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Abstract: Myocardial infarction (MI) occurs when the coronary blood supply is interrupted. As a
consequence, cardiomyocytes are irreversibly damaged and lost. Unfortunately, current therapies for
MI are unable to prevent progression towards heart failure. As the renewal rate of cardiomyocytes is
minimal, the optimal treatment should achieve effective cardiac regeneration, possibly with stem
cells transplantation. In that context, our research group identified the cardiac atrial appendage stem
cells (CASCs) as a new cellular therapy. However, CASCs are transplanted into a hostile environment,
with elevated levels of advanced glycation end products (AGEs), which may affect their regenerative
potential. In this study, we hypothesize that pyridoxamine (PM), a vitamin B6 derivative, could
further enhance the regenerative capacities of CASCs transplanted after MI by reducing AGEs’ forma-
tion. Methods and Results: MI was induced in rats by ligation of the left anterior descending artery.
Animals were assigned to either no therapy (MI), CASCs transplantation (MI + CASCs), or CASCs
transplantation supplemented with PM treatment (MI + CASCs + PM). Four weeks post-surgery,
global cardiac function and infarct size were improved upon CASCs transplantation. Interstitial
collagen deposition, evaluated on cryosections, was decreased in the MI animals transplanted with
CASCs. Contractile properties of resident left ventricular cardiomyocytes were assessed by unloaded
cell shortening. CASCs transplantation prevented cardiomyocyte shortening deterioration. Even if
PM significantly reduced cardiac levels of AGEs, cardiac outcome was not further improved. Conclu-
sion: Limiting AGEs’ formation with PM during an ischemic injury in vivo did not further enhance
the improved cardiac phenotype obtained with CASCs transplantation. Whether AGEs play an
important deleterious role in the setting of stem cell therapy after MI warrants further examination.

Keywords: stem cells; CASCs; advanced glycation end products; glycated proteins; myocardial
infarction; transplantation; remodeling; cardiomyocytes; aldehyde dehydrogenase

1. Introduction

Cardiovascular diseases are the leading cause of mortality worldwide, affecting
18 million people each year [1]. More than 40% of deaths related to cardiovascular dis-
eases are due to myocardial infarction (MI). MI occurs when the coronary blood supply
is interrupted, leading to irreversible loss of cardiomyocytes [2]. Following MI, adverse
left ventricular (LV) remodeling often evolves into heart failure [3]. Current therapeutic
approaches reduce the risk of recurrent infarctions and improve patient outcome. How-
ever, as lost cardiac tissue is not replaced [4], the progression towards heart failure with
current therapies is only delayed, rather than prevented. As the renewal rate of the heart is
limited [5], strategies to restore functional cardiac tissue are urgently needed. The ideal
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therapy should indeed replace necrotic cells while simultaneously restoring the function of
viable tissue. In that context, a large number of endogenous stem cell types (such as mes-
enchymal stem cells (MSCs), endothelial progenitor cells (EPCs), and hematopoietic stem
cells (HSCs)) have emerged as potential treatment options for regenerative medicine [6].
So far, cell-based approaches showed only minor improvements of cardiac function in
pre-clinical models [7]. In patients, variable outcomes after stem cell therapy were observed.
The latter are due to variations in patient response [8] or stem cell genetic modifications [9].
In addition, many randomized controlled trials failed to show improved functional and
morphological outcome using these different stem cell types [10,11]. This discouraging
result is undoubtedly related to the limited cardiomyogenic differentiation potential of the
endogenous stem cell types used so far [10]. Resident cardiac stem cells (CSCs) are consid-
ered more suitable for myocardial regeneration. In contrast to other stem cells, they are
most likely ‘pre-programmed’ to become cardiomyocytes. Several types of CSCs have been
identified based on different markers (e.g., c-kit [12], Islet-1 [13]) or on the ability to form
cardiospheres [14]. Nevertheless, the use of these specific CSCs showed only moderate
improvements in clinical trials because of the limited capacity of CSCs to differentiate into
new functional cardiomyocytes [15–17].

Our research group discovered a new type of cardiac stem cells, cardiac atrial ap-
pendage stem cells (CASCs) [18]. Identification of these stem cells is based on high aldehyde
dehydrogenase (ALDH) enzyme activity. In vitro experiments have shown that the differ-
entiation capacity of CASCs towards cardiomyocytes is superior to other CSCs types [18].
In addition, we have shown that autologous CASCs transplantation after MI improves
global LV function [19]. This better cardiac outcome was associated with cell engraftment
and CASCs’ differentiation in a cardiomyogenic phenotype [19]. Altogether, these data
suggest a true high potential for using CASCs to repair lost cardiac tissue.

