA uses the free energy
on the target structure as one of the objectives it opti-
mises. This emphasis on minimising the free energy on
the target structure causes a heavy bias towards the more
stable CG base pairs with INFO-RNA likely to start from
a sequence with almost exclusively CG base pairs and
MODENA consistently preferring replacing other base
pairs with CG base pairs. What causes the slightly less pro-
nounced bias for NUPACK: Design is less clear, though.
Observing that MODENA furthermore has a strong bias
towards A in unpaired positions, the method is close to
limiting itself to designing sequences over a one letter
alphabet for unpaired positions and a two letter alphabet
for paired positions. If sequences are designed to plant
in simulated data, e.g. to test an RNA gene finder, it will
also be preferable to obtain sequences with more natural
distributions.

The other four methods have less bias in the base pair
uses, although only Frnakenstein, RNAinverse, and Inv

Table 3 Nucleotide distribution in designed sequences

Paired Unpaired Total

GC AU GU A C G U A C G U

Original data 0.57 0.30 0.13 0.30 0.20 0.23 0.27 0.23 0.24 0.28 0.24

Frnakenstein 0.55 0.36 0.09 0.32 0.31 0.09 0.29 0.25 0.29 0.19 0.26

MODENA 0.82 0.18 0 0.82 0.06 0.06 0.06 0.48 0.22 0.22 0.07

INFO-RNA 0.93 0.06 0.01 0.36 0.22 0.20 0.22 0.19 0.35 0.32 0.14

RNA-SSD 0.56 0.44 0 0.32 0.24 0.19 0.25 0.27 0.26 0.24 0.23

RNAInverse 0.46 0.41 0.14 0.29 0.25 0.21 0.25 0.23 0.24 0.26 0.26

NUPACK 0.73 0.27 0 0.42 0.26 0.09 0.22 0.28 0.31 0.22 0.18

Inv 0.32 0.39 0.28 0.30 0.26 0.22 0.22 0.20 0.21 0.30 0.29

Comparison of the nucleotide distributions of the successfully designed sequences from different methods on the Rfam dataset, with distribution observed across the
original sequences from Rfam shown in the first row.
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utilise wobble GU base pairs to any real degree. Indeed,
the base pair distribution observed in the Frnakenstein
distribution is very close to the distribution observed in
the original data. There is, in the unpaired nucleotides,
a mild overrepresentation of Cs and a mild under rep-
resentation of Gs, though. This is perhaps due to the
increased thermodynamic stability in CG base pairs– it
is perhaps easy to have Cs unpaired, or Gs unpaired, but
too many will form a pair eventually. RNAInverse, on the
other hand, had an unpaired distribution very close to the
real data set, but the base pair distribution is off a little.
While it may in many cases be less important whether
the distributions observed in the designed sequences are
heavily biased, one consequence of this bias will be a
reduced diversity in the set of solutions that are generated.
In this sense, given Frnakenstein’s performance against
RNA Inverse and Inv, when application dictates a sensible
nucleotide distribution, Frnakenstein is the clear winner.

Frnakenstein was designed with little focus on running
time, choosing Python as implementation language for the
ease of development and flexibility it offers. Additionally,
the more advanced choices in mutation and recombina-
tion selection provide additional computational burden.
Not only do you now have to calculate the full parti-
tion function for the thermodynamic model necessary to
obtain Boltzman probabilities, but the selection of indi-
viduals for recombination and the recombination points
themselves becomes considerably more computationally
expensive. It is thus not overly surprising that among the
methods tested Frnakenstein is one of the slowest. Only
NUPACK: Design vies with Frnakenstein for bottom slot
regarding speed. Even accounting for the fact that aver-
age running times should be divided by success ratio to

get an approximate value of total time until first success-
ful design, Frnakenstein and NUPACK: Design tend to be
three to four orders of magnitude slower than the other
four tested methods on some targets. For easy targets,
Frnakenstein mitigates this concern by the application
of RNAinverse for sequence initialisation. For applica-
tions where minimising time to find a successful design
is the key priority, as opposed to nucleotide distribution,
MODENA is a strong contender with run time at most a
few minutes and a high rate of success on most of the Rfam
targets.

Additionally, we analysed the performance of different
positional fitness schemes. A subset of structures were
taken from the Rfam data set and Frankenstein run many
times with different positional fitness options, and for
each run, the minimum objective recorded for each gen-
eration. For each positional fitness option, averages were
then taken over runs, and results are found in Figure 2.
The main thing which is clear from this is the much slower
reduction in minimum objective seen when the muta-
tions are decided uniformly at random. This is the method
employed by MODENA. Otherwise, it is difficult to distin-
guish the different positional fitness schemes. The default
has been chosen for good success ratio (in our experi-
ence), but other choices may be faster/better for specific
situations.

