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Abstract: Colonoscopy screening and colonoscopic polypectomy can decrease the incidence and
mortality rate of colorectal cancer (CRC). The adenoma detection rate and accuracy of diagnosis of
colorectal polyp which vary in different experienced endoscopists have impact on the colonoscopy
protection effect of CRC. The work proposed a colorectal polyp image detection and classification
system through grayscale images and deep learning. The system collected the data of CVC-Clinic
and 1000 colorectal polyp images of Linkou Chang Gung Medical Hospital. The red-green-blue
(RGB) images were transformed to 0 to 255 grayscale images. Polyp detection and classification were
performed by convolutional neural network (CNN) model. Data for polyp detection was divided into
five groups and tested by 5-fold validation. The accuracy of polyp detection was 95.1% for grayscale
images which is higher than 94.1% for RGB and narrow-band images. The diagnostic accuracy,
precision and recall rates were 82.8%, 82.5% and 95.2% for narrow-band images, respectively. The
experimental results show that grayscale images achieve an equivalent or even higher accuracy of
polyp detection than RGB images for lightweight computation. It is also found that the accuracy of
polyp detection and classification is dramatically decrease when the size of polyp images small than
1600 pixels. It is recommended that clinicians could adjust the distance between the lens and polyps
appropriately to enhance the system performance when conducting computer-assisted colorectal
polyp analysis.

Keywords: colorectal polyp; grayscale image; colonoscopy; convolutional neural network; computer-
assisted colorectal polyp analysis

1. Introduction

Colorectal cancer is globally the third most prevalent cancer and mainly derived from
pre-malignant colorectal polyps [1]. Colonoscopy screening and endoscopic resection of
colorectal polyps can reduce the incidence and mortality of colorectal cancer [2]. Image-
enhanced colonoscopy with contrast enhancement through dyes or optical strategies
facilitates the detection and observation of colorectal lesions [3]. However, the accuracy
of the detection and diagnosis of colorectal polyps varies depending on the experience of
endoscopists, thus influencing the effectiveness of colonoscopy in reducing the incidence
and mortality of colorectal cancer [3,4].

For detailed observation of the colorectal lesions, endoscopists can apply dyes and/or
virtual chromoendoscopy [5]. Colorectal lesions are stained with dyes such as indigo
carmine, crystal violet or methyl blue and are observed by colonoscopy with or with-
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out magnification. Virtual chromoendoscopy is an image-enhanced endoscopic tech-
nique based on optical strategies for capturing images. Currently, the most commonly
used virtual chromoendoscopy systems in clinical practice are narrow-band imaging
(NBI), flexible spectral imaging color enhancement (FICE), i-scan, and blue laser imaging
(BLI) [5–7]. In NBI, optical filters are used to filter out red light and narrow the bandwidth
to a range in which only blue and green light are visible [6]. Hemoglobin absorbs blue light,
with a wavelength of 400–430 nm, to highlight the morphology of the surface capillaries
and green light, with a wavelength of 525–555 nm, to penetrate and highlight deeper blood
vessels. FICE and i-scan enable image capture for digital processing. In these methods,
lesion images are enhanced and highlighted without being darkened like those in NBI. In
the BLI system, lasers with a wavelength of 450 nm are used to irradiate phosphor and
generate white light (WL), and blue lasers with a wavelength of 410 nm are employed for
narrow-band image observations [7]. Blue light is absorbed by hemoglobin, thereby high-
lighting the morphology of the surface capillaries, and WL increases the brightness of the
images to facilitate observations. Because the property of increased vascularity and change
of blood vessel diameter in premalignant and malignant colorectal polyps, NBI is capable
of identifying these lesions and predict the depth of invasion. Virtual chromoendoscopy
has the advantage of rapid image conversion, without the influence of a time-consuming
dyeing process and uneven dyeing. Virtual chromoendoscopy also prevents discomfort or
cytotoxicity to the examinees caused by the dyes [6].

Currently, common magnifying NBI diagnostic classifications are the Sano, Hiroshima,
Showa, and Japan narrow-band imaging expert team (JNET) classifications, and the most
prevalent non-magnifying NBI diagnostic classification is the NBI international colorectal
endoscopic (NICE) classification (Table 1 and Figure 1) [8,9]. In most of these classifications,
the histopathology of polyps is determined based on the optical characteristics of lesion
color, structure of capillaries, and morphology of capillary surface. The NICE classification,
for instance, categorizes colorectal polyps as type 1, hyperplastic polyps; type 2, adenomas,
intramucosal carcinoma, or superficial submucosal carcinoma; and type 3, deep submucosal
carcinoma. Rectosigmoid diminutive (≤5 mm) hyperplastic polyps are considered as non-
neoplastic polyps without malignant potential [8]. The recently developed Workgroup
serrAted polypS and Polyposis classification can enhance the diagnostic accuracy of sessile
serrated adenoma polyps [10].