CASCs are transplanted after MI in a hostile environment of inflammation, fibrosis,
and increased levels of advanced glycation end products (AGEs) [20]. AGEs are proteins
and lipids that become glycated and oxidized after persistent contact with reducing sugars
or short-chain aldehydes and/or a high degree of oxidative stress [21]. Next, to be abun-
dantly present in our Western diet, accumulation of AGEs in the body is a natural process.
This occurs with aging when the turnover rate of proteins is reduced. There is growing
evidence reporting that AGEs contribute to the development and progression of cardiovas-
cular dysfunction [22]. Indeed, increased circulating AGEs have been described to arise at
an early lifetime in patients with cardiovascular diseases [23,24]. In ischemic heart disease
patients, high levels of AGEs can also result from increased oxidative stress [22,25]. In
addition, it is reported that immune cells (like neutrophils and macrophages) are mobilized
to the ischemic area as a result of inflammation and cell death. These cells were shown to
be major contributors to AGEs’ production [26,27]. These contribute to increased AGEs
levels in patients suffering from MI. Recently, systematic review analysis [28] revealed that
AGEs affect the viability and proliferation capacity of multiple types of stem cells in vitro,
including CASCs [29], thereby affecting their therapeutic potential. These effects occur
throughout several underlying mechanisms including excessive reactive oxygen species
(ROS) generation, activation of the receptor for AGEs (RAGE), or via apoptotic pathways.
As AGEs are increased in MI, we tested whether the regenerative capacities of CASCs
could be further enhanced when combined with pyridoxamine (PM). PM is a compound
able to reduce AGEs’ formation, a co-enzyme associated with multiple oxidative stress
and inflammatory pathways and a strong iron chelator [30–32]. Using PM could thus
potentially improve the efficiency of CASCs transplantation with no need to genetically
modify them, in order to observe their full potential [33].

2. Results
2.1. AGEs’ Levels Are Reduced with PM Treatment

Total AGEs’ levels were measured in heart tissues from SHAM, MI, MI + CASCs, and
MI + CASCs + PM, and representative images are provided in Figure 1A. AGEs’ content
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was significantly increased in MI animals compared with SHAM (Figure 1B; 15% ± 0.6 in
MI vs. 8.2% ± 0.7 in SHAM) and PM significantly decreased the AGEs’ content compared
with MI (Figure 1B; 9.7% ± 1.8 in MI + CASCs + PM).
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Figure 1. AGEs’ content in heart tissue is significantly decreased by PM. (A) Representative examples
of transverse heart sections 4 weeks after surgery. The AGEs’ content (brown) was immunohistolog-
ically determined with DAB staining. Scale bar = 100 µm. (B) Quantification of AGEs’ content in
hearts from SHAM (n = 4), MI (n = 11), MI + CASCs (n = 10), and MI + CASCs + PM (n = 5). Data are
expressed as mean ± SEM. ** denotes p < 0.01 vs. MI and ## denotes p < 0.01 vs. SHAM.

2.2. CASCs Transplantation Prevents Loss of LV Function after MI

[-15]In vivo cardiac function was assessed by echocardiographic and hemodynamic
measurements. Representative examples of echocardiographic images of SHAM, MI,
MI + CASCs, and MI + CASCs + PM 4 weeks post-operative are shown in Figure S1.
Echocardiographic parameters of the different groups, SHAM, MI, MI + CASCs, and
MI + CASCs + PM, 4 weeks post-operative are summarized in Table 1. Additional echocar-
diographic parameters are summarized in Table S1. MI animals undergoing CASCs trans-
plantation with or without additional PM treatment displayed a significantly increased
ejection fraction (EF) compared with MI (Table 1; 59% ± 4 in MI vs. 79% ± 3 in MI + CASCs;
vs. 72% ± 3 in MI + CASCs + PM, p = 0.051).

Table 1. Echocardiographic characteristics.

