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Abstract

Background
People with certain underlying respiratory and cardiovascular conditions might be at an increased risk for severe illness from COVID-19. Diesel Particulate
Matter (DPM) exposure may affect the pulmonary and cardiovascular systems. The study aims to assess if DPM was spatially associated with COVID-19
mortality across three waves of the disease and throughout 2020.

Methods
We tested an ordinary least square (OLS) model, then two global models, spatial lag model (SLM) and spatial error model (SEM), designed to explore spatial
dependence, and a geographically weighted regression (GWR) model designed to explore local associations.

Results
The GWR model found that associations between COVID-19 deaths and DPM concentrations may increase up to 57, 36, 43, and 58 deaths per 100,000 people
in some US counties for every 1 µg/m3 increase in DPM concentration. Relative signi�cant positive association are observed in New York, New Jersey, eastern
Pennsylvania, and western Connecticut for the wave from January to May, and in southern Florida and southern Texas for June to September. The period from
October to December exhibit a negative association in most parts of the US, which seems to have in�uenced the year-long relationship due to the large number
of deaths during that wave of the disease.

Conclusions
Our models provided a picture in which long-term DPM exposure may have in�uenced COVID-19 mortality during the early stages of the disease, but that
in�uence appears to have waned over time as transmission patterns evolved.

Background
In 2020, more than 20 million cases of coronavirus disease 2019 (COVID-19) were identi�ed in the United States (U.S.), and more than 350,000 people died
(Dong et al. 2020, John Hopkins University 2021). Many studies established the relationship between the prevalence of COVID-19 and underlying health
conditions, social determinants of health, being of Black race, and environmental exposures. The most common underlying conditions reported to increase
risk of severe illness from COVID-19 included obesity, hypertension, cardiovascular disease, type 2 diabetes, and chronic respiratory diseases, including
asthma and chronic obstructive pulmonary disease (Clark et al. 2020, Nieman 2020). Incident COVID-19 deaths among people ages 65 years and older
comprised at least 85% of all incident COVID-19 deaths in the U.S. on any day in 2020 (CDC 2021). In addition to age, socioeconomic status, access to
healthcare, physical environment, and education have been identi�ed as social determinants of COVID-19 hospitalization and mortality (Phillips et al. 2020,
Mollalo et al. 2020). Several studies have observed a disproportionate share of COVID-19 incidence and mortality among predominantly Black U.S.
communities, which may be partly attributable to social and economic inequalities and preexisting comorbidities (Yancy 2020, Reyes 2020, Phillips et al. 2020,
Gayam et al. 2021, Peek et al. 2021). Yancy (2020) reported that the COVID-19 death rate in predominantly Black U.S. counties (6.3/100,000) was more than
three times higher than in predominantly White counties in April 2020. Through July 21, 2020, Reyes (2020) reported a death rate twice as high among African
Americans in the U.S. (97.9/100,000) compared with the White population, based on data from 45 states and the District of Columbia. Phillips et al. (2020)
found that the increased risk of complications is related to the high prevalence of pre-existing comorbid conditions in part due to hereditary genetic
predisposition.

