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Abstract: This work aimed at estimating narrow-sense heritability, defined as the proportion of
the phenotypic variance explained by the sum of additive genetic effects, via Haseman–Elston
regression for a subset of 56 plasma protein levels related to Multiple Sclerosis (MS). These were
measured in 212 related individuals (with 69 MS cases and 143 healthy controls) obtained from
20 Sardinian families with MS history. Using pedigree information, we found seven statistically
significant heritable plasma protein levels (after multiple testing correction), i.e., Gc (h2 = 0.77; 95%CI:
0.36, 1.00), Plat (h2 = 0.70; 95%CI: 0.27, 0.95), Anxa1 (h2 = 0.68; 95%CI: 0.27, 1.00), Sod1 (h2 = 0.58;
95%CI: 0.18, 0.96), Irf8 (h2 = 0.56; 95%CI: 0.19, 0.99), Ptger4 (h2 = 0.45; 95%CI: 0.10, 0.96), and Fadd
(h2 = 0.41; 95%CI: 0.06, 0.84). A subsequent analysis was performed on these statistically significant
heritable plasma protein levels employing Immunochip genotyping data obtained in 155 healthy
controls (92 related and 63 unrelated); we found a meaningful proportion of heritable plasma protein
levels’ variability explained by a small set of SNPs. Overall, the results obtained, for these seven
MS-related proteins, emphasized a high additive genetic variance component explaining plasma
levels’ variability.

Keywords: heritability; plasma protein levels; Immunochip SNPs; multiple sclerosis

1. Introduction

Developments in molecular genetics have afforded growth in understanding the
pathophysiology of many neurologic diseases. However, there has been slower progress for
common complex trait diseases of major public health impact, such as Multiple Sclerosis
(MS) (OMIM 126200), which is our focus in this work. MS is an autoimmune demyelinating
chronic disease of the Central Nervous System (CNS) [1–3] and it is a common cause of
neurological disability in young adults [4,5]. Its etiology is multifactorial and could be
caused by genetic [6–11] and environmental factors [12,13]. Many studies aimed at focusing
on MS-related proteins, for example, studying their role during the onset of the disease by
comparing their levels in patients and controls, such as the one proposed by Lovett-Racke
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et al. [14]. Many efforts have been made also in the field of biomarker discovery [15,16] to
identify candidate molecular biomarkers for MS, gaining more insight into the pathogenetic
aspects of the disease.

The aim of this work was to perform heritability estimation on a set of 56 a priori
selected candidate MS-related proteins measured in blood plasma. Heritability can be
defined as the amount of phenotype variability that is influenced by genetic variation [17].
Heritability estimation allowed us to investigate how heritable the levels of these MS-
related proteins were with reference to the resemblance of members of the same family [18].
To this aim, we analyzed 20 extended families, with high MS prevalence, from the founder
population of the Nuoro province, Sardinia (Italy) [19]. Firstly, we calculated the narrow-
sense heritability (h2), that is the proportion of phenotypic variance explained by the sum
of additive genetic effects based on pedigree information [20], i.e., through resemblance
among these protein level profiles in related individuals. Secondly, on the highlighted
statistically significant heritable proteins, a protein Quantitative Trait Loci (pQTL) analysis
was also performed [21,22] making use of Immunochip genotyping data [23] in a set of
healthy related and unrelated subjects from the same Sardinian population. Thirdly, we
quantified the proportion of plasma protein levels’ variability explained by a small subset of
Immunochip genetic variants significantly associated with plasma protein levels. Overall,
our work allowed to investigate heritability for a subset of MS-related plasma proteins levels
in a Sardinian family-based sample with MS history, to evaluate the impact of additive
genetic effects on their levels’ variability; subsequently, for these heritable MS-related
plasma protein levels, the proportion of variability explained by a subset of Immunochip
genotyped Single Nucleotide Polymorphisms (SNPs) was explored, to highlight biological
processes useful for future research.

2. Materials and Methods
2.1. Sardinian Data Sample

From a register of MS cases diagnosed according to Poser’s criteria [24], 20 extended
families were selected for the analysis. For reconstructing the pedigrees from grandparents
to first-degree cousins, a genealogical questionnaire was used [19]. The MS case register
had been set in the Nuoro province, Sardinia, Italy, in 1995. The Sardinian population is a
Mediterranean isolated population, with an age- and sex-adjusted prevalence of the disease
of 330 per 100,000 inhabitants, considered among the highest worldwide [25]. Sardinian
represents an ideal population for the identification of genetic and biological disease
determinants given, among all, its geographically and cultured isolation, its high genetic
homogeneity, and the limited migration [26]. For 212 subjects, 56 plasma protein levels
were measured. They were provided by high throughput technique plasma analysis, using
polyclonal antibodies from the Human Protein Atlas (HPA) project (www.proteinatlas.org,
accessed on 9 November 2021).

