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We address strategic cognitive sequencing, the “outer loop” of human cognition: how the brain decides what cognitive process to
apply at a given moment to solve complex, multistep cognitive tasks. We argue that this topic has been neglected relative to its
importance for systematic reasons but that recent work on how individual brain systems accomplish their computations has set the
stage for productively addressing how brain regions coordinate over time to accomplish our most impressive thinking. We present
four preliminary neural network models. The first addresses how the prefrontal cortex (PFC) and basal ganglia (BG) cooperate to
perform trial-and-error learning of short sequences; the next, how several areas of PFC learn to make predictions of likely reward,
and how this contributes to the BG making decisions at the level of strategies. The third models address how PFC, BG, parietal
cortex, and hippocampus can work together to memorize sequences of cognitive actions from instruction (or “self-instruction”).
The last shows how a constraint satisfaction process can find useful plans.The PFCmaintains current and goal states and associates
from both of these to find a “bridging” state, an abstract plan. We discuss how these processes could work together to produce
strategic cognitive sequencing and discuss future directions in this area.

1. Introduction
Weighing the merits of one scientific theory against another,
deciding which plan of action to pursue, or considering
whether a bill should become law all require many cognitive
acts, in particular sequences [1, 2]. Humans use complex
cognitive strategies to solve difficult problems, and under-
standing exactly how we do this is necessary to understand
human intelligence. In these cases, different strategies com-
posed of different sequences of cognitive acts are possible,
and the choice of strategy is crucial in determining how
we succeed and fail at particular cognitive challenges [3, 4].
Understanding strategic cognitive sequencing has important
implications for reducing biases and thereby improving
human decision making (e.g., [5, 6]). However, this aspect of
cognition has been studied surprisingly little [7, 8] because it
is complex. Tasks in which participants tend to use different
strategies (and therefore sequences) necessarily produce data
that is less clear and interpretable than that from a single
process in a simple task [9].Therefore, cognitive neuroscience
tends to avoid such tasks, leaving the neural mechanisms of

strategy selection and cognitive sequencing underexplored
relative to the large potential practical impacts.

Here, we discuss our group’s efforts to form integrative
theories of the neural mechanisms involved in selecting and
carrying out a series of cognitive operations that successfully
solve a complex problem. We dub this process strategic
cognitive sequencing (SCS). While every area of the brain
is obviously involved in some of the individual steps in
some particular cognitive sequences, there is ample evidence
that the prefrontal cortex (PFC), basal ganglia (BG), and
hippocampus and medial temporal lobe (HC and MTL) are
particularly important for tasks involving SCS (e.g., [10–14]).
However, exactly how these brain regions allow us to use
multistep approaches to problem solving is unknown. The
details of this process are clearly crucial to understanding that
process well enough to help correct dysfunctions, to better
train it, and perhaps to eventually reproduce it in artificial
general intelligence (AGI).

We present four different neural network models, each
of a computational function that we consider crucial for
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strategic cognitive sequencing. The first two models address
how sequences are learned and selected: how the brain
selects which of a small set of known strategic elements to
use in a given situation. The first, “model-free learning,” is
a model of how dopamine-driven reinforcement learning
in the PFC and BG can learn short cognitive sequences
entirely through trial and error, with reward available only
at the end of a successful sequence. The second, “PFC/BG
decision making” (PBDM), shows how cortical predictions
of reward and effort can drive decision making in the basal
ganglia for different task strategies, allowing a system to
quickly generalize learning from selecting strategies on old
tasks to new tasks with related but different strategies. The
last two models apply to selecting what plans or actions
(from the large set of possibilities in long-term semantic
memory) will be considered by the two “which” systems.
The third model, “instructed learning,” shows how episodic
recall can work with the PFC and BG to memorize sequences
from instructions, while the last “subgoal selection” model
shows how semantic associative processes in posterior cortex
can select representations of “bridging states” which also
constitute broad plans connecting current and goal states,
each of which can theoretically be further elaborated using
the same process to produce elaborate plan sequences.

Because these models were developed somewhat sepa-
rately, they and their descriptions address “actions,” “strate-
gies,” “subgoals,” and “plans.”We see all of these as sharing the
same types of representations and underlying brain mecha-
nism, so each model actually addresses all of these levels. All
of these theories can be applied either to individual actions
or whole sequences of actions that have been previously
learned as a “chunk” or plan. This hierarchical relationship
between sequence is well understood at the lower levels of
motor processing (roughly, supplementary motor areas tend
to encode sequences of primary motor area representations,
while presupplementary motor areas encode sequences of
those sequences); we assume that this relationship holds to
higher levels, so that sequences of cognitive actions can be
triggered by a distributed representation that loosely encodes
that whole sequence and those higher-level representations
can then unfold as sequences themselves using identically
structured brain machinery, possibly in slightly different, but
parallel brain areas.

Before elaborating on each model, we clarify the theoret-
ical framework and background that have shaped our think-
ing. After describing each model, we further tie each model
to our overall theory of human strategic cognitive sequencing
and describe our planned future directions for modeling
work that will tie these individual cognitive functions into
a full process that learns and selects sequences of cognitive
actions constituting plans and strategies appropriate for
novel, complexmental tasks, one of humans’ most impressive
cognitive abilities.

2. Theoretical Framework

These models synthesize available relevant data and consti-
tute our attempt at curren best-guess theories. We take a
computational cognitive neuroscience approach, in which

artificial neural network models serve to concretize and
specify our theories. The models serve as cognitive aids in
a similar way to diagramming and writing about theories
but also serve to focus our inquiries on the computational
aspects of the problem. These theories are constrained not
only by the data we specifically consider here but also by
our use of the Leabra modeling framework [15, 16]. That
framework serves as a cumulative modeling effort that has
been applied to many topic areas and serves to summarize a
great deal of data on neural function. This framework serves
as a best-guess theory on cortical function, and individual
models represent more specific, but still empirically well-
supported and constrained theories of PFC, basal ganglia,
reward system, and hippocampal function. Here, we extend
these well-developed theories to begin to address SCS.

We also take our constraints from purely cognitive the-
ories of cognitive sequencing. Work on production system
architectures serves as elaborate theories of how human
beings sequence cognitive steps to solve complex problems
[17–19]. The numerous steps by which a production system
model carries out a complex task such as air traffic control
[20] are an excellent example of cognitive sequencing. Our
goal here is to elaborate on the specific neural mechanisms
involved, and in so doing, we alter those theories somewhat
while still accounting for the behavioral data that has guided
their creation.

Neural networks constitute the other class of highly
specified and cumulative theories of cognition. However,
these are rarely applied to the type of tasks we address here, in
which information must be aggregated from step to step, but
in arbitrary ways (e.g., first figure out center of a set of points,
then calculate the distance from that center of points to an
another point, and then based on that distance, estimate the
likelihood that the point shares properties with the set). This
is essentially because neural networks perform information
processing in parallel and so offer better explanations of
single-step problem solving. Indeed, we view humans’ ability
to use strategic cognitive sequences as an exaptation of our
ancestral brain machinery, one that makes us much smarter
by allowing us to access a range of strategies that lower
animals largely cannot use [21, 22].