Parameters
4 Weeks Post-Operative

SHAM MI MI + CASCs MI + CASCs + PM

EF (%) 80 ± 4 59 ± 4 ## 79 ± 3 *** 72 ± 3
HR (bpm) 333 ± 14 318 ± 12 332 ± 12 327 ± 13

SV (µL) 170 ± 16 162 ± 17 172 ± 17 192 ± 17
CO (mL/min) 57 ± 4 51 ± 5 59 ± 6 65 ± 6

EDV (µL) 215 ± 26 298 ± 51 217 ± 17 267 ± 22
ESV (µL) 45 ± 13 136 ± 36 44 ± 5 * 77 ± 11

AWT (mm) 1.74 ± 0.13 1.55 ± 0.16 1.65 ± 0.12 1.80 ± 0.16
PWT (mm) 1.54 ± 0.16 1.63 ± 0.15 1.57 ± 0.09 1.62 ± 0.17

Echocardiographic characteristics 4 weeks post-surgery in SHAM (n = 5), MI (n = 11), MI + CASCs (n = 10), and
MI + CASCs + PM (n = 9) animals. Data are expressed as mean ± SEM. * denotes p < 0.05, *** denotes p < 0.001
vs. MI, and ## denotes p < 0.01 vs. SHAM. EF: ejection fraction, HR: heart rate, SV: stroke volume, CO: cardiac
output, EDV: end-diastolic volume, ESV: end-systolic volume, AWT: anterior wall thickness, PWT: posterior
wall thickness.

Hemodynamic measurements of SHAM, MI, MI + CASCs, and MI + CASCs + PM were
performed 4 weeks after surgery. Compared with MI, additional PM treatment significantly
reduced the time constant for isovolumetric relaxation (Table 2; Tau; 0.0499 s ± 0.017 in MI
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vs. 0.0117 s ± 0.001 in MI + CASCs + PM).

Table 2. Hemodynamic characteristics.

Parameters
4 Weeks Post-Operative

SHAM MI MI + CASCs MI + CASCs + PM

Max LV pressure
(mmHg) 99 ± 3 90 ± 2 96 ± 3 103 ± 4 *

dP/dtmax
(mmHg/s) 6773 ± 529 6038 ± 242 6923 ± 340 6551 ± 257

dP/dtmin
(mmHg/s) −7269 ± 683 −6550 ± 705 −6816 ± 354 −6917 ± 273

Tau (s) 0.0130 ± 0.001 0.0499 ± 0.017 0.0148 ± 0.002 0.0117 ± 0.001 **
Hemodynamic characteristics 4 weeks post-op of SHAM (n = 5), MI (n = 9), MI + CASCs (n = 10), and MI + CASCs
+ PM (n = 9) animals. Data are expressed as mean ± SEM. * denotes p < 0.05 and ** denotes p < 0.01 vs. MI. LV:
left ventricular, dP/dtmax: peak rate of pressure rise, dP/dtmin: peak rate of pressure decline, Tau: time constant
for isovolumetric relaxation.

2.3. CASCs Transplantation Tended to Reduce Infarct Size

Figure 2A demonstrates representative examples of Sirius Red/Fast Green stained
cryosections from SHAM, MI, MI + CASCs, and MI + CASCs + PM 4 weeks after surgery.
Infarct size tended to decrease in animals undergoing CASCs transplantation (Figure 2B;
19% ± 2 in MI vs. 12% ± 2 in MI + CASCs, p = 0.07). Additional PM treatment did not
further reduce infarct size (Figure 2B; 12% ± 3 in MI + CASCs + PM, p = 0.16).
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Figure 2. Assessment of infarct size. (A) Representative examples of hearts from SHAM, MI,
MI + CASCs, and MI + CASCs + PM. Fibrotic tissue, as a surrogate for infarct size, is stained red,
while viable tissue is stained green. Scale bar = 2000 µm. (B) Quantification of infarct size in
transversal sections 4 weeks post-surgery. MI (n = 11), MI + CASCs (n = 10), and MI + CASCs + PM
(n = 5). Data are expressed as mean ± SEM.

2.4. CASCs Transplantation Prevents the Increased Interstitial Collagen Deposition Seen with MI

Representative images of interstitial collagen obtained with Sirius Red/Fast Green
staining in LV sections from the groups are provided in Figure 3A. Interstitial collagen
deposition was significantly lower in CASCs transplanted animals compared with MI
(Figure 3B; 14% ± 3 in MI vs. 6% ± 0.4 in MI + CASCs). Fibrosis tended to be lower in PM
animals (Figure 3B; 7% ± 1 in MI + CASCs + PM).
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Figure 3. Interstitial collagen deposition in the LV. (A) Representative examples of collagen deposition
(red) in the LV. Scale bar = 200 µm. (B) Quantification of collagen content in LV transversal sections
4 weeks after surgery of SHAM (n = 4), MI (n = 11), MI + CASCs (n = 10), and MI + CASCs + PM
(n = 5). Data are expressed as mean ± SEM. * denotes p < 0.05 vs. MI, # denotes p < 0.05 vs. SHAM.

