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Abstract: Endometrial cancer (EC) is the most frequent gynaecologic cancer in postmenopausal
women. We used 2D-DIGE and mass spectrometry to identify candidate biomarkers in endometrial
cancer, analysing the serum protein contents of 10 patients versus 10 control subjects. Using gel-based
proteomics, we identified 24 candidate biomarkers, considering only spots with a fold change in
volume percentage ≥ 1.5 or intensity change ≤ 0.6, which were significantly different between
cases and controls (p < 0.05). We used Western blotting analysis both in the serum and tissue of
43 patients for data validation. Among the identified proteins, we selected Suprabasin (SBSN), an
oncogene previously associated with poor prognosis in different cancers. SBSN principal isoforms
were subjected to Western blotting analysis in serum and surgery-excised tissue: both isoforms
were downregulated in the tissue. However, in serum, isoform 1 was upregulated, while isoform 2
was downregulated. Data-mining on the TCGA and GTEx projects, using the GEPIA2.0 interface,
indicated a diminished SBSN expression in the Uterine Corpus Endometrial Cancer (UCEC) database
compared to normal tissue, confirming proteomic results. These results suggest that SBSN, specifically
isoform 2, in tissue or serum, could be a potential novel biomarker in endometrial cancer.

Keywords: endometrial cancer; mass spectrometry; serum proteome; Suprabasin; 2D-DIGE;
Western blotting

1. Introduction

Endometrial cancer (EC), with an increasing incidence, is the most frequent gynaeco-
logic cancer in postmenopausal women [1]. Most EC cases are in the early stages of the
disease [2]. Uterine EC is of two types: type 1 is correlated to oestrogen and comprises 80%
of cases, while type 2 is described as an independent oestrogen tumour [3].

Many factors increase the risk of developing EC, such as obesity, age, and type 2
diabetes [4].

At present, no diagnostic test is available for EC screening. Abnormal vaginal bleeding
is the most common symptom [5]. Further invasive investigations, such as hysteroscopy [6],
are needed to obtain a definitive diagnosis.

A test based on biological fluids can dramatically change the diagnosis and treatment
of this disease and contribute to its early detection [7]. In this context, molecular biology
techniques are fundamental in the early diagnosis and prediction of a cancer therapy’s
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benefits [8]. Serum proteomic permits the identification of new biomarkers for the diagnosis
and prognosis of EC [9]. Several candidate biomarkers, such as FAM83D [10], ITIH4, CLU,
C1R, and SERPINC1, have been previously identified with proteomic technology [11].

Many oncogenes have been identified as possible biomarkers in EC, including EGFR,
PI3KCA, K-Ras, HER2/neu, and FGFR2 [12]. In physiological conditions, these genes are
inactivated, while their activation would lead to an uncontrollable proliferation of cells [13].

Suprabasin (SBSN) is an oncogene and biomarker in several cancers such as lung
carcinoma, salivary adenoid cystic carcinoma, and myelodysplastic syndromes (MDS).
The physiological role of SBSN is still unknown [14]. The human SBSN gene is localised
in chromosome 19 and consists of five exons and four introns, while mRNA produces
three isoforms by alternative splicing [15]. The first two proteoforms of SBSN are well
defined [16]: isoform 1 has 590 aa, with a predicted mass of 60.541 Da; while isoform 2, a
247 aa long polypeptide with a predicted mass of 25.335 Da, is a proposed oncogene in
human malignancies [16].

2D-DIGE is a modified version of 2D-PAGE, which uses up to four fluorescent tags
for protein labelling [11]. This technology was successfully employed for the identification
of several biomarkers in cancers [17–19] and to characterise new pathways in cancer
pathophysiology [20,21].

In this study, for the first time, we quantified the abundance of the two isoforms of
SBSN in cancer tissue and serum by using Western blotting and evaluated the possible
benefit of this protein as a potential novel biomarker in endometrial cancer.