Table 1. NBI international colorectal endoscopic (NICE) classification.

Classification Type 1 Type 2 Type 3

Color Same or lighter than background Browner than background
Brown to dark brown than

background, sometimes patchy
whiter areas

Vessels None or isolated lacy Brown vessels surrounding
white structures Areas of disrupted or missing vessels

Surface pattern Dark or white spots of uniform size,
or homogeneous absence of pattern Oval, tubular or branched Amorphous or abscent

surface pattern

Diagnosis Hyperplastic polyp Adenoma Deep submucosal invasive cancer
Sensors 2021, 21, x FOR PEER REVIEW 3 of 19 
 

 

Examples 

 
(a) Type 1 

 
(b) Type 2 

 
(c) Type 3 

Figure 1. Example image of NICE classification. 

In 2011, the American Society of Gastrointestinal Endoscopy (ASGE) proposed a 
guideline for colorectal polyp diagnosis through a new optical endoscopic technique [11]. 
For diminutive polyps of the sigmoid colon and the rectum, the diagnose-and-leave or 
resect-and-discard strategy can be adopted if the correct diagnosis is made based on real-
time endoscopic optics. The diagnose-and-leave strategy is applicable when the endo-
scopic optical diagnosis is highly precise (i.e., a negative predictive value of 90% and 
above for adenoma). Pathological biopsy is not required for such polyps. When the resect-
and-discard strategy is adopted to remove diminutive colorectal polyps identified by 
high-confidence optical diagnosis, clinicians must combine optical diagnosis of rectosig-
moid diminutive polyps with histopathological diagnosis for colorectal polyps >5 mm to 
determine the post-polypectomy surveillance interval. All colorectal polyps are sent for 
pathologic interpretation to ensure a consistency of 90%. Cost-effectiveness analyses have 
revealed that employing the innovative endoscopic optical technology to diagnose colo-
rectal polyps and adopting either the diagnosis-and-leave or resect-and-discard strategy 
are cost-effective [12–17]. Nevertheless, the current challenge in the use of innovative en-
doscopic optical technology to diagnose colorectal polyps is that not all endoscopists meet 
the standards recommended by the ASGE. In fact, of the endoscopists in community hos-
pitals, only 25% could achieved a colorectal polyp diagnosis accuracy of 90% by using the 
NBI-assisted optical diagnosis method [18], with the consistency rate of postoperative 
polyp resection monitoring intervals being only 85% and 81% [4,19]. Therefore, identify-
ing the effective use of computer-aided diagnostic systems in helping clinicians decide the 
polyp treatment methods is imperative.  

Different computer-aided diagnostic systems for colonoscopy have been proposed 
[20–22]. The color, shape, texture, and spatial features of the images are analyzed through 
image processing techniques (e.g., noise removal, image sharpening, and image segmen-
tation) and according to the optical characteristics captured using virtual chromoendos-
copy (i.e., color of colorectal polyps, structure of capillaries, and morphology of capillary 
surface). The images are further classified or identified using grouping algorithms, and 
an identification accuracy and sensitivity of approximately 72–89% [4] and 90% [23], re-
spectively. Through texture analysis and wavelet transformation, Hafner and Kwitt 
[23,24] computed the red-green-blue (RGB) and LAB models by using a color wavelet 
cross-cooccurrence matrix and analyzed the polyp classifications by applying K-nearest 
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different types of polyp images by using the said methods is difficult.  

In most computer-aided diagnostic systems, analysis is performed based on the mag-
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In 2011, the American Society of Gastrointestinal Endoscopy (ASGE) proposed a
guideline for colorectal polyp diagnosis through a new optical endoscopic technique [11].
For diminutive polyps of the sigmoid colon and the rectum, the diagnose-and-leave or
resect-and-discard strategy can be adopted if the correct diagnosis is made based on
real-time endoscopic optics. The diagnose-and-leave strategy is applicable when the en-
doscopic optical diagnosis is highly precise (i.e., a negative predictive value of 90% and
above for adenoma). Pathological biopsy is not required for such polyps. When the
resect-and-discard strategy is adopted to remove diminutive colorectal polyps identified
by high-confidence optical diagnosis, clinicians must combine optical diagnosis of rectosig-
moid diminutive polyps with histopathological diagnosis for colorectal polyps >5 mm
to determine the post-polypectomy surveillance interval. All colorectal polyps are sent
for pathologic interpretation to ensure a consistency of 90%. Cost-effectiveness analyses
have revealed that employing the innovative endoscopic optical technology to diagnose
colorectal polyps and adopting either the diagnosis-and-leave or resect-and-discard strat-
egy are cost-effective [12–17]. Nevertheless, the current challenge in the use of innovative
endoscopic optical technology to diagnose colorectal polyps is that not all endoscopists
meet the standards recommended by the ASGE. In fact, of the endoscopists in community
hospitals, only 25% could achieved a colorectal polyp diagnosis accuracy of 90% by using
the NBI-assisted optical diagnosis method [18], with the consistency rate of postoperative
polyp resection monitoring intervals being only 85% and 81% [4,19]. Therefore, identifying
the effective use of computer-aided diagnostic systems in helping clinicians decide the
polyp treatment methods is imperative.