Because of the weaknesses in each approach and the
paucity of other mechanistically detailed, cumulative models
of cognition, we take inspiration from the well-developed
theories from production systems about how cognitive steps
are sequenced [17–19, 23] while focusing on artificial neural
network-centered theories on the specifics of how indi-
vidual cognitive actions are performed. This perspective is
influenced by prior work on hybrid theories and cognitive
architectures based on ACT-R and Leabra networks for a
different purpose [24]. ACT-R [18] is the most extensively
developed production system architecture and the one which
most explicitly addresses physiology, while Leabra is arguably
the most extensively developed and cumulative theory of
neural function that spans from the neural to cognitive levels.

In ACT-R, the sequence of cognitive actions is deter-
mined by which production fires. This in turn is based upon
the “fit” between the conditions of each production and the
current state of the cognitive system (which also reflects
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the state of the environment through its sensory systems).
This function has been proposed to happen in the basal
ganglia (BG) [25, 26], and this has been borne out through
matches with human neuroimaging data [25]. While it is
possible that the BG is solely responsible for action selection
in well-practiced cases [27], we focus on the learning process
and so on less well-practiced cases. In our neural network
framework, we divide this functionality between cortical
and BG areas, with the cortex (usually PFC) generating a
set of possible cognitive actions that might be performed
next (through associative pattern matching or “constraint
satisfaction”), while the basal ganglia decides whether to
perform each candidate action, based on its prior relationship
to reward signals in similar circumstances.

In modeling this process, we draw upon previous work
from our group in modeling the mechanisms and compu-
tations by which the PFC and BG learn to maintain useful
information in working memory [28–32]. The prefrontal
cortex basal ganglia working memory (PBWM) models
developed by O’Reilly and colleagues integrate a wealth of
electrophysiological, anatomical, and behavioral data, largely
from animal work. Working memory also appears to be a
large component of executive function, because in many
cases a specific task is performed by virtue of maintaining an
appropriate task set [33], in effect remembering what to do.
Thosemaintained representations bias other brain processing
through constraint satisfaction. Because it explains the deep
question of how we learn our executive function (EF), this
theory makes progress in dispelling the “homunculus” [30],
by explaining how complex cognitive acts are performed by
a collection of systems, each of which supplies a small part of
the overall intelligence, decision making, and learning.

In essence, the PBWM framework extends the wealth of
knowledge on the role of the basal ganglia in motor control
to address working memory and executive function. This is
possible because there are striking regularities across areas
of frontal cortex, so that the anatomy of cortex and basal
ganglia that subserves motor function is highly similar to
prefrontal and anterior BG areas known to subserve WM
and EF [34]. This anatomy is thought to help select potential
motor actions by “gating” that information through thalamus
back to cortex, amplifying it and so cleanly selecting one
of the several possible candidate actions represented in the
cortex (e.g., [35]). The core hypothesis of PBWM is that
these same circuits help select which representations will be
actively maintained in PFC by fostering local reverberant
loops in the cortex, and between cortex and thalamus, and
by triggering intrinsic maintenance currents that enable self-
sustained persistent firing in cortical pyramidal neurons.
The reinforcement learning mechanisms by which BG learns
which actions are rewarding also apply to learning what to
remember and so what to do.

The primary value and learned value (PVLV) model of
dopamine release as change in reward prediction [36, 37] is
also a key component of PBWM and is in turn based on
electrophysiological and behavioral data from a collection
of subcortical areas known to be involved (e.g., [38–41]).
The known properties of dopamine release indicate that
it serves as a reward prediction error signal [42] which

has informational properties that make it useful for driving
learning [43, 44]. This system learns to signal when a new set
of representations will likely lead to reward in a biologically
realistic variant of the function of the better-known temporal
difference (TD) algorithm when it is supplemented with “eli-
gibility trace” information (e.g., [45]).This reward prediction
function is crucial, because the difficulty in assessing the
benefit of an action (whether it be cognitive or behavioral)
is that the actual reward achieved by that action very often
occurs later in time and so cannot be used directly as a
learning signal [46, 47]. Instead, the system learns to perform
actions that are predicted to gain reward. This reinforcement
learning trains the striatum and works alongside the more
powerful associative and error-driven learning within the
PFC portion of PBWM that learns the representations (and
therefore the associative semantics) of candidate actions to
take.

In the remainder of the paper, we present an overview of
four models that elaborate on this process in several ways.
The first addresses how the learning mechanisms described
previously and elaborated upon in works by various workers
in our group [36, 37, 48, 49] can learn short sequences
of cognitive actions, when they are sequentially dependent
and so must be performed in the right order to achieve
reward. The second describes how the hippocampus can
achieve instructed learning, participating in the constraint
satisfaction process of deciding which action to consider
performing, as when we perform a novel task based on
memorized instructions. The third model considers how
slow, cortical associative learning can contribute to that same
“which” process by using constraints of the current state and
the goal to arrive at a subgoal that can serve as a viable next
step in the sequence. Finally, we close with some discussion of
the state of this research and the many remaining questions.

3. Model-Free Reinforcement Learning

Model-free reinforcement learning (RL) can be defined at
a high level as learning which actions (which we take to
include cognitive “actions”) produce reward, without any
other knowledge about the world [43]. While the learning
mechanisms we describe here are purely trial and error,
the same learning mechanisms apply to model-driven or
“hypothesis-driven” learning as well. For instance, the same
learning principles apply when using actions, explicit plans
from memorized instructions, or semantic associations as
outlined in the final two models we describe later.

In hopes of better understanding how this process could
occur in neural tissue, we have leveraged the prefrontal cortex
basal ganglia working memory framework, or PBWM [28–
32]. Under this account, a basic actor-critic architecture [43,
50] naturally arises between the prefrontal cortex (PFC), the
basal ganglia (BG), and the midbrain dopamine system as
modeled by our PVLV system described previously. PVLV
serves as the critic, evaluating the state of the network
and providing dopamine bursts or dips for better than and
worse than expected outcomes, respectively. The BG system
is naturally situated to perform the functions of the actor
based on its known role in selecting motor actions (and by
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Figure 1: Simple state-based room navigation task.The percentages
of the last level of rooms at the bottom of the figure represent the
probability that the agent will get rewarded if it chooses the path
that leads to the respective rooms.

hypothesis, selecting cognitive actions with analogous neural
mechanisms in more anterior regions of PFC). Using the
critic’s input, the BG learns from experience a policy of
updating segregated portions of the PFCas task contingencies
change.ThePFC is able tomaintain past context and provides
a temporally extended biasing influence on the other parts of
the system. It is helpful to view this entire process as a “gating”
procedure: the BG gating controls that are being actively
maintained within the PFC, and therefore subsequently
biasing (controlling processing in) other cortical areas.When
the gate is closed, however, the contents of the PFC are
robustly maintained and relatively protected from competing
inputs. Importantly, as task contingencies change and the
actor determines that a change is needed, the gate can be
opened allowing new, potentially more task appropriate,
content into the PFC.