Specifically, as reported in [15], a bead-based antibody array format, containing hu-
man platelet antigen antibodies immobilized into microspheres in suspension, was used
to profile proteins via direct labeling of whole and unfractionated samples with biotin.
Antibody-conjugated bead arrays were analyzed in a multiplexed manner with immedi-
ate data acquisition from the flow cytometer-like Flexmap 3D instrument, to determine
relative signal intensities from the binding of antibodies to their target antigens. Median
fluorescent intensities were displayed when counting at least 50 events per bead ID, and
the resulting data were processed using probabilistic quotient normalization over the entire
dataset to account for possible disparities in sample dilution. These 56 proteins (listed
in Supplementary Table S1) were shown to be relevant in the context of MS for their sug-
gested association with the disease, both functionally and as biomarkers, after exhaustive
literature exploration regarding proteomic, mRNA, and cDNA expression and from sug-
gestions by the clinical collaborators. In total, 135 related subjects (43 MS cases, 92 healthy
controls), among the 212 subjects, and a further 63 unrelated healthy controls were also
genotyped using Immunochip, including a quality control-filtered dataset of 131.497 SNPs.

www.proteinatlas.org
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Immunochip represents a powerful tool for immunogenetics gene mapping, and it has
allowed us to identify large numbers of genetic loci and to enhance our understanding in
basic causes of autoimmune and inflammatory conditions [23]. RStudio Desktop, version
2022.02.3 + 492, was used for all analyses (RStudio Team (2022). RStudio: Integrated De-
velopment Environment for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/
(accessed on 15 February 2022)) and scripts are provided in the Supplementary Material.

2.2. Workflow

The study design involved narrow-sense heritability estimation for 56 plasma protein
levels obtained in the Sardinian sample. The additive genetics effects were adjusted from
potential shared environment effects confounding, i.e., environmental influences which
makes closely related individuals’ phenotypes more similar [27], which could upwardly
bias heritability estimates. We further extended the results in a pQTL analysis integrating
the genotyping data obtained using Immunochip. Therefore, for statistically significant
heritable protein levels, controlling False Discovery Rate (FDR) at 0.05 level, we also
tested the association, on healthy subjects only, between their plasma levels and each
available Immunochip SNP. Finally, making use of these SNP–protein level associations,
we performed a multiple stepwise regression to estimate the proportion of plasma protein
level variability explained by the best set of explanatory Immunochip SNPs.

2.3. Heritability Estimation

First, we tested the null hypothesis that 56 protein levels’ variability was not explained
by additive genetics effects in 212 related subjects (69 MS cases, 143 controls). Coefficients
were estimated using a linear mixed model (LMM) formulated as follows:

Yij = β0 + β1 × MSij + Z1i + β2 × SEXij + Z1i × kinshipi + Z2i × f amilyi + eij (1)

where j represents the individual and i its corresponding family. Yij represents the stan-
dardized protein level (using mean and standard deviation from the whole sample), β0 is
the intercept term, MSij is the individual’s disease status (reference = controls) with corre-
sponding fixed effect β1, and SEXij indicates the sex of the individual (reference = males)
with corresponding fixed effect β2. kinshipi is the random effect accounting for additive
genetic effects, and it is assumed to be distributed as N

(
0, σ2

G A
)
, where A is the kinship

matrix multiplied by 2 (or the relationship matrix); f amilyi is the random effect account-
ing for the shared environmental effect between siblings raised in the same household,
assumed to be distributed as N

(
0, σ2

C H
)
, where H is the shared environment matrix with

coefficient “1” for the siblings who were raised in the same household [17]; eij is the residual
error, assumed to be distributed as N

(
0, σ2

I I
)
. Z1i and Z2i denote the random effect model

matrices for kinshipi and f amilyi. σ2
G and σ2

C were assumed to be independent. Sex and MS
status were included in the model as fixed effects to avoid potential confounding [15,28].
Variance component decomposition was performed according to the total trait variance
(σ2

T) decomposition provided by the formula:

σ2
T =σ2

G + σ2
C + σ2

I (2)

Narrow-sense heritability was then defined as:

h2 =
σ2

G
σ2

T
(3)

where h2 represents the estimated narrow-sense heritability, i.e., the ratio between the addi-
tive genetic effects variance component (σ2

G) and the total variance (σ2
T) of the quantitative

trait. In the same manner, shared environment effect (c2) is estimated as the ratio between
shared environment variance component (σ2

C) and the total variance (σ2
T).

http://www.rstudio.com/
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Instead of the common practice to solve the mixed model using the Restricted Maxi-
mum Likelihood (REML) method [17,29], we implemented the Haseman–Elston (HE) re-
gression method, which is commonly used in genetic linkage studies of complex traits [30].
We followed the work provided by Sofer [31], as it leads to a more suitable calculation
for Confidence Intervals (CIs) within the natural range of 0 and 1. The idea behind the
approach entails regressing multiplied residuals against entries of covariance matrices
(i.e., A, H, and I). The distribution of the variance component estimators, as well as the
distributions of the proportions of variance, can be carried out in a general model that
allows for multiple sources of variation, as in the following model specification:

E[yi − wiβ] = E[ε] = 0 (4)