Different computer-aided diagnostic systems for colonoscopy have been proposed [20–22].
The color, shape, texture, and spatial features of the images are analyzed through image
processing techniques (e.g., noise removal, image sharpening, and image segmentation)
and according to the optical characteristics captured using virtual chromoendoscopy (i.e.,
color of colorectal polyps, structure of capillaries, and morphology of capillary surface).
The images are further classified or identified using grouping algorithms, and an identi-
fication accuracy and sensitivity of approximately 72–89% [4] and 90% [23], respectively.
Through texture analysis and wavelet transformation, Hafner and Kwitt [23,24] computed
the red-green-blue (RGB) and LAB models by using a color wavelet cross-cooccurrence
matrix and analyzed the polyp classifications by applying K-nearest clustering and feature
vectors. Gross et al. [25] employed nonlinear filters and Canny edge detectors for tumor
contouring. Tamaki [26] extracted image feature vectors by using the scale-invariant fea-
ture transform and performed identification using support vector machine classification.
However, determining a standard or single feature vector to classify different types of
polyp images by using the said methods is difficult.

In most computer-aided diagnostic systems, analysis is performed based on the magni-
fication of endoscopic images. However, in clinical practice, non-magnified high-resolution
colonoscopy images are most commonly used mainly because magnification endoscopes
are more expensive, difficult to operate, and unsuitable for routine practice. Therefore,
they are not preferred by general hospitals and clinicians and only used in medical centers
for clinical research purposes. Several studies have proposed the application of deep
learning to computer-aided diagnostic systems for colonoscopy, published data that con-
ducted based on magnification endoscopic images yielded a diagnostic accuracy over
90% [21,27]. However, studies using non-magnification colonoscopic images for colorectal
polyps classified by deep learning system is lacking.

Deep learning has been increasing used in the medical field [28–33]. Many studies have
applied a convolutional neural network (CNN) to the identification and classification of
colorectal polyps [27,34]. Chen et al. [35] employed the deep neural network to differentiate
between NBI images of neoplastic and hyperplastic polyps. Park et al. [36] used the CNN
to classify the polyps in colonoscopy images. Ribeiro et al. [37] increased data sets through
small patches and conducted polyp classification according to the features extracted using
a CNN. Shin et al. [38] proposed the false-positive and offline learning method based
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on a region-based CNN (R-CNN), successfully improving the existing polyp locating
method. By using Faster R-CNN, Ren et al. [39] developed a learning method by drawing
a bounding box around a polyp. On the basis of the Faster R-CNN of the visual geometry
group-16 model, Mo et al. [40] trained 16 colonoscopy images. Wang et al. [41] employed
the SegNet model for examining colonoscopy images. Urban et al. [42] used VGG16 and
VGG19 models to conduct analyses through 7-fold validation. Zheng et al. [43] used
the you-only-look-once (YOLO) model to identify the polyp location in WL and NBI
images. All these methods were adopted to locate polyps and assist clinicians for the
classification of polyps. In most of these methods, training and testing were based on
RGB images. However, because RGB images, expressed by three primary color layers,
are multidimensional images, the computation cost involved is higher. In addition, the
network frameworks were composed of a considerable number of layers, which makes the
process time-consuming.

Currently, many medical images are processed into grayscale images, such as ultra-
sound, computed tomography (CT), and magnetic resonance (MR) images. Tan et al. [44]
applied a gray-level cooccurrence matrix and CNN to CT images for polyp diagnosis.
Zhang et al. [45] compress the three-channel color images of chest CT to grayscale images.
A five-layer deep CNN with stochastic pooling is used to diagnose chest-based COVID-19.
Xie et al. [46] mentioned that in deep learning, colors are not the key features influenc-
ing accurate image classification. They also discovered that in X-ray image classification,
the speed and accuracy of processing grayscale images were considerably higher than
those of processing RGB images. The grayscale method used was ITU-R Recommendation
BT.601 [47]. Moreover, misjudgments were easily made in the presence of excessive intesti-
nal wall textures, when polyps were too small (Figure 2), and when polyp textures were
similar (Figure 3) to intestinal wall textures.
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In this study, we proposed a colorectal polyp detection and classification method by
using grayscale images and a lightweight deep learning framework, which provided the
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same or similar detection effect as RGB images but incurred lower computing costs. To
increase the applicability of the proposed method in clinical diagnosis, we developed a
precise, computer-aided diagnostic system compatible with mobile devices.

The rest of this study is organized as follows: Section 2 explains the materials and
methods used in the colorectal polyp image detection and classification system; Section 3
details the experiments performed on the system, and Section 4 presents the discussion
and conclusions.