The simple RL-based learning of the PBWM framework
allows us to easily and naturally investigate one manner in
which the brain may be capable of utilizing model-free RL
in order to solve a simple task. In short, the network must
learn to maintain the specific actions taken and evaluate this
sequence based on either the success or failure of a simulated
agent to attain reward. The simple example task we use is a
basic state-based navigation task (abstracted at the level of
“rooms” as states) in which a simulated agent must navigate
a state space with probabilistic rewards as inspired by the
work of Fu and Anderson [51] (see Figure 1). The goal of
the task is simply to learn an action policy that leads to the
highest amount of reward. To achieve this, the agent must
make a choice in each room/state it visits to move either
to the next room to the left or the next room to right but
always moving forward. The only rooms that contain reward
are at the final level (as in most tasks). The structure of the
reward is probabilistic, so a single room is themost consistent
provider of reward (Room 3 in Figure 1), but the others have a
lower chance to be rewarding as well. In order for the PBWM
framework to ultimately succeed, itmust be able tomaintain a
short history of the actions it took and reward or punish these
action choices in the final presence or absence of reward.This
is a simple task, but a learning in this way is a valuable tool

Resulting
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Action
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(critic)

PFC
maint

PFC
out
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maint

Matrix
out

Current
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actions

Figure 2: Model-free network architecture. Based on both current
state and possible actions, the “matrix maint” determines what
to maintain in PFC. Based on the stored information in PFC,
“matrix out” determines the next chosen action via PFC out. PVLV
(consisting of multiple biological systems) evaluates the actions
(critic) and helps train the model. See text for in-depth description
and functions of the various components of the network. Detailed
network architecture is highly similar to the PBDMmodel discussed
later.

when the system must learn basic actions first in order to
succeed at more extensive cognitive sequencing tasks.

3.1. Description of the Model. The model-free RL network is
depicted in Figure 2. The ultimate goal of the network is to
receive reward by determining the best action to take given
the reward structure of the simulated environment.There are
many models of reinforcement learning in similar domains,
and the PBWM and PBDM models have been applied to
learning in superficially similar domains. However, some
very important differences make the setup of this model
unique. Most importantly, the final outcome (what Room
the network ends up in based on the action chosen) of the
network is not determined in the standard neural network
manner of having activation propagate through units and
having a competition that determines the winner. Instead,
the network chooses an action via the action layer, which is
the only traditional output layer in the network. The possible
actions can be thought of as any atomic action that may result
in a change of state, such as “go left” or “go right.” After the
network chooses an action, a state transition table is used
to determine the outcome of the action. More specifically,
the network makes a decision about what action to take,
and program code determines what the effect is on the
environment of the simulated agent.The outcome is reported
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back to the network via the resulting state layer, but for display
purposes only (not used in any computation). The example
trial stepped through later in this section will help to clarify
this process.

3.1.1. Network Layer Descriptions

(i) Action layer: this is the output of the network. The
chosen action is used via a state transition table to
choose a new room. In the current simulation, the
room choice is completely deterministic based on the
action.

(ii) CurrentState layer: this is a standard input layer.
The CurrentState is the current state (room) that the
model is occupying.

(iii) PossibleActions layer: this is the second input layer.
The layer is used to specify what “legal” actions are
based on the current state that the network is occupy-
ing. Importantly, PossibleActions provides the main
signal to the simulated basal ganglia to determine the
gating policy, as well as the main input to the PFC.
This ensures that only legal actions should be chosen
(gated) at any given time.

(iv) PreviousAction layer (display only): this is a display
only layer. It maintains the last action choice that the
network made. This can be useful to understand how
the network arrived to its current state.

(v) ResultingState layer (display only): this is a display
only layer. The ResultingState is the “room” that the
simulated agent will arrive in based on the action
that the network produced. The final room is used to
determine if the agent should receive reward.

(vi) PVLV layers: the PVLV layer(s) represents various
brain systems believed to be involved in the evaluative
computations of the critic [36].

(vii) PFC maint and PFC out: simulated prefrontal cortex
layers, the maint PFC is used to actively maintain
information overextended delay period. The PFC out
layermodels the process of releasing this information,
allowing it to affect downstream cortical areas and
drive actual responses.

(viii) Matrix maint and matrix out: these layers are used
to model the basal ganglia system and represent the
actor portion of the network. They learn to gate
portions of the PFC, through experience, using the
information provided from the PVLV system.

3.1.2. Task Example

(1) The current state (room) is presented to the network
via the CurrentState layer. The inputs correspond to
different rooms as shown in Figure 1, where Room
0 corresponds to the first unit in CurrentState layer,
Room 1 to the second, Room 2 to the third, and so
forth.

(2) Using the CurrentState and the actions maintained
within the PFC, the network must decide to go to the
room to the left or the room to the right.This decision
is reflected by activation in the action layer.

(3) The action that is chosen by the network is used to
determine where the simulated agent is in the current
state space, and this is accomplished using a standard
transition table to look up the next room.The actions
are deterministic and move the agent directly to the
room based only on the action.

(4) The resulting state of the agent is returned to the
network via activation in the CurrentState layer indi-
cating the result of the action. Return to Step 2 unless
the agent reaches a terminal room.

(5) If the room reached by the agent is a final room,
the reward probabilities for that room are used to
determine the likelihood of reward to the agent.

(6) Repeat from Step 1 until task is reliably learned.

3.2. Results. The network is capable of quickly learning the
optimal policy of action sequences that optimize its reward
on this task. To assess the ability of the network to solve
this task, we set up a testing structure which allowed the
network 75 “chances” to solve the task per epoch (block). At
the end of the epoch, the average rate of reward was recorded
for the simulated agent. This was repeated until either the
agent received an average reward greater than 85% of the
time or for 25 epochs (blocks), whichever came first. Ten
simulated agents were ran, and 8 out of the 10 reached criteria
of 85% average reward within 25 epochs. On average, it took
4 epochs to achieve this feat. While this may not appear to
be a surprising result, the complex nature of the biologically
realistic network made this far from a forgone conclusion.
Indeed, many insights were gained about the nature of how
the actor must balance its exploring of the state space with
gaining reward. If the network randomly gets reward in one
of the low-reward states, it must still be willing to explore its
environment in order to confirm this finding. Conversely, if
the network is in the high-reward state and does not receive
reward, the (relative) punishment for this nonreward needs
to allow a possible return to this same state at some point
in the future in order to discover the optimal action policy.
The limits of the framework are apparent in the 2 networks
that did not reach criteria. In both of these cases, the agent
randomly reached the low probability area of state space. In
most cases, the agent is able to successfully explore other
options and thus find the more rewarding rooms. However,
the current PBWM framework will occasionally fail if reward
is not present early enough in exploration process. We are
investigating biologically inspired mechanisms to bootstrap
the learning in more efficient ways. Encouraged by our initial
framework, we are actively investigating how a simplemodel-
free approach to learning basic sequences could be utilized
by the human brain in order to scaffold up to more complex
and interesting sequences. We are hopeful that concentrating
on the relevant biological data and learning will provide us
with useful insights to help us better understand how people
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PBDM net: showing activations

Figure 3: PBDM decision-making model.This figure shows the PBDM network and the components it models.The bars show the activation
strengths of each of the units in the model for a particular point in time.

are capable of such effortless sequencing of extended, diverse,
and complex action plans.