Var[ε] = σ2
I I + σ2

G A + σ2
C H (5)

Cov
[
ei, ej

]
= σ2

I × 1(i=j) + σ2
G × aij + σ2

C × hij (6)

where Equation (4) represents the assumption of expected value for model residuals equal
to 0. Equation (5) represents the hypothesis of the polygenic model, for which I, A, and H
are, respectively, the identity matrix, the kinship matrix, and the shared environment matrix
and σ2

G, σ2
C, σ2

I the respective variance components as defined above. In Equation (6), aij
and hij represent the respective coefficients for A and H matrices, given subjects i and j,
and are required to calculate the linear combination of the estimated variance components.
Therefore, in the HE regression, the variance components were estimated taking the vector
of all unique pairs of residuals between subjects, i.e., ei, ej (i < j), in a residual regression as
in (6). Confidence limits for h2 and c2, at desired 1 − α level, were obtained from a binary
search using the saddle point approximation for the distribution of a ratio of quadratic
forms. Further mathematical details can be found in the theorem formula provided by
Sofer [31]. In summary, by applying the above-reported formulas, we estimated the
variance components σ2

G, σ2
C, and σ2

I , and then derived narrow-sense heritability h2 and
shared environment effect c2 with 95% CIs. h2 and c2 statistical significance, for each of the
56 plasma protein levels, were established after multiple testing correction, controlling for
False Discovery Rate (FDR) fixed at 0.05 [32].

2.4. Estimation of Proportion of Protein Level Variance Explained by pQTL

The second step of our analysis aimed at finding pQTL among Immunochip genotyp-
ing data for statistically significant heritable proteins. Immunochip data included a starting
dataset of 131.497 variants that underwent a quality control (QC) check using PLINK [33],
SNPs were removed if they: (i) had Minor Allele Frequency (MAF) < 0.05; (ii) deviated
from Hardy–Weinberg equilibrium (HWE), considering a p-value < 1 × 10−4; and (iii) were
in linkage disequilibrium (LD) considering a maximum threshold for r2 equal to 0.2. To
avoid potential reverse causation caused by the disease, we performed pQTL analysis on
healthy controls only. Therefore, the analysis was conducted on the 92 related healthy
controls from the Sardinian families, plus a further 63 unrelated healthy controls, sampled
from the same Sardinian population. For these subjects, both plasma protein levels and
Immunochip data were available. Each SNP was included as explanatory variable in a
univariate Linear Mixed Model (LMM) explicated by:

Yij = β0 + β1 × SEXij + β2 × SNPij + Z1i × kinshipi + Z2i × f amilyi + eij (7)

Each term in the model is described in Equation (1), while SNPij covariate is the
number of effect alleles (the minor allele), with β2 the respective additive linear effect on
plasma protein levels. To calculate the proportion of protein level variability explained by
pQTL SNPs, we first refined the search for significantly associated SNPs in a multivariable
model following the approach in [34,35]. Specifically, among the top 50 univariate SNP–
protein level associations the best set of SNPs, in an explanatory sense, were selected
using a stepwise regression procedure [36], fixing a threshold α = 1 × 10−4 for the optimal
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statistically significant subset of SNPs included in the model. The best set of statistically
significant SNPs was then included in the multivariable LMM model formulated as in
Equation (7), and the respective marginal proportion of protein level variability explained
by these SNPs was calculated using the marginal R2 statistic as defined by Nakagawa and
Schielzeth [37]:

R2
SNPs =

σ2
SNPs

σ2
G + σ2

C + σ2
F + σ2

I
(8)

where σ2
I , σ2

C, σ2
G are defined in Equation (1), σ2

F is the variance for the fixed effects com-
ponent (i.e., sex), and σ2

SNPs is the variance for the significant SNPs. A 95% confidence
interval for R2

SNPs was calculated making use of bias-corrected accelerated (BCA) boot-
strap, simulating B = 1000 block-bootstrap replications [38], meaning that 1000 bootstrap
samples were obtained by resampling with replacement of the i = 1, . . . , M household
families to consider the relationships among related subjects. The BCA method, proposed
by Efron [39], was chosen as it is not only based on quantiles of the distribution, but it
also comprehends a correction for potential bias distortion. It is important to underline
that R2

SNPs is not a measure directly comparable with h2 described in Section 2.3, as both
samples and the statistical methodologies used in the analyses are different; therefore, h2

is estimated to quantify the overall contribution of all additive genetic effects on protein
levels’ variability, while R2

SNPs is estimated to evaluate the explanatory contribution of the
selected Immunochip SNPs.

3. Results
3.1. Sample Description

The first sample employed for this study comprised 212 individuals (69 MS cases,
143 healthy controls) with measured protein plasma levels, belonging to 20 different ex-
tended Sardinian families. Each family contained from 6 to 26 subjects (median = 9 subjects)
and from 1 to 8 MS patients (median = 4 cases). Moreover, 56 antibodies targeting
unique plasma protein levels (listed in Supplementary Table S1), were made available
from the HPA project. This first sample was used to estimate measured plasma protein
levels narrow-sense heritability. Among the 212 subjects with measured protein levels,
135 subjects (43 MS cases, 92 healthy controls) had 131.497 genotyped variants from Im-
munochip. For the pQTL analysis only, a total of 155 healthy controls were selected,
i.e., 92 related healthy controls (48 female and 44 males) and 63 unrelated healthy con-
trols (47 female and 16 males) from the same Sardinian population. This second sample
was used to estimate the proportion of protein level variability explained by a set of
Immunochip SNPs.