2. Results
2.1. Proteomic Study

We used 2D-DIGE coupled with MS for the proteomic study to compare the enriched
serum proteomic profile of 10 controls (Cys 3) and 10 EC (Cys 5). Proteomweaver software
detected more than 2500 (Figure 1) protein spots in both types of the proteome. After
software analysis, 24 protein spots (Table 1) showed a significant alteration (p < 0.05) of
their volume in EC vs. control samples, with a fold change of ≥1.5 or ≤0.6. Seven of them
revealed a fold change ≥1.5 (APOC3, APOC2, APOE, SERPINC1, C1R, SERPINA1, A2M),
while 17 proteins indicated a fold change ≤0.6 (APOA1, APOA1, APCS, APOE, CLU, CD5L,
CFHR1, VTN, C9, C8A, ALB, C4BPA, IGHM, ITIH2, C1R, SERPINA1, FLG2, SBSN, APOA4,
CPS1). Spots of interest were subjected to in-gel digestion and LC-MS/MS analysis, and
proteins were identified by searching the MS/MS data against the human section of the
UniProt database. All parameters functional in assessing the quality of peptide and protein
identifications have been reported in Supplementary Files S1 and S2.

Table 1. Different abundance of proteins identified by mass spectrometry in EC compared to the
abundance in control serum.

Accession
Number

Spot
Number Protein Description Gene

Symbol Protein Score Fold Change * p-Value

A0A3B3ISR2 28 Complement subcomponent C1r C1R 164.93 4 0.044
P01009 29 Alpha-1-antitrypsin SERPINA1 325.07 3.66 0.033
P01023 31 Alpha-2-macroglobulin A2M 150.15 3 0.022
P10909 10 Clusterin CLU 398.29 2.5 0.033
P01008 14 Antithrombin-III SERPINC1 403.15 2.22 0.029
P02655 2A Apolipoprotein C-II APOC2 152.70 2 0.044
P02656 1A Apolipoprotein C-III APOC3 623.84 1.98 0.033
P02743 7 Serum amyloid P-component APCS 557.00 0.6 0.049
P02649 9 Apolipoprotein E APOE 324.58 0.6 0.048
P02768 21 Albumin ALB 1017.31 0.6 0.041
P02748 17 Complement component C9 C9 261.24 0.54 0.021
P07357 20 Complement component C8 alpha chain C8A 111.76 0.53 0.045
Q5D862 35 Filaggrin 2 FLG2 105.48 0.45 0.036
Q6UWP8 37 Suprabasin SBSN 156.66 0.43 0.022
P06727 38 Apolipoprotein A-IV APOA4 844.88 0.4 0.046
P04004 16 Vitronectin VTN 368.01 0.4 0.021
B1AKG0 12 Complement factor H-related protein 1 CFHR1 354.47 0.39 0.030
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Table 1. Cont.

Accession
Number

Spot
Number Protein Description Gene

Symbol Protein Score Fold Change * p-Value

P02647 3 Apolipoprotein A-I APOA1 378.52 0.38 0.028

P31327 33 Carbamoyl-phosphate synthase
[ammonia], mitochondrial CPS1 110.97 0.3 0.036

P02647 5 Apolipoprotein A-I APOA1 481.70 0.28 0.034
O43866 11 CD5 antigen-like CD5L 127.16 0.28 0.033
P04003 23 C4b-binding protein alpha chain C4BPA 373.27 0.24 0.0099

* Fold change is defined as the mean % volume ratio according to the formula: %V = Volume single spot/Volume
total spot of EC vs. C.
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Figure 1. 2D-DIGE map of depleted serum from control serum and endometrial serum. IPG strips
4–7 were used for the first dimension, and 10% SDS-PAGE was used for the second dimension. The
numbered circles indicate the differently abundant spots.