2. Materials and Methods

In this study, we employed colonoscopy images provided by the CVC Clinic [48,49]
and the Department of Gastroenterology and Hepatology, Chang Gung Medical Hospital
(CGMH) (Table 2). The CVC Clinic data set comprises 612 continuous images extracted
from 29 WL images, among which 592 images had one polyp and the remaining 30 images
had more than two polyps. The image resolution was 384 × 288 pixels. For image marking,
the upper, lower, left, and right boundaries of the white part were set as the four sides
of the bounding box according to the binarized ground truth (GT) obtained from the
CVC Clinic data set. The endoscope models used were CF-260AI/AL and CF-290AI/AL
(Olympus Optical Co, Ltd., Tokyo, Japan), and the endoscope host employed was EVIS
LUCERA (Olympus Medical Systems) (Figures 4 and 5). In both WL and NBI images,
the parts with polyps were extracted. In all, 1000 polyp image data were captured, and
2160 image data were extracted from the experimental data, including 80 images of the same
polyp from different angles. First, we selected one WL and one NBI image each from the
900 WL and 900 NBI colonoscopy images, respectively (1800 colonoscopy images in total).
The image resolution was 640 × 480 pixels. Each image in the data set was manually
marked by clinicians, and the file format used was tagged image file format (TIFF). In
addition, we selected another 360 polyp images for a polyp classification test to improve
classification accuracy.

Table 2. Experiment data set.

Name Image (N) Resolution Format

CVC-Clinic 612 384 × 288 .tif
CGMH-WL 1080 640 × 480 .tif
CGMH-NBI 1080 640 × 480 .tif
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Figure 6 presents the architecture for the colorectal polyp detection and diagnosis
system. The system is capable of polyp detection and classification. During colorectal polyp
detection, the input colonoscopy images were preprocessed. The images in the data set were
converted to grayscale images during preprocessing and applied for feature extraction and
training to detect the location of polyps. The detected polyps were subsequently classified
into neoplastic polyps (including adenomas and deep submucosal invasive cancer) and
hyperplastic polyps.
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2.1. Polyp Detection

The main polyp detection procedures involve the conversion of images to grayscale
and labeling the location of polyps. During gray scaling, RGB images were converted to
grayscale images with pixel values ranging from 0 to 255. RGB pixels were converted to
gray pixels by using ITU-R BT.601 [47]:

Gray = 0.229 × R + 0.587 × G + 0.117 × B (1)

where R, G, and B are the pixel values of the red, green, and blue colors in color images,
respectively (Figures 7 and 8).
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Furthermore, we adopted a CNN model for feature extraction (Figure 9). The analyti-
cal process included convolution, batch normalization (BN), rectified linear unit (ReLU)
function implementation, and max pooling operations. The input colonoscopy images
were scaled to 128 × 128 pixels, and a convolution filter was used for feature map extrac-
tion. The mean and standard deviation of the feature map were calculated in batches to
normalize each channel of the input feature map. Subsequently, two trainable parameters,
normalized through scaling and translation, were added to the model to effectively transfer
the extracted feature map to the next layer, thereby increasing the training speed and
enhancing the network stability. Threshold values of the normalized feature map that were
less than 0 were set to 0. Through the filter, the maximum value of the feature map was
obtained, thus highlighting the features:

Feature map(x, y) = ∑
p

∑
q

I(p, q)K(x − p + 1, y − q + 1) (2)

where I is the input colonoscopy image; K denotes the filter; p and q are the horizontal and
vertical axis coordinates of the original image, respectively; and x and y are the horizontal
and vertical axis coordinates of the output feature map, respectively:

x̂i =
xi − µB√

σ2
B + ε

(3)

yi = γx̂i + β ≡ BNγ,β(xi) (4)

where x̂i is the normalized output value; xi is the input value; µB is the mean of the batches;
σB

2 is the standard deviation of the batches; ε is the minimum value and ε = 10−5 in this
study; yi is the output value of the normalized value; γ is the scaling parameter; and β is the
translation parameter. The ReLU function performs threshold operations on the features
in the upper layer, changing all values less than 0 to 0, which can clarify the features and
facilitate network training. Threshold values of the normalized feature map that were less
than 0 were set to 0:

ReLU(BNy) =
{

BNy, BNy ≥ 0
0, BNy < 0

(5)

where BNy is the output value after BN, namely the input value of the ReLU function;
The max pooling operation performs dimension reduction on the features to extract their
maximum value. Through the filter, the maximum value of the feature map was obtained,
thus highlighting the features:

aj = maxp
(
an×n

i
)

(6)

where ai is the input value; p is the pooling regions; n is the pooling size; and aj is the
output value after the maximum value is obtained. Polyp detection was then conducted in
the bounding box transform layer. The prediction result of the feature map was obtained
in the last layer and was output through a 1 × 1 convolutional layer by using a pixel-based
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approach and converted to a bounding box mode for display [50]. There are eight groups
of bounding boxes to locate the polyps: (16, 16), (32, 32), (24, 48), (48, 24), (60, 80), (108, 72),
(216, 144), and (180, 180). The cutoff value of polyp detection is 0.2. The size of the predicted
bounding box was adjusted by converting it to the range of a true-value bounding box.
Table 3 displays the framework of the CNN model. Figures 10 and 11 show the results of
WL and NBI polyp detection, respectively, where the first column is the RGB image; the
second column is the grayscale image; the red box is the prediction box; and the green box
is the actual polyp location marked by the clinician, namely the GT.
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Table 3. Colorectal polyp detection model architecture.