3.2. Narrow-Sense Heritability Estimation

As described in Section 3.1, 212 subjects were used for performing narrow-sense
heritability estimation. HE regression highlighted 13 out of 56 MS-related proteins with
unadjusted p-value ≤ 0.05 under the null hypothesis of null h2: Gc, Anxa1, Plat, Sod1, Irf8,
Ptger4, Fadd, Il-7, Mmp8, Pdgfa, Il-21, Tnfsf13, Il7, and Apex1. Among these 13 proteins,
7, i.e., Gc (h2 = 0.77, 95%CI: 0.36, 1.00), Plat (h2 = 0.70, 95%CI: 0.27, 0.95), Anxa1 (h2 = 0.68,
95%CI: 0.27, 1.00), Sod1 (h2 = 0.58, 95%CI: 0.18, 0.96), Irf8 (h2 = 0.56, 95%CI: 0.19, 0.99),
Ptger4 (h2 = 0.45, 95%CI: 0.10, 0.96), and Fadd (h2 = 0.41, 95%CI: 0.06, 0.84), resulted
statistically significant after multiple testing corrections controlling for FDR = 0.05. In
Table 1, h2 estimates, along with shared environment effects (c2), 95% Cis, and adjusted
p-values obtained using Benjamini–Hochberg procedure are reported. Full results, for
all 56 plasma protein levels, are shown in Supplementary Table S2. Spp1, Cntn1, and
Slc30a7 reported a statistically significant c2 after multiple testing correction, controlling
for FDR = 0.05, respectively, c2 = 0.69 [95%CI: 0.25, 0.99] for Spp1, c2 = 0.60 [95%CI: 0.18,
0.98] for Cntn1, c2 = 0.53 [95%CI: 0.16, 0.99] for Slc30a7.
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Table 1. Results provided by Haseman–Elston (HE) regression for proteins with unadjusted
p-values < 0.05, with estimates of additive genetic component (h2 ) and shared environment compo-
nent (c2 ), 95% Confidence Intervals (CIs) and adjusted p-values controlling for FDR = 0.05.

Protein Gene Symbol 1 Chr. 2 HPA 3 H 2 95%CI Adjusted p-Value C 2 95%CI Adjusted p-Value

Gc GC 4 001526 0.77 [0.36, 1.00] <0.001 0.00 [0.00, 0.39] 0.534

Plat PLAT 8 003412 0.70 [0.27, 0.95] <0.001 0.01 [0.00, 0.33] 0.534

Anxa1 ANXA1 9 011271 0.68 [0.27, 1.00] <0.001 0.00 [0.00, 0.35] 0.534

Sod1 SOD1 21 001401 0.58 [0.18, 0.96] 0.004 0.07 [0.00, 0.41] 0.534

Irf8 IRF8 16 002531 0.56 [0.19, 0.99] 0.004 0.03 [0.00, 0.35] 0.534

Ptger4 PTGER4 5 012756 0.45 [0.10, 0.96] 0.031 0.00 [0.00, 0.32] 0.534

Fadd FADD 11 001464 0.41 [0.06, 0.84] 0.045 0.01 [0.00, 0.31] 0.534

Pdgfa PDGFA 7 016613 0.42 [0.06, 0.87] 0.063 0.36 [0.03, 0.84] 0.191

Il-7 IL7 8 019590 0.37 [0.03, 0.85] 0.065 0.00 [0.00, 0.32] 0.534

Tnfsf13 TNFSF13 17 004863 0.37 [0.03, 0.84] 0.065 0.00 [0.00, 0.31] 0.534

Il-21 IL21 4 038303 0.35 [0.03, 0.75] 0.084 0.00 [0.00, 0.29] 0.534

Mmp8 MMP8 11 021221 0.34 [0.02, 0.75] 0.110 0.25 [0.00, 0.67] 0.357

Apex1 APEX1 14 002564 0.28 [0.00, 0.66] 0.187 0.14 [0.00, 0.49] 0.534

1 Gene symbol according to the National Center for Biotechnology Information (NCBI), 2 coding gene chromosome
position, and 3 the Human Protein Atlas antibody product name (Human Platelet Antigen-HPA).