2.2. Western Blotting for SBSN Validation

The altered abundance of 2D-DIGE SBSN in depleted serum was validated by Western
blotting. SBSN was chosen for proteomic data validation since it has been previously
reported either as an oncogene or as a biomarker in other cancers. For both isoforms,
the abundance of SBSN in the enriched serum was validated in 30 controls versus 30 EC
patients. The abundance of isoform 2 was lower in EC serum than in controls (p = 0.0005
and ROC = 0.7544) (Figure 2), while isoform 1 in serum is not significantly higher than in
controls (p = 0.2523 and ROC = 0.5867).
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Figure 2. Western blotting analysis of serum isoform 1 and isoform 2 of SBSN in controls (C) and
endometrial cancer (EC) patients. The intensity of immunostained bands was normalised against the
total protein intensities measured from the same blot stained with Red Ponceau. The graph shows
the relative abundance of the two isoforms in control and endometrial cancer serum. Results are
shown as a histogram (p < 0.05), each bar representing mean ± standard deviation.

The abundance of isoform 1 in tissue was lower in EC than in controls (p = 0.0001 and
ROC = 0.7928) (Figure 3). Isoform 2 was also lower in EC than in controls (p = 0.0001 and
ROC = 0.7933).

We calculated the ratio of SBSN-1 between ADK patients and controls, and did the
same for SBSN-2. We then calculated the Spearman’s rank correlation between the two
ratios, both in the serum and in tissue samples. Figures 4 and 5 show the plotted values of
the ratios for serum and tissue samples, respectively. In serum samples, the rank correlation
between the two ratios was significant (rho = 0.4433, p = 0.0142). In tissue samples, the rank
correlation between the two ratios was somehow weaker but still significant (rho = 0.3820,
p = 0.0372).
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Figure 3. Western blotting analysis of tissue isoform 1 and isoform 2 of SBSN in controls (C) and
endometrial cancer (EC) patients. The intensity of immunostained bands was normalised against the
total protein intensities measured from the same blot stained with Red Ponceau. The graph shows the
relative abundance of the two isoforms in control and endometrial cancer tissue. Results are shown
as a histogram (p < 0.05), each bar representing mean ± standard deviation.
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2.3. Bioinformatic Analysis

We aimed to confirm the proteomic results and investigated the TCGA database to
assess SBSN expression in EC compared to normal tissue using the GEPIA2 portal. In
Figure 6 we reported SBSN mRNA expression in normal versus EC tissues, showing a slight
reduction in gene expression in tumours, although not statistically significant (p = 0.072).

For enrichment data, we used g: Profiler classification. This tool categorised the identi-
fied proteins into groups according to their molecular function, biological processes, and
cellular component (Figure 7). Regarding the molecular function, proteins were categorised
into phosphatidylcholine-sterol O-acyltransferase, lipoprotein particle receptor binding,
enzyme inhibitor activity, and lipase inhibitor activity, while for biological processes, pro-
teins were classified into complement activation, humoral immune response, high-density
lipoprotein particle remodelling, and reverse cholesterol transport. Proteins were organised
into blood microparticles, extracellular region, extracellular space, and collagen-containing
extracellular matrix for cellular components. Pathway enrichment analysis was performed
using the REACTOME tool (Figure 7). Proteins were then grouped into six main path-
ways: plasma lipoprotein remodelling (APOA4, APOE, APOA1, APOC3, APOC2, ALB),
plasma lipoprotein assembly, remodelling, and clearance (APOA4, APOE, APOA1, APOC3,
APOC2, ALB, A2M), complement cascade (C4BPA, C1R, CFHR1, C9, APCSVTN, C8A,
CLU), post-translational protein phosphorylation (APOE, APOA1, ITIH2, SERPINC1, ALB,
SERPINA1), plasma lipoprotein assembly (APOA4, APOE, APOA1, APOC3, APOC2, A2M),
and chylomicron assembly (APOA4, APOE, APOA1, APOC3, APOC2).
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The top networks in which these proteins were required corresponded to (Figure 8):
(1) cell spreading, (2) cellular infiltration, (3) apoptosis, (4) adhesion of immune cells, (5)
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metastasis, and (6) migration of cells. Four proteins were implicated in cell spreading:
A2M, ALB, VTN, and APCS. Seven proteins were implicated in cellular infiltration: ALB,
APCS, APO1, APOE, IGHM, SERPINA1, and SERPINC1. Thirteen proteins were involved
in apoptosis: APOA1, APOC3, APOE, CD5L, CLU, IGHM, SERPINA1, SERPINC1, VTN,
Phosphate, A2M, ALB, and APCS. Nine proteins were involved in the adhesion of immune
cells: A2M, APCS, APOA1, APOA4, APOE, CFHR1, CLU, SERPINA1, and VTN. Seven
proteins were implicated in metastasis: ALB, APOA1, C1R, CFHR1, CLU, SERPINA1, and
SERPINC1. Twelve were involved in the migration of cells: SERPINC1, VTN, A2M, ALB,
APCS, APOA1, APOE, CD5L, CFHR1, CLU, IGHM, and SERPINA1.
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3. Discussion