2.5. CASCs Transplantation Prevents Resident Cardiomyocyte Functional Remodeling

Unloaded cell shortening was measured in freshly isolated cardiomyocytes isolated
from SHAM, MI, MI + CASCs, and MI + CASCs + PM animals 4 weeks post-surgery.
As shown in Figure 4A, cells isolated from the border zone of infarcts displayed altered
functional properties, namely reduced and slower unloaded cell shortening. CASCs
transplantation, with or without PM treatment, could prevent the deterioration of the
cardiomyocyte contractile properties (Figure 4A; L/L0, 5% ± 0.3 in MI vs. 7% ± 0.5 in
MI + CASCs; vs. 7% ± 0.4 in MI + CASCs + PM). The kinetics of cell contraction and cell
relaxation, i.e., TTP and RT50, were significantly better in MI + CASCs and tended to be
improved in MI + CASCs + PM animals (Figure 4B TTP; 120 ms ± 1 in MI vs. 112 ms ± 2
in MI + CASCs; vs. 118 ms ± 3 in MI + CASCs + PM; Figure 4C RT50; 197 ms ± 3 in MI vs.
184 ms ± 4 in MI + CASCs; vs. 190 ms ± 4 in MI + CASCs + PM).
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Figure 4. Resident cardiomyocyte shortening during field stimulation at 4 Hz. Quantification of (A) unloaded cell shortening
normalized to diastolic cell length (L/L0), (B) time to peak of contraction (TTP), and (C) time to half-maximal relaxation
(RT50) of resident cardiomyocytes from SHAM (ncells = 80; nanimals = 7), MI (ncells = 60; nanimals = 5), MI + CASCs (ncells = 41;
nanimals = 4), and MI + CASCs + PM (ncells = 31; nanimals = 3). Data are expressed as mean ± SEM. * denotes p < 0.05;
** denotes p < 0.01 vs. MI, # denotes p < 0.05 vs. SHAM, and ## denotes p < 0.01 vs. SHAM.

2.6. PM Treatment Tended to Reduced Tissue Pro-Inflammatory Cytokine Levels

Gene expressions of pro-inflammatory cytokines (IFN-γ and IL-6) were evaluated in
the four groups of animals, 4 weeks post-surgery. As shown in Figure 5, the expression
of inflammatory cytokines tended to be lower in MI + CASCs + PM animals compared
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with MI and MI + CASCs animals (Figure 5A IFN-γ; 1.60 ± 0.27 in MI vs. 1.83 ± 0.30 in
MI + CASCs; vs. 1.06 ± 0.14 in MI + CASCs + PM; Figure 5B IL-6; 3.28 ± 1.06 in MI vs.
3.56 ± 0.81 in MI + CASCs; vs. 2.77 ± 0.48 in MI + CASCs + PM).
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3. Discussion

In our study, we have shown that, after MI, CASCs transplantation is able to im-
prove the cardiac phenotype by limiting cellular remodeling. However, preventing AGEs’
formation did not further enhance the positive outcome provided by CASCs alone.

3.1. Combining CASCs and PM to Enhance Cardiac Repair

Oxidative stress is one of the main factors inducing AGEs’ synthesis, by formation
of reactive carbonyl compounds and glycoxidation of Amadori products in the Maillard
reaction. In patients with MI, AGEs’ levels are significantly increased [25,34] and have
potential deleterious effects on cardiac function [35,36]. Moreover, in our study, AGEs
are significantly increased in MI animals. In addition to increased oxidative stress, the
inflammatory process induced after MI activates neutrophils and macrophages. These
immune cells are known to further secrete AGEs and are reported to be key inducers of
AGEs’ formation in MI [26,27].