We hypothesize that this type of learning aids in cognitive
sequencing by allowing humans to discover useful simple
sequences of cognitive actions purely by trial and error.While
this learning does not likely account for the more impressive
feats of human cognition, since these seem to require substan-
tial semantic models of the relevant domain and/or explicit
instruction in useful sequences, we feel that understanding
what the brain can accomplish without these aids is necessary
to understanding how the many relevant mechanisms work
together to accomplish useful strategic cognitive sequencing.

4. Prefrontal Cortex Basal Ganglia
Decision-Making (PBDM) Model

In the PBDM model, we primarily address decision making
at the level of task strategies (task set representations in
PFC, primarily dorsolateral PFC (DLPFC)). Decisionmaking
is important in many areas, but the selection of strategies
for complex tasks is our focus. We believe that the same
mechanisms apply to making decisions in many different
domains.

Themain idea behind PBDM is to computationallymodel
the interactions between basal ganglia and medial prefrontal
areas that represent particularly relevant information for
making action plan or strategy decisions. Anterior cingu-
late cortex (ACC) and orbitofrontal cortex (OFC) serve as
activation-based monitors of task affective value parameters
[52, 53], including action effort in the ACC [54], and
probability of reward in the OFC. These then project to the
basal ganglia that controls updating in the DLPFC, giving
it the necessary information to select choices in favor of
lower effort and higher reward strategies. Because the ACC

and OFC are themselves PFC areas with inputs from the
same type of basal ganglia/thalamic circuits as motor and
working memory areas, they are hypothesized to be able to
rapidly update and maintain their value representations and,
with a single gating action, change the evaluation to reflect
new important information. This confers great flexibility
and rapid adaptability to rapidly changing circumstances.
Within this framework, several questions remain: what, more
precisely, do the ACC and OFC represent? How can these
representations drive appropriate gating behavior in the
DLPFC BG? How are appropriate representations engaged in
novel task contexts?

In the initial version of the PBDM model, described in
more detail later and shown in Figure 3, we adopt simple
provisional answers to these questions while recognizing that
these likely underestimate the complexity of what happens
in the real system. In particular, while ACC is often (and
in our model) assumed to represent effort, its true role is
more complex.The current state of knowledge on these issues
is reviewed thoroughly by Kennerley and Walton [55]. The
ACC andOFC in ourmodel compute running time-averaged
estimates of effort and reward probability, respectively, based
on phasic inputs on each trial. If a task is ongoing, the ACC
just increases its running average of time-effort by one.When
a reward value is received or not (when otherwise expected),
the OFC increments its running average estimate of reward
probability. We have four different stripes within the ACC
and OFC, each of which receives input from and so has
a representation determined by one of the task strategies
represented in the parietal cortex.These are thought of as very
general strategies for dealing with spatial information, and
over a lifetime of experience,we build up reasonable estimates
of how effortful and rewarding they are on average in similar
tasks. In order to in part capture the importance of context,
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there is also a randomly updated set of task features, which
represent specific details about each different task that the
model learns to perform. Over time, the model learns to pay
attention to the ACC/OFC value representations in selecting
a task strategy and pay less attention to these idiosyncratic
task cues. Having done so, the model can then generalize
to novel task contexts, by paying attention to the underlying
spatial task values and ignoring the novel task features.Then,
as the novel task progresses, actual experienced reward and
effort drive the ACC and OFC representations, providing a
more accurate picture for decision making going forward.
This is the overall model we think applies to subjects as they
engage in novel tasks with multiple possible strategies.

We conceptualize this PBDM process as engaging when
people are actively and explicitly considering a new strategy
or similar decision. We model an abstract spatial task, in
which the strategies consist of individual spatial properties
of groups of similar items. Strategies consist of considering
one or a combination of these properties.There are 4 different
strategies considered (listed by increasing order of both effort
and reward probability; the precise values vary by task):
Distance Only, Distance + BaseRate, Distance + Radius, and
Distance + BaseRate + Radius. These are merely example
strategies associated with a hypothetical spatial estimation
task and are therefore sometimes also simply referred to as
strategies 0 to 3, respectively; the task is not implemented
for this model outside of entirely hypothetical probabilities
of success (reward) and level of effort (time to implement).
The weights for the PBDM component are trained to model
a long history of experience with these hypothetical reward
and effort values. After this learning (and purely through
it), the OFC reward representations primarily bias the Go
pathway, while the ACC effort representations bias the NoGo
pathway. It is this balance between Go and NoGo that then
ultimately determines the strategy selected. In our models,
we observe that different random initial weights produce
different individual preferences along this tradeoff.

The network performs various tasks (which switch every
10 trials during pretraining, simulating the intermixed variety
of spatial tasks a person encounters during their daily life).
The probability of reward and the number of trials required
are determined by the selected strategy, the task represen-
tation that the DLPFC maintains. In reality, the possible
strategies and therefore the representational space would be
much larger, but we have narrowed it down to just 4 different
states in a localist representation, (called Distance, Dist +
Base Rate, Dist + Radius, and Dist + BaseRate + Radius;
the original relation of these strategies to a particular task
is irrelevant since the base task was abstracted to only the
strategy component for this model). The inner loop per trial
consists of “performing” the task in question, which happens
through task-specific areas responding to the DLPFC task
representation. We model that process here only at the most
abstract level: each strategy takes an amount of time and has a
probability of success that varies for each possible task. Thus,
the PBDM network only experiences the overall feedback
parameters: number of trials and probability of reward at the
end of those trials. We do not model the process of carrying
out these strategies; each of the models here could also be

applied to understanding how a particular strategy unfolds
into an appropriate sequence of cognitive actions.

The overall behavior is thus as follows: select a DLPFC
task representation, run a number of blank trials (blank
since we assume that the lower-level processes that carry
out the strategy have little influence on this level of cortical
machinery) according to the “effort” parameter (representing
task performance), then receive rewardwith given probability
determined by the PCTask representation that the DLPFC
task representation drives, and then repeat. Over time, the BG
gating units for the DLPFC are shaped by the effort/delay and
reward parameters, to select DLPFC stripes, and associated
reps that are associated with greater success and shorter
delays.

The BG “Matrix” layer units control gating in DLPFC
and so, ultimately, make final decisions on strategy choice.
They receive inputs from theACC andOFC, which learn over
time to encode, using dynamic activation-based updating,
running time averages of reward and effort, associated with
the different strategies on the different tasks. Because we
assume that mental effort is equal per unit time across strate-
gies, the effort integration is identical to time integration in
this case. Critically, because this is done in activation space,
these can update immediately to reflect the current PCTask
context. Over time, the BG learns weights that associate each
OFC and ACC unit with its corresponding probability of
success or effort.Thus, an immediate activation-based update
of the ACC and OFC layers will immediately control gating
selection of the DLPFC layers, so that the system can quickly
change its decision making in response to changing task
contexts [52, 56, 57].