3.3. Results of the Estimation of Proportion of Protein Level Variance Explained by
Immunochip SNPs

A total of 20399 SNPs were included in the analysis after the QC step. pQTL analysis
was performed by exploring the association between each of 20399 SNPs and each of
the seven statistically significantly heritable proteins as shown in Table 1. Results of all
univariate single SNP–protein associations are reported in Supplementary Table S3. From
this analysis, we selected the top 50 associations ordering p-values from the lowest to the
highest. Among these candidate pQTL signals, the best set of SNPs was identified through
a stepwise regression procedure, where the inclusion and exclusion of each SNP in the
model was determined at α = 1 × 10−4 level. The resulting best set of explanatory SNPs,
obtained for each protein, was included in a multivariable LMM model as in Equation (7)
and the marginal proportion of plasma protein level variability jointly explained by these
SNPs (R2

SNPs) was calculated, along with 95% BCA confidence interval obtained simulating
1000 bootstrap replications (as described in Section 2.4). The multiple SNPs–protein levels
statistically significant associations are reported in Table 2, along with SNPs information,
i.e., chromosome position, MAF, effect allele, additive effect due to one effect allele on
standardized plasma protein levels, standard error, p-value, and, finally, R2

SNPs with 95%
confidence interval. All seven heritable protein levels resulted significantly associated
with at least four Immunochip SNPs explaining ≥ 40% circa of plasma levels’ variability.
The highest R2

SNPs resulted for Gc plasma levels’ variability, where a subset of six SNPs
explained 67% [95% CI: 59%, 74%] of levels’ variability; Gc plasma levels also showed the
highest heritability in the previous analysis (h2 = 0.77, see Table 1). The highest number
of significantly associated SNPs was found for Ptger4 and Fadd, i.e., eight, explaining,
respectively, 59% [95% CI: 46%, 69%] and 60% [95% CI: 49%, 68%] of plasma levels’ vari-
ability. Instead, the lowest R2

SNPs, as well as the lowest number of significantly associated
SNPs, i.e., four, was found for Anxa1 plasma levels, with 39% [95% CI: 25%, 50%] of levels’
variability explained by these genetic variants. For Plat plasma levels we had to reduce the
initial candidate pQTL list selecting the SNPs from the top 35 univariate SNPs–Plat plasma
levels associations, instead of the top 50, due to convergence problems in the stepwise
procedure; eventually, Plat plasma levels resulted significantly associated with seven SNPs
explaining 50% [95% CI: 40%, 60%] of variability. Finally, Sod1 and Irf8 plasma levels
resulted both significantly associated with five SNPs, with these explaining, respectively,
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50% [95% CI: 39%, 59%] of Sod1 plasma levels’ variability and 43% [95% CI: 32%, 51%] of
Irf8 plasma levels’ variability. In Supplementary Table S4 further information was reported
regarding significantly associated SNPs reported in Table 2, i.e., SNP location (e.g., intronic
variant), nearest gene, and previously discovered associations with phenotypes and gene
expressions from the literature.

Table 2. Marginal proportion of protein level variability explained by significant SNPs allele additive
effects for the seven proteins with statistically significant heritability.

Protein Chr.
1

HPA
2

N◦

SNPs 3 SNP 4 SNP Position
(chr:bp) 5

Effect
Allele 6

MAF
7

Additive
Effect 8 SE 9 p-Value

10 R2
SNPs

11 95% CI
12

Gc 4 001526 6

rs7041 4:72618334 A (C) 0.41 0.75 0.06 <0.001

0.67
[0.59–
0.74]

rs4522405 16:14091796 G (A) 0.22 0.43 0.08 <0.001
rs715687 10:84571953 C (T) 0.26 0.36 0.08 <0.001

rs6677355 1:117279405 G (C) 0.47 0.29 0.06 <0.001
rs6753093 2:230275619 C (T) 0.38 0.28 0.07 <0.001
rs17650634 2:139420392 C (T) 0.18 0.35 0.09 <0.001

Plat 8 003412 7

rs10455872 6:161010118 G (A) 0.15 0.75 0.09 <0.001

0.53
[0.40–
0.60]

rs4682599 3:130284840 T (C) 0.11 0.41 0.10 <0.001
rs41414547 3:5505816 G (C) 0.19 0.48 0.07 <0.001
rs12532924 7:153872322 G (A) 0.44 −0.27 0.05 <0.001
rs4751640 10:119572168 A (C) 0.30 −0.35 0.07 <0.001
rs2837461 21:41522609 G (A) 0.09 −0.52 0.08 <0.001
rs7757336 6:160689558 G (T) 0.21 0.34 0.07 <0.001

Anxa1 9 011271 4

rs73055198 3:33005688 A (G) 0.20 0.46 0.11 <0.001

0.39
[0.25–
0.50]

rs10258735 7:7800451 A (G) 0.27 0.53 0.10 <0.001
rs1948522 9:27575785 T (C) 0.22 −0.52 0.11 <0.001

rs117883842 22:39670220 A (G) 0.11 0.59 0.11 <0.001

Sod1 21 001401 5

rs2546722 5:173237531 G (A) 0.30 0.50 0.09 <0.001

0.50
[0.39–
0.59]

rs17374045 10:6697086 A (G) 0.17 0.55 0.11 <0.001
rs10737079 10:13785400 C (T) 0.33 −0.32 0.08 <0.001
rs2067644 14:24142675 G (T) 0.25 0.45 0.10 <0.001
rs3813972 1:206775427 G (A) 0.41 0.38 0.08 <0.001