The impact of particulate matter exposures on COVID-19 outcomes have also been evaluated, with some studies centered around diesel particulate matter
(DPM). In an investigation of the role of long-term exposure (2000–2016) to air pollution during the �rst months of COVID-19, Wu et al. (2020) found that an
increase of 1 µg/m3 in particulate matter with a nominal diameter of 2.5 µm (PM2.5) was associated with an 11% increase in the COVID-19 death rate for
January 1-June 18, 2020. Bozack et al. (2022) performed a similar analysis to test associations of COVID-19 intensive care unit (ICU) admission and mortality
with long-term concentrations of PM2.5, nitrogen dioxide, and black carbon for the period March 8-August 30, 2020 in New York City. They noted an
association of ICU admission and mortality with long-term PM2.5 concentrations (collected December, 2018-December, 2019). Petroni et al. (2020) investigated
the association of COVID-19 mortality with respiratory hazard index calculated across 3223 U.S. counties using emissions data for 2014 and COVID-19 data
through May 13, 2020. They observed a 9% increase in COVID-19 mortality per unit increase in respiratory hazard index, which includes DPM. Their analyses
with only DPM demonstrated an increased effect of 182% in the mortality rate ratio with a 0.5 µg/m3 increase in DPM concentration. Hendryx and Luo (2020)
studied the association of long-term exposure to ozone (obtained from 2016), PM2.5 (obtained from 2016), and DPM (obtained from 2014) with COVID-19
prevalence and mortality through May 31, 2020. They showed an increase of 14.3 deaths per 100,000 U.S. residents for each DPM concentration increase of 1
µg/m3 in a single-pollutant model adjusted for demographic, health, smoking, and COVID-19 testing covariates. These �ndings collectively suggest that long-
term PM exposure may predispose an individual to COVID-19 mortality. However, association of COVID-19 mortality with long-term DPM may change over
time with the evolution of the coronavirus and changes in policies and personal behaviors. Our understanding of the effect of long-term DPM exposure on
COVID-19 mortality during different waves of the disease and over the locations impacted by those waves remain unknown, hampering anticipation of disease
hotspots.



Page 3/14

DPM is composed of a complex mixture of black carbon and organic carbon. Studies have shown that 80–90% of particles emitted by diesel engines are less
than 2.0 µm (Lee et al. 2015, Douglas et al. 2019), small enough to penetrate the alveoli (Ristovski et al. 2012). Long-term DPM exposure has been associated
with adverse respiratory and cardiovascular effects (Pronk et al. 2009, Ristovski 2012, Douglas et al. 2019). Diesel engines power school buses, heavy-duty
trucks, a variety of off-road heavy equipment, shipping, and commercial boating (Lee et al. 2015, Douglas et al. 2019). DPM emissions are higher in urban
areas, where most of the global population lives (Ristovski 2012, Douglas et al. 2019). Likewise, greater DPM concentrations have been observed in
socioeconomically disadvantaged communities (Douglas et al. 2019, Clougherty et al. 2014).

Methods
Our study explores spatial associations between long term average concentrations of DPM, as a metric for past air pollution exposure, and COVID-19 mortality
across each pandemic wave and throughout 2020 in the U.S. The objectives of the study are 1) to assess if living near DPM sources increased the risk of
death from COVID-19, 2) to estimate how associations between mortality and long-term exposure to DPM may have changed over time with changes in the
Coronavirus and in the population’s behavior, and 3) to test if models accounting for spatial autocorrelation improve model estimates. Data for air pollution,
health, demographic, and social determinants of health were merged for this analysis, and global and local models were both applied to examine these
relationships.

Population Data
County-level number of COVID-19 deaths were obtained from the publicly-available Johns Hopkins Coronavirus Resource Center (Johns Hopkins University
2020) for the period January 1- December 31, 2020. Data for potential confounders associated with COVID-19 deaths, including access to health care,
education, poverty, demographics, transportation, and occupation were obtained from the American Community Survey (ACS; U.S. Census Bureau 2020) and
the County Health Rankings (CHR; Robert Wood Johnson Foundation 2020) (Table 1).
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Table 1
Potential confounders tested in the models.