Layers Filters Size/Stride Output

Input 128 × 128
Convolutional 16 (3 × 3 + 3 × 1 + 1 × 3)/1 128 × 128

Batch Normalization 128 × 128
ReLu 128 × 128

Max pooling 2 × 2/2 64 × 64
Convolutional 32 (3 × 3 + 3 × 1 + 1 × 3)/1 64 × 64

Batch Normalization 64 × 64
ReLu 64 × 64

Max pooling 2×2/2 32 × 32
Convolutional 64 (3 × 3 + 3 × 1 + 1 × 3)/1 32 × 32

Batch Normalization 32 × 32
ReLu 32 × 32

Max pooling 2 × 2/2 16 × 16
Convolutional 128 (3 × 3 + 3 × 1 + 1 × 3)/1 16 × 16

Batch Normalization 16 × 16
ReLu 16 × 16

Convolutional 128 (3 × 3 + 3 × 1 + 1 × 3)/1 16 × 16
Batch Normalization 16 × 16

ReLu 16 × 16
Convolutional 128 (3 × 3 + 3 × 1 + 1 × 3)/1 16 × 16

Batch Normalization 16 × 16
ReLu 16 × 16

Convolutional 24 1 × 1/1 16 × 16
Transform 16 × 16

Output



Sensors 2021, 21, 5995 9 of 18

Sensors 2021, 21, x FOR PEER REVIEW 8 of 19 
 

 

𝑅𝑒𝐿𝑈 𝐵𝑁𝑦  𝐵𝑁𝑦, 𝐵𝑁𝑦 0  0, 𝐵𝑁𝑦 0  (5)

where BNy is the output value after BN, namely the input value of the ReLU function; The 
max pooling operation performs dimension reduction on the features to extract their max-
imum value. Through the filter, the maximum value of the feature map was obtained, 
thus highlighting the features: 𝑎 𝑚𝑎𝑥 𝑎  

(6)

where ai is the input value; p is the pooling regions; n is the pooling size; and aj is the 
output value after the maximum value is obtained. Polyp detection was then conducted 
in the bounding box transform layer. The prediction result of the feature map was ob-
tained in the last layer and was output through a 1 × 1 convolutional layer by using a 
pixel-based approach and converted to a bounding box mode for display [50]. There are 
eight groups of bounding boxes to locate the polyps: (16, 16), (32, 32), (24, 48), (48, 24), (60, 
80), (108, 72), (216, 144), and (180, 180). The cutoff value of polyp detection is 0.2. The size 
of the predicted bounding box was adjusted by converting it to the range of a true-value 
bounding box. Table 3 displays the framework of the CNN model. Figures 10 and 11 show 
the results of WL and NBI polyp detection, respectively, where the first column is the RGB 
image; the second column is the grayscale image; the red box is the prediction box; and 
the green box is the actual polyp location marked by the clinician, namely the GT. 

 
Figure 9. Colorectal polyp detection system architecture. 

    

    

Figure 10. WL polyp detection. Figure 10. WL polyp detection.

2.2. Polyp Classification

According to the biopsy reports, we classified colorectal polyps into neoplastic polyps
and hyperplastic polyps by using a CNN model (Table 4). The cutoff value of polyp
classification is 0.5.
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Table 4. Colorectal polyp classification model architecture.

Layers Filters Size/Stride Output

Convolutional 16 (3 × 3 + 3 × 1 + 1 × 3)/1 480 × 640
Batch Normalization 480 × 640

ReLu 480 × 640
Max pooling 2 × 2/2 240 × 320

Convolutional 16 (3 × 3 + 3 × 1 + 1 × 3)/1 240 × 320
Batch Normalization 240 × 320

ReLu 240 × 320
Max pooling 2 × 2/2 120 × 160

Convolutional 32 (3 × 3 + 3 × 1 + 1 × 3)/1 120 × 160
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Table 4. Cont.