Thus, the early part of the network training represents
a developmental time period when the ACC and OFC are
learning to perform their time-averaging functions, and
the DLPFC BG is learning what their units/representations
correspond to in terms of actual probability of reward and
effort experienced. Then, in the later part, as the DLPFC
task representations continue to be challenged with new task
cue inputs (different specific versions of this task space),
the learned ACC/OFC projections into DLPFC BG enable
it to select a good task strategy representation on the first
try.

4.1. Details of Network Layer Functions

(i) TaskInput: generalized task control information
about the inner loop task being performed projects to
DLPFC.We assume that this information comes from
abstract semantic representations of the task at hand;
this is likely represented in a variety of posterior and
prefrontal regions, depending on the type of task.
Use the following units/localist representations:

(a) PERF—performing current task-signals that
DLPFC should not update the task representa-
tion (see DLPFC NoGo In later); this repeats
for the number of trials a given PCTask strategy
requires and metes out the delay/effort associ-
ated with a given strategy.
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(b) DONE—done performing current task-reward
feedback will be received in RewInput to OFC
and PVe (PVLV); note that there is a “cortical”
distributed scalar value representation of reward
(RewInput), in addition to the subcortical one
that goes directly into the reward learning sys-
tem (PVe); conceptually these are the same rep-
resentation, but their implementation differs.

(c) CHOICE—DLPFC should choose a new task
representation, based on influences from
TaskCues, ACC, and OFC states; the newly
gated DLPFC representation will then drive a
new PCTask representation, which will then
determine how many PERF trials are required
and the probability of reward for the next
DONE state.

(ii) TaskCues: these are random bit patterns determined
by the cur task no state, which drives DLPFC (both
cortex and BG); they represent all the sensory, con-
textual, and instructional cues associated with a given
specific task.

(iii) PCTask reflects the actual task parameters. In this
example, these are Distance, Dist + BaseRate, Dist +
Radius, and Dist + BaseRate + Radius, but more
generally this would represent a much larger space of
task representations that have associated reward and
effort parameters for different tasks. This may also
reflect a combination of posterior cortical and also
more posterior DLPFC representations that provide
topdown biasing to these PC task representations and
maintain them over shorter durations.The DLPFC in
the model is the more anterior “outer loop” DLPFC
that maintains higher-level, longer-duration task rep-
resentations that are “unfolded” into useful sequences
by other processes, including but likely not limited to
those we address in the models here.

(iv) RewInput: scalar val of reward input level activated
during the DONE trial; this also has a −1 state that
is activated whenever the network is in PERF task
mode, and this is what triggers the incrementing of
delay/effort in theACC layer (i.e., bothOFC andACC
feed off of this same basic RewInput layer, pulling out
different information). This is overall redundant with
signals in PVLV but packages them in a simple way
for OFC/ACC to access and for us to manipulate for
various experiments.

(v) OFC computes running time average of reward prob-
ability/magnitude; only updated when reward occurs
(DONE trials), otherwise maintains the current esti-
mate for PERF and CHOICE trials. The network
learns coarse-coded distributed representation of this
value, not in a scalar value format, through a “decod-
ing” layer (AvgRewOut) that is in scalar value format.
But it is the distributed representation that projects to
DLPFC to bias its processing. It is not exactly clear
what AvgRewOut corresponds to biologically, but the
general idea is that there are autonomic level states

in the brainstem, and so forth, that compute low-
level time averages based on physiological variables
(e.g., longer time average sucrose concentration in the
blood), and that is what drives the OFC to learn to
compute activation-based running time averages. See
(vii) for the way this representation learns to affect
DLPFC gating.

(vi) ACC computes running time-average interval
between reward trials which constitutes total effort
on each task, since we assume roughly equal effort
per time. It is updated on each performance trial and
maintained during the DONE and CHOICE trials;
each time step increases activation. As with OFC, this
layer learns coarse-coded distributed representation
of this value, not in a scalar value format, through a
“decoding” layer (AvgDelayOut), which again reflects
longer time-average metabolic cost variables.

(vii) DLPFC encodes current task strategy and learns
representations entirely through reinforcement learn-
ing stabilization. It receives information about each
task from TaskCues; the Matrix layer also receives
from ACC and OFC and learns over time to select
task representations associated with good values of
ACC and OFC (i.e., values of those that have been
associated with rewards in the past). DLPFC also
projects to PCTask,which in turn projects toACCand
OFC and “conditionalizes” (makes appropriate to the
particular task) their representations.

(viii) DLPFC NoGo In is our one “hack.” It turns on
NoGo (strongly) whenever a task is being performed
to ensure that the matrix does not update DLPFC
midtask. This hard-coded behavior is simply the
assumption that the DLPFC task set representation
remains active during task performance; that is, peo-
ple maintain one task set without switching strategies
midway through more general learning: when you
decide on a strategy, stick with it until you are done
(or until it gets “frustrating” by consuming too much
time).

4.2. Results

4.2.1. Reward-Only Optimization: OFC Proof of Concept Test.
The first proof of concept test sets the probability of reward
to .2, .4, .6, and .8 for PCTask units 0–3, respectively (labeled
“Distance only,” “+BaseRate,” “+radius,” and “Combined,”
resp.), with delay set to a constant 1 trial (.2 parameter ×
5 trials max delay) for all options. Thus, the best strategy
is to select strategy 3, based on OFC inputs. As shown
in Figure 4, the network does this through a period of
exploration followed by “exploitation” of strategy 3, which
is selected automatically and optimally immediately, despite
changing TaskCues inputs. All of the batches (10/10) exhibited
this same qualitative behavior, with a few stabilizing on
strategy 2 instead of 3. This was the second-best strategy,
and the fact that the model stabilized on this in some
cases shows the stochastic process of sampling success that
likely contributes to the selection of nonoptimal strategies in
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Figure 4: Developmental learning trajectory of PCTask selection.
Early in learning it explores the different strategies, and later it
learns to predominantly select the one (green line, strategy 3
(“Combined”)) that produces the best results.

some real-life cases (since after the model stabilizes, it will
not learn about potentially better strategies without some
sort of external perturbation to force resampling). None
stabilized on 0 or 1, since they have substantially lower reward
probabilities. As shown in Figure 5, the weights into the
Matrix Go stripe that gates DLPFC learned to encode the
high-value OFC representations associated with the strategy
3 OFC representation.

4.2.2. Delay-Only Optimization: ACC Proof of Concept Test.
Next, we set probability to .6 for all strategies and set the
delay factors to 1, 2, 3, and 4 trials of delay, respectively,
for strategies 0–3. Without any PVLV feedback at all during
the PERF trials, the network does appear to be sensitive to
this delay factor, with strategy 0 (1 trial delay) being chosen
preferentially. However, this preference is somewhat weak,
and to produce stronger, more reliable preferences, we added
a direct dopaminergic cost signal associated with delay, as has
been shown empirically [58]. This modulation decreased the
size of a DA reward burst in proportion to effort/delay (with
a small weighting term). In our proof of concept test, this
small modulation produced 50% of networks preferring the
first (least delay) strategy.