Race/ethnicity Poverty and Wealth

Fraction Black Fraction homelessness

Fraction White Fraction with a severe housing burden

Fraction Hispanic Food-environment index

Fraction American Indian Fraction Income inequality

Fraction Asian Fraction Unemployment

Fraction Paci�c Islander Fraction Median income

Transportation Fraction in poverty

Fraction who walks to work Median home value

Fraction who takes public transportation to work Demographics

Fraction who takes a bicycle or motorcycle to work Population density

Fraction who drives a car to work  

Fraction average time to work  

Tra�c volume  

Age  

Fraction over 65  

Median age  

Occupation  

Fraction in a service occupation  

Fraction in a manual occupation  

Fraction working in a mining or agricultural occupation  

Fraction working in a construction occupation  

Fraction working in a utilities occupation  

Health  

Fraction in poor health  

Fraction obese  

Fraction with diabetes  

Fraction reporting inactivity  

Fraction smoking  

Access to Healthcare  

Fraction uninsured  

Fraction population receiving health care  

Fraction hospitals per county  

Fraction hospital beds  

Education  

Fraction Incomplete school  

Exposure Data
Long-term average DPM concentrations were obtained from the 2014 National Air Toxics Assessment (NATA) database, the most recently modeled
concentrations of hazardous air pollutants and select other pollutants (U.S. Environmental Protection Agency (EPA) 2018). EPA used a hybrid model that
coupled a Community Multiscale Air Quality (CMAQ) chemical transport model to the American Meterological Society/Environmental Protection Agency
Regulatory Model (AERMOD) dispersion model to estimate NATA air pollutant concentrations at the census tract level through a multi-step process. CMAQ
v5.2 was �rst run over a 12 km x 12 km grid based on DPM emissions inputs from the National Emissions Inventory (U.S. EPA 2018). Next, the AERMOD
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dispersion model was run for each source using the same inputs but with receptors distributed over census tract centroids. Finally, concentrations estimated
by AERMOD along the census tract centroids were scaled by the ratio of the CMAQ concentration to the average of the AERMOD concentrations over that
same grid cell. This formulation allows for more accurate representation of the chemistry and physics of the DPM than the AERMOD dispersion model can
provide alone, while maintaining the �ner census tract level spatial resolution of the dispersion model.

Model Runs
We tested the association between COVID-19 mortality and long-term DPM concentrations across the contiguous United States for time periods coinciding
with each COVID-19 wave in 2020: January 1-May 31, 2020, June 1-September 30, 2020, and October 1-December 31, 2020. We also ran the model for the
entire year: January 1-December 31, 2020.

We used regression analysis to examine spatial non-stationarity in the relationship between COVID-19 and DPM while accounting for potentially confounding
effects. This work is similar to spatial modeling approaches used by Sun et al. (2020) and Rahman et al. (2020). Sun et al. (2020) investigated different
spatial regression models and compared them with an ordinary least squares (OLS) regression model to explain the transmission pattern of COVID-19.
County-level race/ethnicity and socio-economic covariates were included in their models. We adapted their approach by focusing on associations of COVID-19
mortality with DPM and by investigating different time periods. Three global models, OLS, spatial lag model (SLM), and spatial error model (SEM), were run to
produce a nationwide effect estimate. One local model, geographically weighted regression (GWR), produced effect estimates at the county scale. The R
Statistical Software version 3.6.3 was used to run all code. We performed spatial regression modeling with the following libraries: spdep, spgwr, and
spatialreg.

OLS models are designed to minimize the sum of squared differences between the true data and the prediction across the dataset (Goldberger, 1964). Mollalo
et al. (2020) studied county-level variations of COVID-19 incidence in the U.S. From a list of 35 demographic, socio-economic, topographic and environmental
variables, they used a stepwise forward selection procedure and then checked for multicollinearity to determine the most signi�cant predictors of COVID-19.
Then, using the same selected explanatory variables, they tested their model using OLS and several spatial models including SEM, SLM, and GWR (described
below). Accounting for spatial autocorrelation in their model improved performance over OLS. Karaye and Horney (2020) also compared OLS to spatial
regression models to analyze the impact of social vulnerability on COVID-19 cases. Spatial autocorrelation of the residuals may compromise the validity of
the OLS model and produce biased estimators (LeSage and Pace 2009, Loonis and De Bellefon 2018). The model assumptions of zero mean, independence,
heteroscedasticity, and normal distribution are met for the case where OLS is a complete and correct model in which the variables capture all of the spatial
variation without specifying spatial positions (DeAngelis and Yurek 2017, Schabenberger and Gotway 2017). Spatial autocorrelation in residuals may occur
due to an omitted variable.