Even if they provide new insights into tissue regeneration, stem cells are transplanted
in the border zone of MI with increased oxidative stress, inflammation, and AGEs’ levels.
Previous studies have shown that increased levels of AGEs affect stem cells’ properties, i.e.,
by reducing their proliferation and migration properties [28]. Recently, we have demon-
strated that the same adverse effects of AGEs apply to CASCs’ properties in vitro [29]. In
that context, reducing AGEs’ formation could potentially enhance CASCs’ regenerative
properties upon in vivo transplantation. To find out whether such an approach would
offer new therapeutic insights, was the goal of our study. In the context of improving
stem cell therapy by targeting AGEs, we evaluated the effect of CASCs transplantation in
combination with PM in a rat model of MI. This vitamin B derivate is an effective and safe
AGEs-lowering therapy [37], which has different mechanisms of action [38,39]. First, PM
can bind with catalytic redox metal ions, which are needed for glycoxidation of Amadori
products. As such and related to its iron-chelator properties, Amadori-to-AGEs conversion
is blocked. Secondly, PM can scavenge reactive carbonyl compounds, the latter being
major AGEs’ precursors. In addition, studies have demonstrated that PM is a co-enzyme
associated with multiple inflammatory pathways, thereby potentially inhibiting inflam-
mation [32]. Finally, by inhibiting ROS formation or scavenging oxygen radicals, PM has
been shown to be a potent antioxidant. Previous studies have shown that, even indepen-
dent of stem cell transplantation, PM alone improves survival and reduces extracellular
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remodeling after MI, by reducing AGEs’ levels [40]. Moreover, in clinical trials, PM has
been demonstrated as a safe and effective drug in diabetic patients [38]. However, owing
to financial issues, a clinical trial of NephroGenex in 2014, testing PM as an anti-diabetic
treatment, was stopped [41]. No other clinical trials are currently investigating PM as
a therapy.

In our study, PM succeeded in reducing total AGEs’ tissue levels. However, PM did
not further improve cardiac function obtained with CASCs transplantation alone, which
was, at first sight, not expected in our study. This could be partially explained by the recent
discovery of Vagnozzi et al. [42]. In their article, the authors show that cellular therapy
itself induces an inflammatory response after MI that could be the primary beneficial effect
underlying stem cell treatment. Pro-inflammatory macrophages, mobilized and activated
by transplanted stem cells, could indeed rejuvenate the mechanical properties of the injured
cardiac area. By affecting fibroblast activity, the ECM content and area occupied by scar
tissue could be reduced. The precise underlying mechanisms responsible for the repair
response of these immune cells are unclear and require further investigation. In our study,
it is thus likely that, by reducing local inflammation, PM could not further enhance the
repair process, when combined with CASCs transplantation. Inflammatory cytokines such
as IFN-γ and IL-6 tended to be reduced by PM treatment in our study. As an immune
reaction is thus needed as a base for would healing with stem cells, PM could counteract
the positive effects of CASCs therapy by reducing local tissue inflammation. This could
explain the lack of additive value of PM in the context of MI and stem cell transplantation.

Even if our data do not demonstrate an additional effect of PM to CASCs transplanta-
tion, the potential of other anti-AGEs therapies still needs to be investigated. It has been
shown in Alzheimer’s, Parkinson’s, and rheumatoid arthritis disease animal models that
stem cell survival was prolonged, migration capacity was enhanced, and the MSCs were
better protected against apoptosis, when sRAGE-secreting MSCs were transplanted. By
scavenging AGEs with sRAGE, the effectiveness of MSCs transplantation was improved,
thus suggesting a role of AGEs in regenerative approaches with stem cells [43–45]. How-
ever, using genetically modified stem cells is still highly experimental and needs to be
investigated in vivo before any possible translation into the clinical setting is possible.
Therefore, one cannot exclude that other anti-AGEs therapy approaches such as RAGE
inhibitors, sRAGE, or ALT-711 could potentially succeed in further lowering AGEs’ concen-
trations in MI and potentially have an additive effect on cardiac outcome. These therapeutic
options need to be investigated in both pre-clinical and clinical studies in combination with
CASCs therapy.