Layers Filters Size/Stride Output

Batch Normalization 120 × 160
ReLu 120 × 160

Max pooling 2 × 2/3 40 × 53
Convolutional 32 (3 × 3 + 3 × 1 + 1 × 3)/1 40 × 53

Batch Normalization 40 × 53
ReLu 40 × 53

Max pooling 2 × 2/3 13 × 18
Convolutional 64 (3 × 3 + 3 × 1 + 1 × 3)/1 13 × 18

Batch Normalization 13 × 18
ReLu 13 × 18

Max pooling 2 × 2/3 4 × 6
Convolutional 64 (3 × 3 + 3 × 1 + 1 × 3)/1 4 × 6

Batch Normalization 4 × 6
ReLu 4 × 6

Max pooling 2 × 2/1 2 × 3
Fully Connected 2

Softmax

2.3. Statistical Analysis

Categorical data were presented as rates and proportions and 95% confidence intervals
(CI) were calculated. The McNemar’s test was used to compare the accuracy of polyp
detection between RGB and NBI images and grayscale images for deep learning system.
A two-tailed p value less than 0.05 is considered statistically significant. The statistical
analysis was performed by using IBM SPSS Statistics 22 (SPSS Inc., Chicago, IL, USA).

3. Experimental Results

We divided the experiment data into three parts: the CVC Clinic images and the
WL images and NBI images provided by the Chang Gung Medical Foundation. The
images were divided based on data sets and different light sources to verify whether
the dissimilarity and compatibility of images differed due to different light sources. The
RGB and grayscale images in each data set were separately trained. This system was
implemented using software, i.e., MATLAB version 2020b (The MathWorks, Inc., Natick,
MA, USA).

3.1. Polyp Detection Results

The data sets for polyp detection were divided into five groups (Table 5), and the data
were input to the colorectal polyp detection system through a 5-fold cross validation for
training and testing. During testing, calculations were performed based on the marked-up
parts and the prediction box and according to the standard used in the 2015 endoscopic vi-
sion challenge held by the Medical Image Computing and Computer-Assisted Intervention
Society (MICCAI-2015) [30,51]. Tables 6–14 presented the detection accuracy of our models
for the tested data of the CGMH-WL, CGMH-NBI, and CGMH-WL+ CGMH-NBI images.
The accuracy value of polyp detection is the number of correct detected polyp images
divided by the total number of polyp images. The results indicated that the detection
accuracy of grayscale images reached almost 95%, which was higher than of the RGB
images when using WL image dataset (Tables 6 and 7). However, there is no difference in
the accuracy of polyp detection between NBI images and grayscale transformation images
when using NBI image dataset (Tables 8 and 9). Among RGB images, detection errors
were noted in situations where polyp protrusions were nonobvious or had a texture similar
to that of the intestinal wall, images had excessive noise, or the polyps were too small.
Particularly, polyps with a size less than 1600 pixels (40 × 40 pixels) in the image were
likely to be misjudged. Moreover, we conducted a deep learning for detection of polyp size
divided into greater and smaller/equal than 0.5 cm (Table 12). The identification result
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of the gray scaled CNN exhibited no significant difference. The accuracy of the images
with a polyp size both greater and smaller than 0.5 cm ranged between 94.4% and 96.5%
(Tables 13 and 14). That is, image size was the key factor affecting the detection accu-
racy. We used 900 normal colonoscopy images as the testing data to verify the perfor-
mance of polyp detection. The accuracy of normal colonoscopy images detection was
870/900 = 96.56%. We found that some RGB polyp images that were not fully focused were
likely to be undetected if the images were not transformed to grayscale. It is a common
phenomenon in clinicians during colonoscopy screening and usually happened in the
dynamic colonoscopy images. In addition, some unfocused NBI images may also be the
possible cause of misjudgment for polyp detection.

Table 5. Training and testing dataset of polyp detection.

Dataset Training# Testing#

CVC-Clinic 612 -
CGMH-WL - 900
CGMH-NBI - 900

Table 6. CGMH-WL testing dataset of polyp detection.

RGB Grayscale
Polyp Normal Polyp Normal

Polyp 843 57 859 41
Accuracy% (95% CI)% 93.7 (91.9~95.2) 95.4 (93.9~96.7)

Table 7. Comparison of polyp detection between RGB and grayscale images with CGMH-
WLtesting dataset.

RGB
Grayscale

p Value
Polyp Detected No Polyp Detected

Polyp detected 843 0
<0.001No polyp detected 16 41

Table 8. CGMH-NBI testing dataset of polyp detection.

NBI Grayscale
Polyp Normal Polyp Normal

Polyp 850 50 853 47
Accuracy% (95% CI)% 94.4 (92.7~95.8) 94.8 (93.1~96.1)

Table 9. Comparison of polyp detection between NBI and grayscale images with CGMH-NBI
testing dataset.

NBI
Grayscale

p Value
Polyp Detected No Polyp Detected

Polyp detected 850 0
0.25No polyp detected 3 47

Table 10. CGMH-WL + CGMH-NBI testing dataset of polyp detection.

RGB + NBI Grayscale
Polyp Normal Polyp Normal

Polyp 1693 107 1712 88
Accuracy% (95% CI)% 94.1 (92.8~95.1) 95.1 (94.0~96.1)
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Table 11. Comparison of polyp detection between RGB + NBI and grayscale images with CGMH WL
+ CGMH-NBI testing dataset.