SLMs estimate an autocorrelation parameter (“spatial lag”) using a weighted average of the response variable across neighboring areas, testing if neighboring
observations affect one another (LeSage and Fischer 2008, Sun et al. 2020). As the autocorrelation parameter approaches zero, the SLM approaches the OLS
(LeSage and Fischer 2008). In SEMs, errors across neighboring areas are autocorrelated (“spatial error”) (Le Gallo et al. 2005). SEMs estimate the relationship
between the residuals in a spatial region and those in adjacent regions (Sun et al. 2020). The spatial structure is in the residuals, meaning that some important
predictors are omitted in the model (Chi and Zhu 2020).

SLM and SEM have only one spatial dependence parameter. The single-valued characteristic makes it impossible for global spatial models to reveal local
spatial patterns (Chi and Zhu 2020, Fotheringham et al. 2003). Another limitation of global spatial models is that the model is dependent on the spatial
weighting matrix (Chi and Zhu 2020 ). In contrast, GWR allows for local models to be �t to each observation using spatial distance as a weighting factor for
the in�uence of all other points (Fotheringham et al. 2003). To determine local associations between COVID-19 cases in the U.S. and demographic, socio-
economic, topographic and environmental parameters, Mollalo et al. (2020) examined two local models including GWR. The variables incorporated in the
model are the same set used for OLS, SLM, and SEM. Similarly, Karaye and Horney (2020) compared GWR to OLS to understand the spatially varying effect in
the relationship between social vulnerability and COVID-19 case counts. The main advantage of GWR as a local model is the ability to test for spatial
variability among the effects of different variables in the model (Chi and Zhu 2020, LeSage and Pace 2009, Fotheringham et al. 2003). Another strength is that
GWR has the same model structure as the OLS, which facilitates comparison between the two models (Fotheringham et al. 2003).

For our spatial autoregressive models, we estimated spatial relationships between regions based on contiguous boundaries shared between 2 or more
counties, assuming that COVID-19 spread in a county is in�uenced by adjacent counties. For GWR, a cross validation function minimizes the root mean
square prediction error that de�nes the weight matrix. We evaluated spatial autocorrelation among contiguous cells in the model residuals using Moran’s I
(Moran 1950). Statistically signi�cant Moran’s I indicates either correlation or anticorrelation among neighboring units. Additionally, we used Lagrange
multiplier test statistics to understand whether the spatial lag or spatial error pattern is more important for interpreting the local results.

The level of urgency of the COVID-19 outbreak contributed to uncertain policy decisions and interventions in health in compressed timeframes coupled with
the complex social, economic and political events of 2020 (Lancaster et al. 2020). Therefore, effects related to pandemic waves could have in�uenced the
importance of speci�c variables during these different times of the year. Therefore, a set of different covariates have been integrated into the model for each
time period. To determine which covariates to include in the regression models of COVID-19 mortality, we applied a stepwise selection algorithm for each
season (Table 1). Then, the same covariates were incorporated in the best model for OLS, SLM, SEM, and GWR for each speci�c wave (Table 2), based on the
following framework:

COVID-19 deaths = DPM concentration + Confounder variables + error term (1)
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Table 2
Model framework for each wave modeled.