Biomarkers are crucial to detecting cancers early, improving treatment, and testing the
response of ongoing therapies [22] at later stages. Although there has been a great effort in
identifying the biomarkers of EC in recent years, none of them have yet reached the clinical
stage. Identification of oncoproteins as biomarkers of EC may help develop new diagnostic
and therapeutic approaches [23].

This study combined ProteoMiner, 2D-DIGE, and mass spectrometry to identify
24 proteins with different abundances that could act as candidate biomarkers, among which
SBSN was chosen for further evaluation due to its potential role as an oncoprotein [14].
The quantification of the two isoforms of SBSN in serum and tissue was performed by
Western blotting. These data proved that SBSN was downregulated in EC tissue, where
the two isoforms of the protein had a good AUC (area under the ROC curve) (isoform
1 AUC = 0.7928 and isoform 2 AUC = 0.7933). Conversely, SBSN abundance in the serum
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behaved differently. Isoform 1 in serum had a low AUC (AUC = 0.5867) and did not appear
to be a promising biomarker, while isoform 2 reached a better predictive value (AUC = 0.75).
The low AUC of isoform 1 and the slight difference in abundance measured for isoform 2
in serum, which affected its reliability as a candidate biomarker, could be related to the
release/leakage of the protein from other tissues in addition to the endometrium.

Our data pointed to a higher specificity of both SBSN isoforms in tissues than in
serum: again, this could be related to the possibility that other cells or tissues could release
SBSN into the bloodstream, thus reducing the differences in abundance observed for these
proteins in serum. This occurrence eventually led to a lower sensitivity of SBSN as a
putative biomarker when measured in serum compared to its tissue levels.

Further studies are needed to evaluate the performance of SBSN as a biomarker,
combined with other serum biomarkers for EC. Taken together, our data in tissue indicated
a downregulation of all SBSN isoforms in EC. To further confirm these observations, we
performed data mining on the TCGA and GTEx databases, finding that SBSN mRNA
expression on EC tissue was lower than in normal uterine tissue; although not statistically
significant, this analysis further strengthened our results.

SBSN physiological functions have not yet been entirely ascertained. This protein
was originally described as a component of the cornified envelope, which is expressed by
corneocytes. Isoform 1 possessed structural features classified as a structural protein, while
isoform 2 (and 3) lacked this signature. Post-translational modification has been proposed
for both isoforms but demonstrated only for isoform 2. Different shreds of evidence have
supported the role of SBSN in the pathogenesis of various kinds of cancer such as ovarian,
cervical, and breast carcinomas [24]. In oesophageal squamous cell carcinoma (ESCC),
SBSN was proposed as a potential biomarker [25]. In ESCC cell lines, the overexpression of
isoform 2 promoted cell growth and proliferation, probably through the WNT/β-catenin
signalling pathway [26]. In colorectal cancer, WNT/β-catenin and RAS/ERK signalling
pathways interacted with active GSK3β as a mediator [27].

Oncogenes were not necessarily upregulated in carcinogenesis. For example, Cyclin
D1 oncogene [28] was downregulated in breast cancer, increasing cell migration. PML, a
proto-oncogene, was downregulated in prostate cancer, leading to the downregulation of
the cell surface HLA class I molecule and immune escape [29].