RNAStrand data
Results for both the RNASTRAND and RNASTRAND-
Refolded can be found in Table 4. A ‘success’ indicates
that the program has found a sequence which folds in
silico into the target structure, with RNAfold being used
by all excepting NUPACK: Design, which uses its own

Default
--randomposition
--wrongposition

--boltzmannposition
--logboltzmannposition

--relativeboltzmannposition
--randompairs

--weightedpairs
--randomxover
--correctxover

--relativeboltzmannxover

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Figure 2 Analysis of positional fitness schemes. Plot showing the minimum objective value in the population through the generations of the GA
for the default parameters (solid black line) and ten variations where a single feature is changed by invoking the respective options shown in the
legend. These corresponds to choosing positions for mutation uniformly at random, as well as based on positional fitness schemes 1, 2, 3, and 5;
choosing pairs of sequences for recombination uniformly at random or based on individual fitnesses; and choosing recombination points uniformly
at random, as well as based on positional fitness schemes 1 and 2.



Lyngsø et al. BMC Bioinformatics 2012, 13:260 Page 11 of 12
http://www.biomedcentral.com/1471-2105/13/260

Table 4 Performance on RNASTRAND data set

Frnakenstein MODENA INFO-RNA RNAinverse NUPACK Inv Frnakenstein

RNASTRAND 189 178 196 176 185 73

RNASTRAND-Refolded 383 377 383 336 383 113

Successes of the benchmarked approaches on the RNASTRAND and RNASTRAND-Refolded.

thermodynamic folding model similar to RNAfold. The
data sets contain 363 and 383 structures, respectively.
The numbers reported are the number of target struc-
tures for which a sequence was successfully designed.
Again, several of the NUPACK: Design benchmarks for
the RNASTRAND data set could not be fully completed,
as each of the 500 independent searches were still incom-
plete after several days of run time, having neither found a
successful design nor terminated the search.

These results confirm the general picture seen for
the Rfam data set: Frnakenstein, MODENA, and INFO-
RNA have similar success rates with RNAinverse lagging
slightly behind, although only on the re-folded structures
and not quite to the same degree as for the Rfam data set.
Inv once again performs poorly, although there are more
structures it permits in this data set, once again succeed-
ing on all of them. The dependency of performance on
target length, cf. Table 5, is somewhat inconclusive, with
all methods except Inv performing best, by far, on the
bin with length between 118 and 151 nucleotides. Given
the limited size of the bins, strong conclusions should
probably not be drawn from this. However, whereas all
methods do seem to struggle more with longer targets,
there does seem to be a tendency for RNAinverse, and to
a lesser extent MODENA, to show a more rapid decline
in performance on long targets. On shorter targets, these
two methods perform as well as the other methods.
For the re-folded targets, Frnakenstein, INFO-RNA, and
NUPACK: Design do achieve a 100% success rate, with
successful designs for all targets across the full range of
target lengths, so performance is more affected by the
nature of the target than target length. The biases in

base pair and nucleotide distributions for the successful
designs were similar to the ones observed for the Rfam
data set (data not shown), as should be expected.

Conclusions
In this paper we have described how to use a genetic algo-
rithm approach to find useful solutions for the inverse
RNA folding problem. The method allows a combination
of the predicted minimum free energy structure and the
computed Boltzmann distribution over the ensemble of
structures to be used to guide the main aspects of the
genetic algorithm, in particular mutation, recombination,
and selection. It performed as well, or better, than the
other methods tested on all benchmarks, without intro-
ducing strong biases in the composition of the designed
sequences.

One of the major advantages of our method is that it
allows multiple structures, either at identical or different
conditions, to be specified as targets. To our knowledge,
only one previously published method has this capabil-
ity, and the software implementing this method is only
available on request. While the benchmarks were done on
two targets, there are no upper restrictions to how many
targets can be aimed for.

Our method uses the RNA secondary structure pre-
diction software as a black box. While a more efficient
solution could be obtained by a more complex interaction
with the folding software, allowing reuse of already com-
puted values when mutating and recombining sequences,
the chosen approach makes Frnakenstein much more flex-
ible. The folding method can be replaced with relative
ease, e.g. to use a grammar based method or a method

Table 5 Length dependency of success rate

Range 10-23 24-36 37-56 57-77 78-98 99-117 118-151 152-269 270-311 312-1037

Av. length 17.9 29.4 46.2 69.8 86.7 108.0 127.7 205.6 293.8 528.0

Bin size 38 34 36 41 34 36 35 36 36 37

Frnakenstein 0.50 0.50 0.56 0.76 0.62 0.44 0.97 0.47 0.17 0.22

MODENA 0.47 0.50 0.56 0.76 0.59 0.44 0.97 0.44 0.03 0.14

INFO-RNA 0.50 0.50 0.56 0.78 0.65 0.53 0.91 0.50 0.28 0.19

RNAinverse 0.50 0.50 0.56 0.78 0.62 0.42 0.97 0.42 0.08 0.00

NUPACK 0.50 0.50 0.56 0.78 0.56 0.44 0.97 0.47 0.14 0.16

Inv 0.44 0.38 0.47 0.51 0.15 0 0 0 0 0

The 363 unique structures of the RNASTRAND data set were binned according to length in 10 bins of roughly equal size, and for each bin, the range of lengths covered
by the bin, the average length of structures in the bin, the number of structures in the bin are listed, as well as the success ratio on each bin computed for each method.
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capable of predicting structures with pseudoknots, simply
by providing an alternative implementation of the module
invoking and parsing the output from the folding soft-
ware. Combining predictions from several folding meth-
ods, possibly using a multi-objective framework similar to
MODENA, allows designs more robust to the uncertain-
ties of structure prediction, and is an interesting direction
for future research.
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