Wave
Dates

Models

Jan 1-
May 31,
2020

COVID-19 deaths = DPM concentration + Fraction Black + Fraction American Indian + Fraction who take public transportation to work + Fraction
average time to work + Fraction uninsured + Fraction smoking + Fraction Income inequality + Population density (2)

Jun 1-
Sep 30,
2020

COVID-19 deaths = DPM concentration + Fraction Black + Fraction Hispanic + Fraction American Indian + Fraction who take public
transportation to work + Fraction reporting inactivity + Fraction Incomplete school + Population density (3)

Oct 1-
Dec 31,
2020

COVID-19 deaths = DPM concentration + Fraction Black + Fraction American Indian + Fraction working in a mining or agricultural occupation + 
Fraction average time to work + Fraction reporting inactivity + Fraction obese + Fraction over 65 + Fraction homelessness (4)

Jan 1-
Dec 31,
2020

COVID-19 deaths = DPM concentration + Fraction Black + Fraction Hispanic + Fraction American Indian + Fraction Paci�c Islander + Fraction
working in a mining or agricultural occupation + Fraction reporting inactivity + Fraction with a severe housing burden + Fraction Income
inequality (5)

 

The confounder selection procedure was based on minimizing the Akaike information criterion (AIC) after controlling for multicollinearity. We used this same
process for each of the three waves and throughout 2020 to �nd the most signi�cant models for determining the nationwide and local associations between
COVID-19 mortality and DPM concentration.

Results
County-level annual average DPM concentration varied from 0.0003 to 1.13 µg/m3 with a nationwide median of 0.095 µg/m3. Median regional concentrations
for the Northeast, Southeast, West, and Mountain states were 0.117, 0.111, 0.079, and 0.037 µg/m3, respectively (Fig. 1). Elevated DPM concentration could be
observed at speci�c points corresponding to cities.

During the January May wave, the highest cumulative numbers of COVID-19 deaths were found in roughly the same regions as elevated DPM (Fig. 2a). As
2020 progressed, most counties experienced a higher mortality rate. The New York region exhibited lower cumulative deaths during the October-December
wave of our study (Fig. 2c), with a mean of 98 deaths per 100,000 compared with the January-May wave, which had a mean of 280 deaths per 100,000
(Fig. 2a). As shown in Fig. 2a and 2b, cumulative deaths increased substantially from the �rst wave to the second wave in the Southeast region. In the West
region, New Mexico, Arizona and California displayed the same pattern as the Southeast, with a signi�cant increase during the second wave. For the
September-December wave, COVID-19 deaths expanded across almost all of the US, exhibiting nearly the same pattern as for the all-year distribution (Fig. 2c
and 2d).

At a global level, all models demonstrated a statistically signi�cant association between long-term average DPM concentration and COVID-19 mortality for the
�rst nine months of 2020, as represented by the January-to-May and June-to-September waves (Table 3). SLM and SEM produced slightly higher associations
for the June-September wave. For the wave from October to December, none of the global models were found to produce positive associations or to be
statistically signi�cant. For the entire year, both the OLS and SLM produced positive associations, while the SEM produced a negative association.
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Table 3
Independent variables value per 100,000 people. Where cells are left blank, the forward stepwise variable selection process did not identify those variables f

potential
Variables January – May, 2020 June – September, 2020 October– December, 2020 Januar