Irf8 16 002531 5

rs13099833 3:100878496 A (G) 0.42 −0.48 0.09 <0.001

0.43
[0.32–
0.51]

rs2254210 12:48273714 A (G) 0.38 0.51 0.10 <0.001
rs346818 17:4932841 T (C) 0.39 0.40 0.08 <0.001

rs1799594 5:165886820 T (C) 0.40 0.45 0.09 <0.001
rs2939329 5:39557242 C (A) 0.06 −0.83 0.19 <0.001

Ptger4 5 012756 8

rs17044638 3:18609712 G (A) 0.08 0.81 0.14 <0.001

0.59
[0.46–
0.69]

rs6815554 4:148938598 A (C) 0.07 0.76 0.14 <0.001
rs2060657 4:144558959 A (G) 0.30 −0.50 0.08 <0.001
rs11077678 17:66626373 C (A) 0.45 0.20 0.07 0.005
rs7440594 4:52708882 T (C) 0.13 0.55 0.11 <0.001
rs707455 1:7825311 A (G) 0.39 0.37 0.08 <0.001

rs12479328 2:47180023 G (A) 0.23 0.32 0.09 <0.001
rs3791268 2:135020700 G (A) 0.17 0.40 0.10 <0.001

Fadd 11 001464 8

rs2849298 8:11240939 G (A) 0.15 −0.45 0.11 <0.001

0.60
[0.49–
0.68]

rs6807532 3:119274841 T (C) 0.12 0.79 0.12 <0.001
rs8042370 15:60987957 T (C) 0.22 −0.42 0.09 <0.001
rs2278320 2:38104310 C (T) 0.23 0.46 0.08 <0.001
rs3734085 5:153796484 A (G) 0.05 0.97 0.17 <0.001
rs12410412 1:101661568 C (A) 0.35 0.36 0.08 <0.001
rs10002393 4:82786911 C (T) 0.31 −0.36 0.08 <0.001
rs2296188 13:28893484 T (C) 0.27 0.32 0.08 <0.001

1 Chromosome position of coding gene; 2 Human Protein Atlas antibody product name (human platelet antigen);
3 number of SNPs, selected in the stepwise procedure, included in the multivariable SNP–protein level model;
4 SNPs significantly associated with plasma protein levels in the multivariable model (using dbSNP ID); 5 SNP
position based on human genome 19; 6 the effect allele is represented by the minor allele in our Immunochip data.
The allele between brackets is the reference allele; 7 minor allele frequency; 8 additive effect due to one effect allele
on standardized protein levels, resulting from the multivariable SNP–protein level model (controlling for sex,
kinship effect, and shared environment effect); 9 standard error; 10 p-value for null hypothesis of additive effect
equal to 0; 11 proportion of protein levels’ variability jointly explained by additive effects of significant SNPs;
12 95% bias-corrected accelerated (BCa) bootstrap confidence interval.
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4. Discussion

In this study, we investigated the narrow-sense heritability of a set of 56 plasma
protein levels, with a potential role in MS susceptibility, measured in subjects belonging
to families from Sardinia, a region known to have one of the highest MS prevalence
worldwide [19]. After multiple testing correction, plasma protein levels which appeared
to have a statistically significant narrow-sense heritability were: Gc, Plat, Anxa1, Sod1,
Irf8, Ptger4, and Fadd. Their high heritability, i.e., h2 > 0.40, indicates that a high and
meaningful proportion of plasma levels’ variability is explained by the sum of additive
genetics effects, adjusting for potential shared environmental effects. Most of these MS-
related proteins are involved in pathways concerning the immune response or related to
nervous system functioning.

Specifically, Gc vitamin D binding protein (h2 = 0.77) is a protein implied in binding
and transporting vitamin D metabolites [40]. Many studies identified vitamin D as having
immunomodulatory properties [41], as its deficiency has been associated with autoimmune
diseases and therefore considered a risk factor for MS [42]. Moreover, different genetic
variants on GC coding gene regions have been linked to be associated with vitamin D
plasma concentration [40,43,44].

Plat (h2 = 0.70) represents the Plasminogen Activator, which is a secreted serine
protease that converts the proenzyme plasminogen to plasmin, a fibrinolytic enzyme [45];
its role has been highlighted to be linked with the maintenance of axonal integrity [45], as
its decreased activity impairs the capacity of clearing fibrinogen deposits at sites of blood–
brain barrier breakdown, demyelinated axons, and inflammatory MS lesions, therefore
promoting further axonal injury [46,47].

Anxa1 (h2 = 0.68) represents the membrane localized Annexin 1, which binds phos-
pholipids and has anti-inflammatory activity inhibiting phospholipase A2 [48]; it has an
important role in the resolution of inflammation through the control of leukocyte migration,
macrophage phagocytosis, and neutrophil apoptosis [49,50]. Reduced Anxa1 plasma levels
have been linked to increased inflammation and disease severity in relapse-remitting MS
(RR-MS) patients due to loss of Anxa1-mediated anti-inflammatory function [48].