Furthermore, in this study, we identified several proteins associated with the adhesion
of immune cells. This mechanism played a key role in the recruitment and activation of
immune T-cells [30], which are crucial in tumour development.

SERPINA1 was an inhibitor of serine proteases [31]. This protein, in some cases, could
act like a tumour-promoting factor, leading to the activation of a variety of oncogenic
pathways [32,33]. The upregulation of this protein led to a loss of its immune surveillance
function, thus promoting tumour progression [34].

A2M was a plasma protein that acted as an antiprotease, inactivating several pro-
teinases [35]. This activity was associated with cell adhesion modulation, contributing to
cancer resistance [36].

Cell spreading was the key mechanism that permitted the cancer cell to invade the
other parts of the body [37]. VTN was a cell adhesion and spreading factor found in serum
and tissues [38].

T-cell infiltration was associated with a good prognosis in patients in early-stage
EC [39]. APOE was a protein associated with lipid particles, carrying lipids between organs
via the interstitial fluids and plasma [40]. Pancreatic cancer was characterised by an inflam-
matory environment that included abundant infiltrating immune cells [41]. In pancreatic
cancer, APOE involved the expression of Cxcl1 and Cxcl5, known immunosuppressive
factors, leading to immunosuppression [42].

Our data, thus, suggested a possible association of the identified protein with metas-
tatization. IPA analysis correlated the inhibition of metastasis by APOA1, following the
literature, which suggested that AIBP, in combination with APOA1, had an anticancer effect
on colorectal cancer [43].
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SBSN is a secreted protein and, as such, it is very probable that a glycosylated form
might be responsible for the apparent high MW observed in the 2-DE map. The fact that
the 150 kDa form cannot be detected in our blots may be related to the inability of the
commercial antibodies to recognize the protein when heavily glycosylated.

In conclusion, our results quantified the abundance of SBSN in EC, both in tissue and
serum. Furthermore, our findings indicated that isoform 2, either in tissue or serum, could
be used as a potential novel biomarker in EC. In our opinion, isoform 2 of SBSN should be
combined with other biomarkers to reach the validation phase.

4. Materials and Methods
4.1. Patients

A total of 103 patients (60 non-EC controls and 44 EC patients) were recruited at the
Institute for Maternal and Child Health—IRCCS “Burlo Garofolo” (Trieste, Italy)—from
2018 to 2021. All procedures complied with the Declaration of Helsinki and were approved
by the Institute’s Technical and Scientific Committee. All patients signed informed consent
forms. The median age of patients was 45 years, ranging from 33 to 56 years. As controls,
endometrial tissue samples from 30 patients who underwent hysterectomy for symptomatic
uterine leiomyomas were obtained. For serum analysis, we used another 30 controls with
normal endometrium and whose median age was 42 years, ranging from 32 to 77 years.

The clinical and pathological characteristics of the patients enrolled in this study are de-
scribed in Supplementary Table S1. Controls were chosen by excluding oncologic patients,
Human immunodeficiency virus (HIV), Hepatitis B virus (HBV), Hepatitis C virus (HCV)
seropositive subjects, and patients with leiomyomas or adenomyosis. EC cases were also
selected, ruling out women with other oncologic pathologies, Human immunodeficiency
virus (HIV), Hepatitis B virus (HBV), Hepatitis C virus (HCV) seropositive patients, and
patients with leiomyomas or adenomyosis.

4.2. Serum Sample Collection and Enrichment

To separate serum, blood was centrifugated at 5000× g × 5 min. After centrifugation,
serum was stored at −80 ◦C. Serum enrichment of low abundance proteins was achieved
using a ProteoMiner column (Bio-Rad Laboratories, Inc., Hercules, CA, USA). In brief,
1 mL of serum was incubated for 2 h at room temperature with ProteoMiner beads. After
three cycles of washing with PBS, protein elution was performed from the column with
TUC buffer: 7 M urea, 2 M thiourea, 4% CHAPS, and 50 mM Tris pH = 8.5. Subsequently,
a second elution was conducted with 4% SDS, 100 mM beta-mercaptoethanol, and the
sample was precipitated in methanol and chloroform. The pellets were dissolved in TUC
buffer and reunited with the first fraction, and the protein content was determined using
the Bradford assay.