  OLS SLM SEM GWR OLS SLM SEM GWR OLS SLM SEM GWR OLS

DPM 3.05 1.9 2.05 -14.45–
57.19

4.59 4.24 4.56 -30.63–
36.49

-0.73 -1.12 -3.32 -157.98–
43.21

5.56

Black 52.45 37.83 43.13 -906.15–
540.33

109.9 86.73 105.28 -1148.6–
414.02

-31.41 -18.35 -27.95 -3523.5–
1267.7

124.3

Hispanic - - - - 63.1 49.68 59.26 -246.24–
280.38

- - - - 77.91

American
Indian

35.4 30.31 27.8 -4001.9–
639.59

59.69 57.98 60.75 -1349.6–
8239.5

140.2 85.79 89.96 -2130.6–
3225.9

167.5

Paci�c
Islander

- - - - - - - - - - - - -4839

Mining or
Agriculture

- - - - - - - - 403.4 192.43 177.57 -2076.3–
2390.5

364.4

Public
Transportation

-539.9 -738.58 -853.25 -2742–
3836.1

626.8 736.42 676.29 -10054–
4309.5

- - - - -

Time to work 194.3 87.3 23.06 -1630.1–
2133

- - - - -776 -347.01 -475.26 -5455.5–
9276.3

-

Inactivity - - - - 113.3 96.5 90.52 -1447.5–
4008.4

109.6 88.59 114.85 -677.69–
816.65

178.9

Uninsured -54.69 -46.12 -37.53 -528.7–
921.85

- - - - - - - - -

Smoking -92.44 -82.97 -85.9 -1555.5–
346.31

- - - - - - - - -

Obese - - - - - - - - 45.47 31.96 41.67 -536.1–
742.75

-

Over 65 - - - - - - - - 59.62 58.2 58.82 -810.75–
891.23

-

Income
inequality

3.81 3.55 2.85 -13.41–
80.69

- - - - - - - - 12.87

Homelessness - - - - - - - - -330.8 -184.44 -182.37 -2234.8–
1384.1

-

Housing
burden

- - - - - - - - - - - - -405

Incomplete
school

- - - - 1039 1009.8 1054.5 -3356.4–
6255.9

- - - - -

Population
density

0.013 0.013 0.016 -0.72 -
-0.55

-0.014 -0.014 -0.015 -0.062–
0.65

- - - - -

R2 0.37 0.42 0.45 0.65 0.41 0.44 0.44 0.59 0.17 0.33 0.32 0.48 0.15

OLS did not seem to be the most appropriate model to study spatial association between COVID-19 mortality and DPM. Smaller associations for the spatial
autoregression models compared with OLS suggested that the OLS covariates were positively biased due to spatial autocorrelation. Both Moran’s I and visual
inspection of the residuals maps (Figure S1) indicated spatial clusters of high values and of low values. The SLM and SEM models provided modest
improvements in model �t, as indicated by slightly higher values of coe�cient of determination (R2). Model �t testing indicates that the SLM provided a better
�t than the SEM for the year-long data, based on the Lagrange multiplier test.

The local spatial differences estimated using the GWR model are presented as a range of values (Table 3). The mean COVID-19 mortality – DPM association
for GWR is identical to that of the OLS, but overall R2 for GWR indicates improved performance over all global models. Spatial distribution of the DPM
coe�cients indicates changing conditions across the country during the three parts of the year (Fig. 3). During the January-May wave, associations were
mostly positive across the U.S. (Fig. 3a), ranging from an increase of 57.19 deaths per 100,000 for every 1 µg/m3 increase in DPM concentration. During the
June-September wave, about half of the contiguous US presented a positive association (Fig. 3b), while associations were more negative for the October-
December wave (Fig. 3c). Year-round COVID-19 associations were similar to those for the October-December wave, likely due to the large number of cases
during that timeframe. Local variations in R2 across the waves showed high (> 70%) values in the Northeast and Southwest during the January-May and June-
September waves and in the year-long model. High R2 persisted into the October-December wave for the Southwest, albeit with a smaller area (Fig. 4). Low R2

(< 40%) were observed in the areas with greatest decrease in mortality with increasing DPM concentration, suggesting much greater uncertainty in those
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associations than in the positive ones seen in the New York area during the �rst wave. Moreover, COVID-19 mortality was only statistically signi�cantly
associated DPM concentration during the January-May wave.

Among all confounding covariates incorporated in the models, fraction Black race and fraction American Indian ethnicity were statistically signi�cantly
positive in all global models. In addition to these two covariates, Inactivity is signi�cant in the June-September and October-December waves and in the year-
long model, and the confounders Hispanic, Mining or Agriculture, Public Transportation, Time to Work, Income Inequality, and Population Density were
signi�cant at different time periods of the model.