Sod1, Superoxide Dismutase 1 (h2 = 0.58), is involved in the natural conversion of
superoxide radicals to molecular oxygen and hydrogen peroxide; therefore, it helps elimi-
nate the oxidative stress caused by these free radicals which could cause extensive damage
to essential cell components [51]. For these reasons, oxidative stress has been strongly
linked to the pathogenesis of myelin destruction in MS and in other neurodegenerative
diseases [52]; in fact, an impaired decreased Sod1 secretion has been related, due to de-
creasing antioxidant defenses, to neurodegenerative diseases, e.g., Amyotrophic Lateral
Sclerosis (ALS) [51] and RR-MS [52].

Irf8 (h2 = 0.56) is the Interferon Regulatory Factor 8, which belongs to the interferon
regulatory factor family, and regulates the expression of genes stimulated by type I interfer-
ons (α and β) [53]. A functional Irf8 deficiency has been associated with immunodeficiency,
while a mechanistic association with MS pathogenesis has been described in Yoshida
et al. [54] making use of mice with experimental autoimmune encephalomyelitis (EAE);
moreover, genetic variants on the Irf8 gene-coding region has been linked to MS genetic
susceptibility [55,56].

Ptger4, the Prostaglandin Receptor E4 (h2 = 0.45), represents another protein which
has a relevant role in the immune system, as it is involved in T-cell activation [57] and
in regulation of proinflammatory factors [58]. MS risk variants have been discovered
in PTGER4 non-coding gene regions, indicating that these risk variants are potentially
detrimental to regulation of its expression [11]; in fact, a downregulated PTGER4 expression
has been observed in MS patients’ blood cells compared to healthy controls [57]. Finally,
the Fas-associated death domain protein (Fadd) (h2 = 0.41) is a molecule that interacts with
various cell surface receptors and can be activated by members of the tumor necrosis factor
receptor family to transmit apoptotic signals [59]. An increased expression of FADD was
found in peripheral blood leukocytes of RR-MS patients highlighting an elevated general



Life 2022, 12, 1101 9 of 15

pro-inflammatory activity [60]. The increased Fadd regulation has also been observed in
the grey matter of MS patients compared to controls [61]. Moreover, knockout mice with
EAE disease, but lacking Fadd on oligodendrocytes, showed reduced demyelination and
CNS inflammation [62].

For the above described seven statistically significant heritable proteins, the variability
explained by the best selected explanatory set of Immunochip SNPs was also quantified;
the aim was to improve the functional understanding of Immunochip genetic variants and
therefore gaining evidence for their role in protein plasma levels regulation. The search
for SNPs associated with the heritable proteins was performed on unaffected subjects
only, in order to avoid a potential reverse causation effect of the disease on the levels
of plasma protein. The analysis revealed that a substantial proportion, i.e., ≥40% circa,
of heritable plasma protein levels’ variability resulted explained by the sum of a small
number of additive genetic effects of genotyped Immunochip SNPs. Among the seven
heritable plasma protein levels, Gc plasma levels exhibited the highest heritability as well
as the highest R2

SNPs, resulting in a narrow-sense heritability h2 = 0.77, and in the 67% of
variability explained by a subset of six Immunochip SNPs. The majority of SNPs associated
with heritable protein levels, being located in intronic regions or intergenic regions distant
from the coding gene, could have a potential role in the regulation of gene expression and
consequently of protein levels [21]. We now briefly discuss the associated genetic variants
which could have a biological meaning in protein level regulation, also considering the
potential implication in the MS pathogenesis context.

The missense variant, rs7041, located in the Gc gene and that resulted significantly
associated in our analysis with Gc plasma levels, has been consistently found to be associ-
ated with serum Gc levels as well as vitamin D levels [43,63,64]. This SNP did not result
associated with MS in [65,66], but a protective effect of the C allele on MS risk was found
in [67] as this allele was also linked to higher serum vitamin D levels. The intronic variant
rs10455872 is located on the lipoprotein(a) (LPA) gene, and the G allele has been previously
strongly linked to increased plasma lipoprotein(a) [Lp(a)] levels [68]. Similarly, the intronic
variant rs7757336 G allele, located in the SLC22A2 gene, resulted associated with increased
Lp(a) levels [69]. In our analysis, both the rs10455872 G allele and rs7757336 G allele
resulted associated with increased Plat levels; interestingly, these two proteins interact
as plasma Lp(a) is capable of binding Plat protein, inhibiting plasminogen activation in
fibrinolysis [70]. Another genetic variant that resulted associated with Plat levels was
the intronic variant rs12532924, located in the DPP6 gene. While a connection between
Plat and Dpp6 was not found in the literature, it is still worth noting that the DPP6 gene
seems relevant in the MS context, as the protein product (dipeptidyl-aminopeptidase-like)
is involved in the CNS function, and the gene region contains polymorphisms associated
with the risk of progressive MS and other neurological diseases [71].