4.2.3. Balanced Reward and Delay (Actual Use Case). To sim-
ulate a plausible situation where there is a tradeoff between
effort and reward, we set the reward factors to .4, .6, .6, and
.8 and the delay factors to .2, .4, .6, and .8. This resulted in
a mix of different strategies emerging over training across
different random initial weights (“batches”) (proportions
shown in Figure 6), with some preferring the low-effort, low-
reward distance only option, while others going for the full
Distance + BaseRate + Radius high-effort, high-reward case,
and others falling in between.Theparticular results are highly

stochastic and a product of our particular choices of reward
and effort values; it is easy to push these preferences around
by using different weightings of effort versus time.

4.3. Discussion. ThePBDMmodel shows how rapid updating
in prefrontal cortex (as captured in the PBWM models
and related work on persistent firing in PFC) can aid in
decision making by allowing the system to use contextually
appropriate representations of predicted reward and effort to
drive decisions on task strategy. If the context (e.g., physical
environment and task instructions) remains the same, then
new learning in the ACC and OFC slowly updates the
values of predicted reward and effort through weight-based
learning. If, however, the context changes, representations in
ACC andOFCwill be “gated out,” so that a new set of neurons
learns about the new context. Detailed predictions about the
old context are thus preserved in the synaptic weights to that
now silent units (because the learning rule we use, and most
others, does not adjust weights to inactive neurons/units).

One way in which this preservation of contextually
dependent ACC andOFC representations could be extremely
useful is in interaction with episodic memory in the HC. We
believe that predictive representations could also be retrieved
toACCandOFC fromepisodicmemory in the hippocampus,
a form of PFC-HC interaction similar to but importantly
different from that we model in the “instructed learning”
model.

Thismodel primarily addresses the “strategic” component
of strategic cognitive sequencing, but this type of effortful
decision making, bringing the whole predictive power of
cortex online to estimate payoff and cost of one possible
sequence component, could help bootstrap learning through
the mechanisms in either or both of the instructed learning
and “model-free” models.

5. Instructed Learning

One source of complex, strategic cognitive sequences is
learning them directly from instruction [59–61]. Humans
have the remarkable ability to learn from the wisdom of
others. We can take advice or follow instruction to perform
a particular cognitive sequence. One such example may be
observed daily by cognitive scientists who conduct human
laboratory experiments. Most normal participants can well
implement instructions of an arbitrary novel taskwith little or
no practice. However, in the cognitive neuroscience of learn-
ing, reinforcement learning has been the central research
topic and instructed learning appears to have been relatively
understudied to date. In this section, we contrast reinforce-
ment and instructed learning and outline the dynamics of
instruction following in a biologically realistic neural model.

Reinforcement learning adapts behavior based on the
consequences of actions, whereas instructed learning adapts
behavior in accordance with instructed action rules. As a
result, unlike the slow, retrospective process of trial and
error in reinforcement learning, instructed learning tends to
be fast, proactive, and error-free. In the brain, the neuro-
transmitter dopamine signals reward prediction errors for
the basal ganglia to carry out reinforcement learning of
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PBDM net: showing weight strengths

Figure 5: PBDM decision-making model. This figure shows the weights from the respective units to a unit in the DLPFC Matrix Go layer
(green, lower right). It depicts the strength of weights towards the end of learning, at which point there are particularly strong connections
from the core OFC distributed representations, which represent strategy’s predicted reward value, established through learning.
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Figure 6: Balanced reward and delay. The left graph shows the number of times a strategy was chosen over 16 repeats with random initial
weights, while the graph on the right shows the temporal evolution of selection for one randomly chosen network. The variability in the
equilibrium strategy choice stems from the balance between reward and delay (the higher the reward, the higher the delay) making each
strategy approximately equally rational to choose. As discussed in the reward-only case previously, the particular, random history of reward
plays a large role in determining the ultimate strategy choice.

reward-linked actions (for a discussion, see [62]). As for
instructed learning, the human posterior hippocampus
underlies verbal encoding into episodicmemory [63] and use
of conceptual knowledge in a perceptually novel setting [64].

Compared to reinforcement learning, instructed learn-
ing appears effortless. Why is learning so arduous in one
mode but effortless in another? How exactly do we perform
complex novel tasks on the first attempt? We propose that

instruction offers nothing but a new plan of recombining
old tricks that have been acquired through other forms
of learning. In other words, instructions quickly assemble
rather than slowly modify preexisting elements of perceptual
and motor knowledge. For example, we can immediately
follow the instruction: “press the left button when seeing
a triangle; press the right button when seeing a square,”
in which the action of button press is a preexisting motor
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Figure 7:The instructed learningmodel.Themodel consists of two interactive learning pathways.The hippocampal-prefrontal pathway (i.e.,
lower part in the diagram) processes newly instructed conditional-action rules, whereas the parietal pathway (i.e., upper part in the diagram)
processes habitual actions. The actions suggested by each of these pathways are then gated by the PFC portion.

skill, and visual recognition and categorization of shapes
are also an already learned perceptual ability. Note also that
understanding the instruction requires a previously learned
mapping from language (e.g., the verbal command of “press”)
to actual behavior (e.g., the motor execution of “press”).

To further study how instruction following is carried out
from neural to behavioral levels, we constructed a model of
instructed learning based upon known neuroanatomical and
neurophysiological properties of the hippocampus and the
prefrontal-basal ganglia circuits (Figure 7). Specifically, the
model basal ganglia (BG) carries out reinforcement learning
ofmotor execution (abstracted in themodel to premotor); the
model hippocampus rapidly encodes instructions as action
episodes that can be contextually retrieved into the prefrontal
cortex (PFC) as a goal for guiding subsequent behavior.
Unlike a single-purpose neural network that slowly rewires
the whole system to learn a new sensorimotor transforma-
tion, this general purpose instructablemodel separatesmotor
from plan representations and restricts plan updating to lie
within the fast-learning hippocampus, which is known to
rapidly bind information into episodic memories.

As a concrete example, the proposed model is instructed
with 10 novel pairs of if-then rules (e.g., if you see A, then
do B) and evaluated for its success in performing conditional
actions (e.g., do B) when encountering a specific condition
(e.g., seeing A). In the model, each of the “Condition,”
“Action,” and “Premotor” layers consists of 10 localist rep-
resentations of conditions, verbal actions, and (pre-)motor
outputs, respectively. The model is pretrained with action-
to-motor mappings (i.e., from verbal commands to premotor
responses) during the Pretraining stage and then trained
with condition-to-actionmappings (i.e., if-then rules) during
the Instruction stage. Finally, during the Performance stage,
it is tested with Condition-to-Motor mappings without any
inputs from the “Action” layer. The simulation results are
shown in Figure 8. The model quickly learns an if-then rule

in just few trials during the Instruction stage, and without
further practice, it makes no error in carrying out these
instructions for response during the Performance stage, just
as human subjects often do after being presented with clear
instructions and a short practice period.

Inside the model, learning occurs in multiple parts of the
architecture. During the Pretraining stage, the hippocampus
learns to perform identity mapping for relaying information
from the “Action” layer to the correspondingmotor represen-
tations in the PFC layers. Meanwhile, BG learns to open the
execution gate for PFC to output amotor decision to the “Pre-
motor” layer. During the Instruction stage, the hippocampus
associates inputs from the “Condition” and “Action” layers
and learns each condition-action pair as a pattern. During
the Performance stage, all the model components work
together using mechanisms of pattern completion, and the
hippocampus recalls instructions about what action to do
based on retrieval cues from the “Condition” layer, and
its downstream PFC either maintains a retrieved premotor
command in workingmemory when BG closes the execution
gate or further triggers a motor response in the “Premotor”
layer when BG opens the execution gate.