Discussion
Our study analyzed the spatial correlation between COVID-19 mortality and long-term DPM concentration as a surrogate for exposure across the continental
United States during three waves of the COVID-19 pandemic during 2020. Our results suggested that long-term exposure to DPM may have been an important
factor in COVID-19 mortality during the �rst two waves of the disease and that long-term DPM exposure may have been more highly in�uential during the
January-May wave. Sidell et al. (2022) examined associations between air pollution exposure and COVID-19 incidence for monthly and annual averages of
PM2.5, nitrogen dioxide (NO2), and ozone (O3) over four waves corresponding to those in our study plus January-February, 2021 for a Southern California
cohort. They similarly observed that PM2.5 had a larger effect during the �rst wave and that the effect diminished over time. A spatial autocorrelation term was
controlled for in these models, but Sidell et al. (2022) did not incorporate local methods. Differences in the outcome variable and the speci�c exposure also
necessitates further examination of spatial and temporal patterns.

Our results indicate that the OLS does not account for the spatial associations of COVID-19 mortality with DPM concentrations. These results are similar to
those of Sidell et al. (2022) and Mollalo et al. (2020), although their studies considered COVID-19 incidence rate rather than mortality. Mollalo et al. (2020)
used OLS, SLM, SEM, and two versions of the GWR to model COVID-19 incidence and mortality for the time period of January 22-April 9, 2020 and found
notable spatial associations of both COVID-19 incidence and mortality with several predictors. The study of Hendryx and Luo (2020), covering the January-
May wave, revealed strong associations of COVID-19 prevalence and mortality with long-term DPM and PM2.5 concentrations. Their study estimated a

coe�cient of 14.3–18.7 deaths per 100,000 U.S. residents for each increase of 1 µg/m3 in DPM concentration. In�ation of the DPM effect shown in their
results is possibly due to correlation between covariates and their mixed linear multiple regression model that does not account for spatial correlation.
Stakhovych and Bijmolt (2007) emphasized that correlated spatial errors lead to bias and uncertainty in the OLS results. Moreover, LeSage and Fischer (2008)
noted that spatial correlation in the OLS error terms is a su�cient motivation to employ spatial autoregression models for discerning spatial relationships
between dependent and independent variables.

The spatial global models outperformed the OLS model in terms of model �t for all models except June-September. This improved performance may be
related to spatial autocorrelation. A difference in coe�cients and R2 among the OLS, SLM, and SEM models was not observed during the June-September
wave, when the modeled relationships between COVID-19 mortality and long-term DPM concentrations lost statistical signi�cance. Kim (2021) reported an
in�ated effect of spatial autocorrelation on OLS predictor coe�cients, suggesting less spatial autocorrelation during the June-September wave consistent with
Bini et al. (2009) and Smith and Lee (2011).

Among the modeling techniques analyzed for our study, GWR provided the best model �t, based on estimated global R2. Our results revealed where and when
local long-term exposure to DPM may have been associated with COVID-19 mortality, consistent with results from both Karaye and Horney (2020) and Mollalo
et al. (2020) regarding patterns of local prevalence and local mortality of the disease based on local R2. Some areas in the Northeast and West regions
presenting a high R2 in our study align with Mollalo et al. (2020) for incidence rate.

As noted by Fotheringham (1998), our GWR results illustrates the need to account for local phenomena.

Socio-economic disparity could explain the non-stationary effect of DPM exposure on COVID-19 mortality, due to drastic differences between contiguous
areas. Socially vulnerable communities, including minoritized racial groups, have seen spatially associated COVID-19 incidence (Karaye and Horney, 2020).
This is consistent with the strong association we observed for the fraction Black confounder (Table 3). Moreover, Paolella et al. (2018) pointed out spatial
associations among �ne particulate matter concentration, health effects, and minoritized groups and found out that �ner spatial resolution reveals
substantially higher �ne particulate matter concentrations in Black and Hispanic communities.