Another interesting variant is represented by rs73055198, located in the regulatory
region of the CCR4 gene, highlighted as MS risk gene [72], and encoding for CC chemokine
receptor 4 (Ccr4); in our analysis, this genetic variant resulted associated with Anxa1 plasma
levels, the function of which is linked to Ccr4 as both are involved in T-cell-mediated
inflammatory response [73,74].

The intergenic variant rs2546722 is located near the CPEB4 gene and was shown to
be associated with its gene expression levels in blood [75]; in our analysis, this genetic
variant resulted associated with Sod1 plasma levels. Interestingly, CPEB4 encodes for a
RNA binding protein which was found to affect SOD1 transcriptome polyadenylation and
potentially lead to neurodegenerative disorder etiology [76,77].

The intronic variant rs2254210, associated in our analysis with Irf8 plasma levels, is
located on the VDR gene and encodes for the vitamin D receptor (Vdr), a transcription
factor that binds and regulates different genes [78]. Since the IRF8 locus has been shown to
be directly bound by Vdr [78,79], the association found between rs2254210 and Irf8 plasma
levels in our analysis further highlighted the functional link between the two proteins
involved in autoimmune disease risk [78,80]. Regarding SNPs associated with Ptger4
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plasma levels in our analysis, intronic variants rs17044638, located on the SATB1 gene,
and rs3791268, located on the MGAT5 gene, resulted each associated with respective gene
expression [81]; Ptger4 biological function is correlated with both SATB1 and MGAT5
protein products, i.e., Satb1 and Mgat5, as all these proteins have been linked to MS risk
due to the role played in T cell differentiation, proliferation, and activation [82–87].

Finally, the intergenic variant rs2849298, located near the GALR1 gene, was found
associated in our analysis with Fadd plasma levels. This genetic variant has also been
found to regulate MBP gene expression in blood; the MBP gene is located near GALR1
and encodes for myelin basic protein (Mbp). Mbp functions have been linked to myelin
formation and long-term maintenance, which led to pinpoint this protein as a potential
autoantigen which contributes to MS pathogenesis [88–90]. A direct connection between
Fadd and Mbp has not been established in the literature, but both proteins showed to have
a biological functional correlation regarding myelin maintenance [62,91]. The previously
described literature findings combined with our findings hinted at the existence of sug-
gestive potential biological relationships between Immunochip genetic variants, heritable
MS-related plasma proteins, and the complex puzzle of MS pathogenesis.

Ultimately, we briefly describe suggestive heritable plasma protein levels which did
not reach statistical significance after multiple testing correction, i.e., Pdgfa, Il-7, Tnfsf13,
Il-21, Mmp8, and Apex1. Pdgfa (h2 = 0.42) represents the platelet-derived growth factor-A,
which has been linked to remyelination of chronic oligodendrocyte lesions and MS relapse-
free period [92,93]. Il-7 (h2 = 0.37) and Il-21 (h2 = 0.35) are both interleukins involved
in T cell immune response modulation, while Tnfsf13 (h2 = 0.37), tumor necrosis factor
(TNF) Superfamily Member 13, is a TNF ligand important for B cell development, survival,
maturation, and activity; given their role in the immune system functioning, several studies
described genetic and functional associations between these proteins and the pathogenesis
of many immune-mediated disorders including MS [94–98]. Mmp8 (h2 = 0.34) belongs
to the family of matrix metalloproteinases, which has been demonstrated to contribute
to the disruption of the blood–brain barrier and consequent recruitment of inflammatory
cells into the CNS; therefore, playing a potential role in immunopathogenesis of MS [99].
Finally, Apex1 (h2 = 0.28), apurinic/apyrimidinic endodeoxyribonuclease 1, is an essential
DNA repair enzyme, which has been shown to have a role in preserving the survival of
neurons and oligodendrocytes after ischemic injury [100]; therefore, Apex1 DNA repair
after oxidative damage could be considered as a protective agent in gray- and white-matter
maintenance and consequently against MS onset [101]. Overall, this study represents an
important step toward the understanding of the heritability of MS-related proteins and in
the knowledge of their plasma levels’ genetic regulation. Despite the interesting results
obtained, our study suffered from the following limitations: (i) the lack of validation of
protein level measurements by using other methodologies (such as Western blot); (ii) the
limited sample size for which we both measured the plasma levels of the 56 proteins and/or
genotyping data; nevertheless, retrieving such complex information from Sardinian families,
characterized by geo-cultural isolation and genetic homogeneity [26], represents a valuable
source to extend the research regarding the complex biological patterns involved in MS.
Furthermore, (iii) we were limited to the use of Immunochip genotypes data, and therefore
not able to scrutinize the entire genome but only specific autoimmune candidate regions.

In conclusion, the results obtained allowed us to quantify and to highlight the con-
tribution of genetic variability in explaining plasma levels for seven proteins potentially
playing a role in MS susceptibility and pathogenesis. Moreover, for these heritable pro-
teins, we investigated the associations between plasma levels and Immunochip genetic
variants, aiming to improve the understanding about the potential role played by the
associated SNPs.
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