4.3. Sample Preparation for 2D-DIGE and Gel Image Analysis

For 2D-DIGE analysis, 50 µg of protein of the enriched serum from endometrial cancer
patients and controls were labelled with 400 pmol of either Cy5 or Cy3. For internal
standards, the samples were pooled and labelled with Cy2. The chemical reaction for
protein labelling was carried out by incubating the samples on ice for 30 min in the dark. 1
µL of 10 mM lysine was added to stop the reaction. Following that, proteins were diluted
to a final volume of 320 µL in the rehydration buffer: 7 M urea, 2 M thiourea, 2% (w/v)
CHAPS, 65 mM DTT, and 0.24% Bio-Lyte (3–10) (Bio-Rad Laboratories, Inc., Hercules, CA,
USA). For 2-DE analysis [44], 4–7 18 cm immobilised pH gradient (IPG) strips (Bio-Rad
Laboratories, Inc., Hercules, CA, USA) were rehydrated at 50 V for 12 h at 20 ◦C, and
isoelectric focusing (IEF) was performed in a PROTEAN IEF Cell (Bio-Rad Laboratories,
Inc., Hercules, CA, USA) as detailed in [44]. After IEF, IPG strip equilibration was executed
with two incubations: the first equilibration in 6 M urea, 2% SDS, 50 mM Tris-HCl (pH 8.8),
and 30% glycerol for 5 min, and a second equilibration step performed in 4% iodoacetamide
for 10 min. Proteins were separated by SDS-PAGE at a constant voltage of 100 V for 10 h.
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After electrophoresis, 2-DE gels were scanned with a Molecular Imager PharosFX System
(Bio-Rad Laboratories, Inc., Hercules, CA, USA). Molecular weights were determined by
Precision Plus Protein Prestained Standards (Bio-Rad Laboratories, Inc., Hercules, CA,
USA), covering a molecular weight range from 10 to 250 kDa. Two experimental replicates
were performed. Gel analysis was conducted using the MFA (multi fluorescence analysis)
module of Proteomweaver 4.0 software (both from Bio-Rad Laboratories, Inc., Hercules,
CA, USA) to normalise and quantify protein spots.

4.4. Western Blotting

Western blotting was used for SBSN data validation in enriched serum (i.e., treated
with ProteoMiner beads, as detailed above) and tissue, as previously described [45]. The
control and EC tissues were lysed with 1% NP-40, 50 mM Tris-HCl (pH 8.0), NaCl 150 mM
with Phosphatase Inhibitor Cocktail Set II 1× (Millipore, Burlington, VT, USA), 2 mM
phenylmethylsulphonyl fluoride (PMSF), and 1 mM benzamidine.

In this study, 30 µg of protein from the tissue and the enriched serum were loaded
on a 4–20% precast gel (Bio-Rad) and then transferred to a nitrocellulose membrane. The
membrane was blocked with 5% defatted milk in TBS-tween 20 after protein transfer and
incubated overnight at 4 ◦C with 1:1000 diluted primary rabbit polyclonal antibody against
SBSN (Abcam). After primary antibody incubation, membranes were washed three times
with TBS-Tween 0.05% and incubated with HRP-conjugated anti-rabbit IgG and anti-mouse
IgG (1:3000, Sigma-Aldrich; Merck Kagan, Darmstadt, Germany). The protein band signal
was visualised using SuperSignal West Pico Chemiluminescent (Thermo Fisher Scientific
Inc., Ottawa, ON, Canada). The intensities of the immunostained bands were normalised
with the total protein intensities measured by staining the membranes from the same blot
with a Red Ponceau solution (Sigma-Aldrich, St. Louis, MO, USA).