The differences among associations of COVID-19 mortality and DPM concentrations found by the SLM and SEM for the year-long time period, when SLM was
demonstrated to be more signi�cant by a Lagrange test, helped to illustrate that neighboring effects were more relevant in modeling the spatial relationship
with COVID-19 deaths than unobserved latent variables contained in the error term. Counties near other counties with high COVID-19 incidence are likely to
have higher incidence. Nonetheless, since the weighting matrix chosen for our study is based on spatial adjacency, the county size differences between the
Eastern and Western U.S. may have affected the parameter estimates creating more uncertainty in the larger counties (Chi and Zhu 2020). Some variability in
the association between COVID-19 and DPM exposure within those might have not been captured although DPM sources are more likely to be found in urban
areas. However, since the SLM for the year-long time period was not statistically signi�cant, other models should be considered when data are combined
across multiple waves.

Several limitations of this study need to be acknowledged with respect to the input data. It is possible that, with more data and/or more time, the association
would disappear. Exposure measurement error could bias the results (Villeneuve and Goldberg, 2020). Our spatial modeling approach is intended to account
for spatial exposure measurement errors. However, errors from applying cross-sectional analyses persist. Although we studied different waves of the disease,
our models were not truly longitudinal. Long-term exposure to DPM was estimated using concentrations from the 2014 NATA. This is the most recent
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nationwide prediction of DPM concentrations produced by the U.S. EPA and was also used in Hendryx and Luo (2020) and Petroni et al. (2020). The dataset
likely includes higher DPM concentrations than for 2020 given �eet turnover, suggesting that the magnitude of the effects of DPM calculated by our study and
these other studies were underestimated. Widely reported undercounting during the January-May wave would further contribute to this underestimation
(Dubrow, 2021). The set of potential confounders employed in our models was chosen to evaluate the in�uence of factors other than DPM potentially
associated with COVID-19 outcomes (Wu et al. 2020). However, it was impossible to represent all in�uential factors in the relationship between each wave of
COVID-19 mortality and long-term DPM concentrations, so uncertainty in the potential for confounding existed (Wu et al. 2020, Hendryx and Luo 2020).
Furthermore, the study was designed at county level. Spatial variation within counties was not captured and, the difference in county size could have caused
uncertainty since the weighting matrix de�ned for our analyses on which SLM, SEM and GWR relied, was spatial adjacency. Therefore, associations at scales
�ner than county-level, including individual- and neighborhood-level associations, could not be inferred (Wu et al. 2020). Despite these limitations, our study
included a rigorous analysis of spatial relationships for different time periods and tested a variety of potential confounders to minimize these limitations.

Conclusions
Our study used spatial econometric models alongside a local GWR to assess spatial relationships between COVID-19 mortality waves and long-term DPM
exposure. Our �ndings are consistent with prior studies showing a positive association between air pollution and COVID-19 mortality (Wu et al. 2020, Petroni et
al. 2020), speci�cally for DPM (Hendryx and Luo 2020). Our study built on these previous �ndings by exploring associations of COVID-19 mortality with long-
term DPM concentrations across waves of the pandemic. In doing so, our models provided a picture in which long-term DPM exposure may have in�uenced
COVID-19 mortality during the early stages of the disease, as observed speci�cally for the periods of January-May and June-September 2020. Waning
in�uence of DPM during October to December suggested that person-to-person disease transmission regardless of past exposures may have become more
in�uential in the spread of COVID-19 and in mortality rates once the disease became widespread throughout the U.S. Further investigation might focus on
factors associated with COVID-19 mortality during the October-December wave. Although COVID-19 data were available beyond this period, the introduction of
vaccines during 2021 were likely to have been so in�uential that combination of the two years of data may produce misleading conclusions.
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Figures

Figure 1

Spatial distribution of DPM concentration across contiguous U.S. counties (μg/m3).
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Figure 2

Spatial distribution of COVID-19 deaths for (a, top left) January-May, (b, top right) June-September, (c, bottom left) October-December, and (d, bottom right) all
of 2020. 
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Figure 3

Map of associations between COVID-19 mortality and long-term DPM concentration for U.S. counties.

Figure 4

Spatial distribution of local R2 for the GWR model.
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