RGB + NBI
Grayscale

p Value
Polyp Detected No Polyp Detected

Polyp detected 1693 0
<0.001No polyp detected 19 88

Table 12. The image number of polyps size greater and smaller than 0.5 cm.

# of Polyp Size > 0.5 cm # of Polyp Size ≤ 0.5 cm Subtotal
WL 313 587 900
NBI 294 606 900
Total 607 1193 1800

Table 13. Polyp > 0.5 cm.

WL NBI
Polyp Normal Polyp Normal

Polyp 302 11 281 13
Accuracy% (95% CI)% 96.5 (93.8~98.2) 95.6 (92.6~97.6)

Table 14. Polyp size ≤ 0.5 cm.

WL NBI
Polyp Normal Polyp Normal

Polyp 557 30 572 34
Accuracy% (95% CI)% 94.9 (92.8~96.5) 94.4 (92.2~96.1)

3.2. Polyp Classification Results

We classified 2072 WL and NBI colorectal polyp images provided by the Chang Gung
Medical Hospital according to the results of pathological interpretation. The dataset was
randomly split into training, validation, and testing group. None of the image shared
between groups. The number of polyp images used for classification training, verification,
and testing was 1370, 342, and 360, respectively (Table 15). The verification and testing
data comprised the images that were accurately detected, and polyp images different from
the preceding ones were used as the verification data. The 5-fold cross validation was
also used for training, testing, and validation of polyp classification. Table 16 presents
the performance index in which true positive (TP) is the situation where the center point
of the prediction box falls at any GT; false positive (FP) is the situation where the center
point of the prediction box does not fall at any GT; and false negative (FN) is the situation
where no prediction box appears. True negative (TN) was not included because all the
images in the data set had at least one polyp, implying that they were not negative
images. Tables 17 and 18 present the confusion matrices for the classification of WL and
NBI grayscale images, respectively. Table 19 presents the performance evaluation of polyp
classification. Figure 12 shows the ROC curve and the AUC value is 0.93. The results
indicated that NBI images facilitated more accurate polyp identification than WL images.
During polyp classification, neoplastic polyps were likely to be misjudged as hyperplastic
polyps when polyp textures were not obvious, polyps were smaller than 1800 pixels, or
when the images had an excessively low resolution. However, hyperplastic polyps were
likely to be misjudged as neoplastic polyps because of the WL around polyps in the images
and when polyps were smaller than 1800 pixels.
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Table 15. Polyp classification dataset.

Data Type Neoplastic Polyps Hyperplastic Polyps Subtotal Percentage

Training# 685 685 1370 1370/1712 = 80%
Verification# 263 79 342 342/1712 = 20%

Subtotal 856 856 1712 100%
Testing# 248 112 360 360/360 = 100%

(Training#) + (Verification#) + (Testing#) = 2072 images

Table 16. Performance indices.

Accuracy (Acc) Acc = TP+FN
TP+FP+TN+FN

Precision (Prec) Prec = TP
TP+FP

Recall (Rec) Rec = TP
TP+FN

F1-measure (F1) F1 = 2×Prec×Rec
Prec+Rec

F2-measure (F2) F2 = 5×Prec×Rec
4×Prec+Rec

Table 17. Confusion matrix of WL polyp classification.

Neoplastic (Predicted) Hyperplastic (Predicted)

Neoplastic (Actual) 110 14
Hyperplastic (Actual) 36 20

Table 18. Confusion matrix of NBI polyp classification.

Neoplastic (Predicted) Hyperplastic (Predicted)

Neoplastic(Actual) 118 6
Hyperplastic(Actual) 25 31

Table 19. Performance index of polyp classification.

Acc% Prec% Rec% F1% F2%

WL 72.2 75.3 88.7 81.5 85.7
NBI 82.8 82.5 95.2 88.4 92.3

Sensors 2021, 21, x FOR PEER REVIEW 13 of 19 
 

 

the prediction box does not fall at any GT; and false negative (FN) is the situation where 
no prediction box appears. True negative (TN) was not included because all the images in 
the data set had at least one polyp, implying that they were not negative images. Tables 
17 and 18 present the confusion matrices for the classification of WL and NBI grayscale 
images, respectively. Table 19 presents the performance evaluation of polyp classification. 
Figure 12 shows the ROC curve and the AUC value is 0.93. The results indicated that NBI 
images facilitated more accurate polyp identification than WL images. During polyp clas-
sification, neoplastic polyps were likely to be misjudged as hyperplastic polyps when 
polyp textures were not obvious, polyps were smaller than 1800 pixels, or when the im-
ages had an excessively low resolution. However, hyperplastic polyps were likely to be 
misjudged as neoplastic polyps because of the WL around polyps in the images and when 
polyps were smaller than 1800 pixels. 

 
Figure 12. ROC curve for classification. 