Compared to earlier work on instructable networks [65],
our model further explicates how different parts of the
brain system coordinate to rapidly learn and implement inst-
ructions. Albeit simple, our instructed learning mechanisms
can support strategic cognitive sequencing in that a cogni-
tive sequence can be constructed from an ordered set of
instructed or self-instructed operations. Beside sequential
behavior, the model is being extended to also explain the
interactions between instructions and experience (e.g., [66–
69]) in the context of confirmation bias and hypothesis
testing.Themodeled ability of the hippocampus tomemorize
specific contingencies in one shot undoubtedly contributes an
important piece of our ability to learn complex goal-oriented
sequences of cognitive actions. Beyond simply memorizing
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instructions given by others, it can also aid in “self-instructed”
learning by remembering successful steps learned by trial and
error or other means for assembly into new sequences.

6. Planning through Associative Discovery of
Bridging States

We explore the idea that the active maintenance of long-term
goals in the PFC can work in conjunction with a network’s
semantic knowledge to identify relevant subgoals and then
use those individual subgoals in a similar manner to bias
action selection in the present. One fundamental question
motivates this research. Given some ultimate goal, possibly
associated with explicit reward, how does the system identify
subgoals that lead to the final goal? Our hypothesis revolves
around semantics, that is, knowledge about how the world
works. Our model uses this knowledge to perform constraint
satisfaction by using active representations of the current
state (where I am) and the desired goal (where I want to be)
to associatively arrive at a representation of a subgoal that

“bridges” between the two states. This subgoal can serve as
the focus for a strategy or plan to achieve the larger goal.

6.1. Description of the Model. There is a tension that exists
between the temporal sequencing over one or more subgoals
versus a multiple constraint-satisfaction approach that does
things all in one step. It seems clear that both can be involved
and can be important. So, when does the brain do one versus
the other? We have adopted the following heuristic as a kind
of corollary of Occam’s razor. In general, the brain will by
default try to do things in a single time step if it can; as
an initial hypothesis, we suspect that bridging over a single
subgoal is probably about as much as can be done in this
way. When no such plan exists, a more complex process of
navigating the modeled task-space through stepwise simu-
lations of intervening states can be undertaken; because this
process is among the most complex that humans undertake,
a model that does this in a biologically realistic way is a goal
for future research. Thus, our initial objective here is to try
to demonstrate a one-step constraint satisfaction solution to
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Figure 9: Subgoaling through constraint satisfaction. This figure shows settling of activations of the current state and goal state in both the
Semantic Network (see text) and Relation Area (see text). (a) shows activations early in the settling process of a trial. (b) Activations midway
into settling for a trial.The activation of two units in the rightmost Goal layer shows the constraint satisfaction process selecting two plausible
subgoals. (c) Activations late in settling when they have converged. The network has settled onto the single most relevant subgoal through
constraint satisfaction (simultaneous association from the current state and maintained goal state).

a simple three-state problem: current state and end state to
subgoal (“bridging”) state.

Another major issue is the tension that exists between
state representations sometimes having to compete with one
another (e.g., “What is the current state?,”) versus sometimes
needing to coexist as in spreading activation so as to represent
a full motor plan or model of state space (e.g., representing
all three of the states in the previous three-state problem).
The solution we have settled on is a division of labor between
a relation processing area, possibly in the posterior parietal
cortex (PPC, circled in red in Figure 9), and a semantic
association area, possibly in the anterior temporal lobe (ATL,
circled in blue). Because many brain areas are involved in
semantics, the precise areas can be expected to vary with
the semantic domain, but the mechanisms we describe are
expected to be general across those variances. Figure 9 later

illustrates these two distinct areas. The PFC (not explicitly
modeled) is envisioned to represent the goal state and thus
to bias processing in these two areas. The relation processing
area is based on the ideas described in “Semantic Cognition”
by Rogers and McClelland [70].

Training: the network is trained on the semantics of the
State-Action-State triad relation (parietal/anterior temporal
cortex) but includes connections to the semantic part of the
network. The idea is that the relation area will learn the
specific role relations between the states (before, after) and
the actions (between states), while the semantic area will
learn simple associations between the nodes. The former
is dominated by a tight inhibitory competition, while the
latter is more free to experience spreading activation. In this
way, pre-training on all the individual S-A-S relations enables
the bridging over an intermediate subgoal state and biases
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the correct action in the current state, under the biasing
influence of the goal state.

As illustrated in Figure 9(a), which shows a network
trained only on pairwise transitions between adjacent states,
when a current state and a remote goal state are input, both
are activated in both the semantic network and relation
engine early in settling. At this very early stage of settling,
there are three action units active in the ActionBetween
layer (Relation Engine), which are all of the possible actions
that can be taken in the current state (S0). Later in settling
(Figure 9(b)), a third state unit comes on, which is the
intermediate state between the current state and the goal. It
becomes the only active unit due to a constraint satisfaction
process that includes both bottom-up input from the current
state and top-down input from the goal state. This in turn
drives the intermediate state unit ON in AfterState layer in
the RelationEngine module.

Finally, late in settling (Figure 9(c)), the intermediate
state outcompetes the goal unit in the AfterState layer due to
the attractor associated with the prior training of contiguous
state transitions. This is associated with the third action unit
in the ActionBetween and ActionNodes (Semantic Network)
layers. This is the correct answer. This model illustrates how
constraint satisfaction to find bridging states can work as one
component of more complex planning.

6.2. Discussion. Subgoals in this context are conceived as a
version of “cold” goals, defined as teleological representations
of a desired state of the world that, in and of itself, does not
include primary reward. Thus, in a sense, cold goals (here
subgoals) are “just a means to an end.”

In thinking about the role of subgoals, a number of
important issues can be identified. First, as already noted, a
fundamental issue concerns how brain mechanisms create
useful subgoals, if they are not provided externally. In
addition, a second important issue is whether there are one
or more biologically plausible mechanisms for rewarding the
achievement of subgoals. This in turn has two subcompo-
nents: (1) learning how to achieve subgoals in the first place
(e.g., how to grind coffee in support of making coffee in
the morning) and (2) learning how/when to exploit already
familiar subgoal in the service of achieving a master goal
(e.g., learning that having ground coffee is a precursor to
enjoying a nice fresh cup of hot coffee for yourself and/or
receiving kudos from your significant other). It is interesting
to note that these two learning categories exhibit a mutual
interdependence. Usually, learning how to achieve subgoals
must precede learning to exploit them, although an interest-
ing alternative can sometimes occur: if a learner is allowed
to use its what-if imagination. For example, if a learner can
do thought experiments like: “IF I had ground coffee, and
cold water, and a working coffee maker, THEN I could have
hot coffee.” Thinking about it over and over could transfer
(imagined) value from the hot coffee to the ground coffee,
and so forth,which then could be used as secondary reinforce-
ment to motivate the learning of instrumental subgoals. This
scenario-spinning behavior is not modeled in any realistic
cognitive model of which we are aware; achieving this will be

difficult but an important step toward understanding human
intelligence.