4.5. Trypsin Digestion and MS Analysis

A preparative 2-DE gel (300 µg of loaded proteins) was run and stained with Coomassie
colloidal blue for protein visualisation. After gel decolouration, the spots of interest from
2-DE were digested and analysed by mass spectrometry, as previously described by Ura
and colleagues [46]. The spots excised from the gel were washed four times with 50 mM
ammonium bicarbonate (AB) and acetonitrile (ACN) (Sigma-Aldrich, St. Louis, MO, USA)
and dried under vacuum in a SpeedVac system. For spot digestion, 3 µL of 12.5 ng/µL
sequencing grade modified trypsin (Promega, Madison, WI, USA) in 50 mM AB were
added. Samples were digested overnight at 37 ◦C. After digestion, peptide extraction was
conducted with three changes in extraction by 50% ACN/0.1% formic acid (FA) (Fluka,
Ammerbuch, Germany), and samples were dried under vacuum and stored at –20 ◦C until
mass spectrometry (MS) analysis was performed. Samples were dissolved in 12 µL of 3%
ACN/0.1% FA and peptides were separated in a 10 cm pico-frit column (75 µm ID, 15 µm
Tip; New Objective) packed in-house with C18 material (Aeris Peptide 3.6 µm XB-C18, Phe-
nomenex) using a nano-HPLC system (Ultimate 3000, Dionex—Thermo Fisher Scientific)
coupled with an LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific). H2O/FA
0.1% and ACN/FA 0.1% were used as eluents A and B, respectively, and chromatographic
separation of peptides were performed at a flow rate of 0.25 µL/min using a linear gradient
of eluent B from 3% to 40% in 20 min. A Data Dependent Acquisition (DDA) method
was employed: a full scan between 300 and 1700 Da was conducted at high resolution
(60,000) on the Orbitrap, and the 10 most intense ions were selected for CID fragmentation
and MS/MS data acquisition at low resolution in the linear ion trap. Raw data files were
analysed with the software package Proteome Discoverer 1.4 (Thermo Fisher Scientific)
interfaced with the Mascot Search Engine (version 2.2.4, Matrix Science, London, UK).
MS/MS spectra were searched against the human section of the UniProt database (version
September 2020, 75,074 entries) using the following parameters: enzyme specificity was
set on trypsin with one missed cleavage allowed; precursor and fragment ion tolerance
were 10 ppm and 0.6 Da, respectively. Carbamidomethylcysteine and methionine oxidation
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were formulated as fixed and variable modifications, respectively. The Percolator algorithm
was used to assess the False Discovery Rate (FDR) at the protein and peptide level. Pro-
teins identified with at least three unique peptides with high confidence (FDR < 1%) were
considered positive hits.

4.6. Bioinformatic Analysis

Gene Expression Profiling Interactive Analysis (GEPIA2) was employed to assess
SBSN RNA expression in EC. This tool permits RNA expression analysis from a total of
9736 tumours and 8587 standard samples expunged from the TCGA and GTEx projects.
The TCGA-UCEC (The Cancer Genome Atlas Uterine Corpus Endometrial Carcinoma)
dataset was explored to assess SBSN expression, and the results were compared with those
from the uterus dataset from the GTEx (Genotype-Tissue Expression (GTEx) repository.

Proteins identified by MS were analysed by g: Profiler classification systems and
categorised according to their molecular function involvement, biological processes, and
protein class. For pathway enrichment, the REACTOME tool was used. We employed the
Ingenuity Pathway Analysis (IPA) to generate bio-functions [47]. We considered p < 0.01 a
statistically significant value in IPA. For the filter summary, we only considered associations
where confidence was high (predicted) or that had been observed experimentally.

4.7. Statistical Analysis

Differences were considered significant between patients and controls when spots
showed a fold change ± 1.5 and satisfied the Mann–Whitney sum rank test (p < 0.05). All
analyses were conducted with Stata/IC 16.1 for Windows (StataCorp LP, College Station,
TX, USA).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23042076/s1.
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