Table 15. Polyp classification dataset. 

Data Type Neoplastic Polyps Hyperplastic Polyps Subtotal Percentage 
Training# 685 685 1370 1370/1712 = 80% 

Verification# 263 79 342 342/1712 = 20% 
Subtotal 856 856 1712 100% 
Testing# 248 112 360 360/360 = 100% 

(Training#) + (Verification#) + (Testing#) = 2072 images 

Table 16. Performance indices. 

Accuracy (Acc) 
TP +FNAcc =

TP +FP + TN+FN
 

Precision (Prec) 
TPPrec =

TP +FP
 

Recall (Rec) 
TPRec =

TP +FN
 

F1-measure (F1) 
2 Pr ec Re cF1

Pr ec Re c
× ×=

+
 

F2-measure (F2) 
5 Pr ec Re cF2
4 Pr ec Re c

× ×=
× +

 

  

Figure 12. ROC curve for classification.

In Table 18, three neoplastic polyp images that were less than 1800 pixels were classi-
fied as hyperplastic polyps. The NPV for adenoma by using the proposed system is 84%
(31/37), which did not reach the threshold of ≥90% for implementation of the diagnose-
and-leave strategy. However, if the polyp images less than 1800 pixels were excluded
from the study, the NPV is 91% (31/34), which achieved the threshold set by ASGE for
diagnose-and-leave policy.
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4. Discussion and Conclusions

For polyp detection, the mean accuracy of grayscale images was 95.1%, which was
higher than that of RGB/NBI images (94.1%). Detection errors in RGB images were caused
when polyp protrusions were nonobvious or had a texture similar to that of the intestinal
wall (Figure 13), images had excessive noise (Figure 14), or the polyps had an exces-
sively small pixel size (Figure 15). Particularly, polyps with a size less than 1600 pixels
(40 × 40 pixels) in the image were likely to be misjudged. Therefore, we recommend that
in polyp detection, the length and width of polyp images must be at least 40 pixels in the
lens regardless of the actual size of the polyps. This is likely to reduce misjudgment. We
also found that when the colorectal polyps image is more complex, such as with more
wrinkles or light spots, the use of color image deep learning for polyp detection may be
more accurate. In addition, when the vascular lines of colorectal polyps were less obvious,
such as unfocused or residual images, it would be better to use gray-scale image deep
learning for polyp detection. Next step we plan to use a hybrid deep learning model that
combines color and grayscale images for polyp detection in the dynamic colonoscopy
videos. Maybe it can take the advantages of both methods as well as improve the
detection accuracy.
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Figure 17. Polyp image size below 1800 pixels.

In this study, we employed a deep learning framework for colorectal polyp detection
by using grayscale images. The marked polyp data in the public database of the CVC Clinic
and the clinical data provided by the Chang Gung Medical Hospital were collected for
verification and testing. Rather than only using an analytic method for single-source data,
we collected colonoscopy images captured by different brands and models of colonoscopes.
This study had the following characteristics: first, the use of grayscaled RGB images
facilitated the computation of the deep learning model. Second, in the deep learning
framework, we used three convolutional filters (3 × 3, 1 × 3, and 3 × 1) in the convolutional
layer to extract features. Different from conventional CNN models where single-feature
filters were used, the proposed approach was capable of extracting more features for
computation. We also compared the result with those obtained using other models and
confirmed that the proposed approach could effectively increase the polyp detection
accuracy. Third, grayscale images could reduce the dimensions and size of RGB images.
Image deviation and noise caused by the difference in image gradient and endoscope lens
could also be avoided, which increases the accuracy of polyp detection and classification.
The results of the experiment indicate that in the detection of diminutive polyps—those
smaller than 0.5 cm—the accuracy considerably decreased when polyps were smaller
than 1600 pixels. The differentiation between neoplastic polyps and hyperplastic polyps
became difficult when polyps were smaller than 1800 pixels. Hence, we recommend that
clinicians could adjust the distance between the lens and polyps to enhance the detection
results when conducting computer-assisted colorectal polyp analysis, which ensures that
the polyps in the images have a minimum size of 1600 pixels.

Grayscale images achieve an equivalent or even higher accuracy of polyp detection
than RGB/NBI images for lightweight computation. When NBI images were larger than
1800 pixels, our model could achieve high NPV (>90%) for neoplastic polyps. The colorectal
polyp detection technique developed in this study can help clinicians rapidly locate polyps,
whereas the colorectal polyp classification technique can assist clinicians in determining
whether polypectomy or surgery is required, which may effectively improve patient
outcome, avoid unnecessary polypectomy, and reduce misdiagnosis rate of endoscopists. In
addition, hardware equipment is no longer limited by computation costs. The incorporation
of simple mobile devices for edge computing and telemedicine services through lightweight
computation and the hand-held colorectal polyp detection technique based on 5G wireless
communication technology can substantially reduce the cost of medical equipment and
increase medical standards.
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