A third critical issue is how subgoals are actually used
by the system (in a mechanistic sense) in the service of
pursuing the master goal. Here, the simple idea that serves
as a kind of working hypothesis in our work is that the
active maintenance of subgoals can serve to bias the behavior
that produces their realization in a kind teleological “pull of
the future” way. Finally, there then still needs to be some
sort of cognitive sequencing control mechanism organizing
the overall process, that is, the achievement of each subgoal
in turn. Ultimately, in our way of thinking, this whole
process can be biased by keeping the master goal in active
maintenance throughout the process.

In sum, this model demonstrates a rough draft of one
aspect of human high-level planning: abstract state repre-
sentations allow constraint satisfaction processes based on
associative learning to find a bridging state between current
and goal states. We hypothesize that this process is iterated
at different levels of abstraction to create more detailed plans
as they are needed. However, we do not as yet have a model
that includes the movement between different levels of plan
abstraction.The other models presented here represent some
of the mechanisms needed for this process but have yet to
be integrated into a coherent, let alone complete, model of
human planning.

Explaining how brains perform planning requires under-
standing the computational demands involved. The more
abstract literature on the algorithmic and computational
properties of planning in artificial intelligence research has
thoroughly explored the problem space of many types of
planning (e.g., [71–73]). Consistent with this proposed bio-
logicalmodel, algorithmic constraint satisfaction solvers have
been an important part of AI planning algorithms (e.g., [74,
75]). Other extensions and combinations of these models are
also suggested by AI planning work; search-based algorithms
(e.g., [76, 77]) show that sequencing, storing, and retrieval of
state (as in the model-free and instructed sequencing model)
are essential for flexible planning. We address some such
possible combinations and extensions later.

7. General Discussion

The four models here represent an incomplete start at fully
modeling human strategic cognitive sequencing. A fullmodel
would explain how basic mammalian brain mechanisms
can account for the remarkable complexity and flexibility
of human cognition. It would address the use of elaborate
cognitive sequences which constitute learned “programs”
for solving complex problems and how people generalize
this ability to new problems by selecting parts of these
sequences to construct appropriate strategies for novel tasks
in related domains. A complete model is thus a long-term
and ambitious project, but one with important implications
for understanding human cognition.

The following primarily addresses the limitations in the
work described and our plans to extend these models toward
a more complete explanation of complex human sequential
cognition. Although learning was integral to all presented
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models, demonstrating the feasibility of bootstrapping such
flexible cognitive systems, the learning in these initial models
was mostly still domain specific: models were trained within
the class of tasks to be performed from a naive state. While
the instructed model could generalise to a variety of unseen
if-then rules and the constraint satisfactionmodel generalizes
to unseen state-goal pairings, they were both only trained on
their respective tasks.

In future work, we plan to extend this to a more sophis-
ticated pre-training or scaffolding of networks that are more
general and ecologically valid. Instead of beginning training
of specific task structures from a naive network, the idea
is to train the networks on a large variety of distinct tasks,
progressing from simple to complex. The PBDM model, for
instance, was trained in a relatively ecologically valid way but
did not learn increasing complexity of tasks as it mastered
simple ones as humans do. With increasing number of tasks
trained, the network should learn to extract commonality
between tasks, abstracting the essence of tasks into distinct
representations. While it remains unclear what these task
representations might look like on the finer biological scale,
either from experimentation or computational modeling, it
seems likely that representations for some basic computa-
tional building blocks of cognitive sequencing exist.

Such representations must, at an abstract level, include
some of those found in any standard computer programming
language, such as sequencing, loops, storing, and recalling of
state. While the models presented here cannot accomplish
any of these functions as they stand, we already have a
rough basis for these basic task building blocks. All of the
previous “program flow” functions can be seen as subsets
of conditional branching (e.g., if you have not yet found
the goal object, use a sequence that looks for it). The
other models presented here (planning, model-free sequence
learning, and decision making) address important aspects
of how sequences are learned and used, but the instructed
learning model alone is enough to understand one way
in which the brain can exhibit such program flow control
once a relevant sequence is learned. This behavior requires
extending the model to store and use state information. This
minor extension would include working memory updates in
the potential actions and make action pairs conditional on
those working memory representations as well as sensory
inputs.

Dayan [78] has already explored this behavior in a more
abstract version of PBWM. This model includes storage
actions and dependency upon stored information consistent
with the role for which PBWM was primarily developed,
understanding how mechanisms evolved for gating motor
actions control storage in working memory. Making memo-
rized pairings dependent upon state information in working
memory is also straightforward, and known basal ganglia
connectivity suggests such a convergence of information
between prefrontal working memory and posterior sensory
cortices for the purpose of gating decisions. Dayan [78]
also includes a match detection function to allow nonmatch
criteria that do not arise naturally from the associative nature
of neural networks, an important consideration for our future
development of these models.

The models presented here are also generally consistent
with the most well-developed models in this domain, proce-
dural models such as ACT-R [60], from which our approach
draws inspiration. While our work is generally compatible,
we hope to provide more constraints on these theories by
considering the wealth of data on detailed aspects of neural
function.

In particular, our learning neural network approach will
also allow us to constrain theories of exactly what represen-
tations are used to produce cognitive sequences by how they
are learned. By studying learning over a large number of tasks,
we aim to address the question of how these representations
emerge on a developmental time scale from a young infant
to the fully developed capability of an adult. This focus
addresses learning to learn, a phenomenon that has both
been extensively studied in psychology as well as in machine
learning and robotics [79–81]. In both cases, learning to learn
transfers beneficial information from a group of tasks to new
ones, speeding up learning of new tasks. While in machine
learning, many different algorithms have been proposed
to achieve transfer learning or learning to learn, a good
proportion is based upon representational transfer [79, 82];
that is, due to the efficient and general representations learned
in prior tasks, new tasks can be learned more rapidly or more
effectively instructed.

To address these questions, we will draw on our and
others’ work on learning of abstract categories from sensory
data (e.g., [83]). Generalizing from prior learning usefully
categorizes novel sensory inputs through neural processing
that is now relatively well understood. Such category gener-
alization, when combined with the models presented here,
offers one explanation of learning to learn. When strategic
cognitive sequencing is performed based upon categorical
representations (e.g., substitute “input A” in the instructed
learning model for “signal to stop and wait for instructions”),
learning will generalize to new sensory inputs that can be
correctly categorized.This type of generalizedmatching bears
a resemblance to the variablematching rule in recent versions
of ACT-R (e.g., “if the word was (word X, previously stored),
press the red button”). Modeling this process in greater
neural detail will provide more constraints on what types of
generalization and matching can be learned and performed
by realistic neural networks.

Perhaps because such high-level cognition inevitably
involves interactions between many brain regions, com-
putational modeling and other forms of detailed theory
construction have, as yet, made little progress. However, the
enormous accumulation of work aimed at understanding
the contributions from individual brain areas have rendered
this complex but important domain a potentially productive
target for detailed modeling and computational-level theory.
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