3.2. CASCs Alone Are an Effective Therapy for MI

Independent of PM treatment, our data confirm that transplantation of CASCs can
prevent worsening of cardiac function after an ischemic injury, as shown by Fanton et al.
in the minipig model [19]. Indeed, we have shown that EF significantly increased up to
20% after CASCs transplantation compared with non-treated animals. Meta-analysis of
other CSCs therapies for the treatment of MI in mice showed an overall increase in EF
of 9.9% [46]. Therefore, CASCs do have more effective regenerative effects compared
with other CSCs and are remarkable candidates for cellular therapy. Other parameters
of global cardiac function, such as dP/dtmax, SV, CO, and ESV, even if not significantly
affected, followed the same trend, indicating an overall improvement of systolic function
upon CASCs transplantation. In addition, infarct size tended to decrease after CASCs
transplantation. Furthermore, as shown by the prevention of adverse remodeling at the
cardiomyocyte level, our data suggest that mechanical load subjected to the resident
myocytes of the ischemic area was reduced with CASCs transplantation. The prevention of
collagen deposition seen in our study is also in line with a potentially reduced mechanical
load with CASCs transplantation. Indeed, an important pathway in post-MI remodeling
and scar formation is the TGF-β1 signaling pathway. In this study, we did not evaluate the
underlying mechanisms resulting in reduced fibrosis with CASCs. However, TGF-β1 could
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be an essential contributor. Indeed, increased TGF-β1 is detected after MI and is known to
decrease the expression and function of enzymes responsible for matrix degradation and
increase the inhibitors of proteases [47,48]. Whether CASCs transplantation results in a
reduced lysyl oxidase expression and/or PI3K/Akt, Smad3, and MAPK signaling pathway
as a consequence of increased TGF-β1 activation [49], remains to be confirmed. However,
other studies have shown that MSCs transplantation is able to ameliorate cardiac fibrosis
by decreasing TGF-β1 levels [50]. Therefore, it seems likely that this TGF-β1 pathway is
also involved in our study as it is a common pathway found in many diseases, but this
has to be confirmed. In addition, we have demonstrated that CASCs transplantation can
prevent adverse cellular remodeling of resident cardiomyocytes, isolated from the border
zone of the infarct. Indeed, we show that, compared with MI animals, the amplitude and
kinetics of cardiomyocyte shortening isolated from the border zone of MI in transplanted
animals are improved. In that context, it has been described that the extent of mechanical
load determines the extent of remodeling in both peri-infarct and remote regions [51]. It is
then very likely that even a small decrease in infarct size, which we observe upon CASCs
transplantation, will reduce adverse cellular remodeling in the resident cardiomyocytes.

However, whether the beneficial cardiac outcome is solely attributed to new cardiomy-
ocytes differentiated from CASCs or to the paracrine factors secreted by these stem cells
remains to be investigated. This then raises the question of whether CASCs were still
present 4 weeks after transplantation. Indeed, pre-clinical studies have shown that most of
the stem cells injected at the site of injury are cleared out within seconds, resulting in only
1–3% of the injected cells persisting at the site of injury [52]. Yet, previously, the presence
of differentiated CASCs 8 weeks post-MI was demonstrated by immunostainings [19]. In
addition, engraftment of the CASCs after 8 weeks of acute MI has been shown to be 19%,
a value higher than that previously described with other stem cells [19]. It is thus very
likely that CASCs are still present in the cardiac tissue 4 weeks post-transplantation. In
addition, previous studies have shown that stem cells are able to secrete paracrine factors
to promote survival and proliferation or have immunomodulatory effects on resident
cardiomyocytes [53]. The strong paracrine effects of stem cells have been well documented
and are, for a part, related to the limited improvement of cardiac function seen in some
studies, as those may compensate for the lack of cardiomyocyte differentiation [54,55].
Whether the differentiation of CASCs to new cardiomyocytes and/or the paracrine factors
secreted by the CASCs are the reason for the improvements seen after MI, remains to be
clarified.

4. Materials and Methods
4.1. Animal Experiments

Animal studies were conducted in accordance with the EU Directive 2010/63/EU
for animal experiments and were approved by the Local Ethical Committee for Animal
Experimentation (UHasselt, Belgium, Diepenbeek; ID 201701K & ID 202050). All animals
were kept in a temperature-controlled environment (21 ◦C, 60% humidity) with a 12 h/12 h
light/dark cycle. They were fed a standard pellet diet with water available ad libitum. In
total, 72 female Sprague-Dawley rats (Janvier Labs, Le Genest-Saint-Isle, France) were used
for the in vivo animal experiments. Twenty-nine female Sprague-Dawley rats (Janvier
Labs) were used for the CASCs isolation, expansion, and transplantation.

4.2. Rat CASCs Isolation and Expansion

CASCs were harvested from the right atrial appendages, as described before [18].
Briefly, rats were injected with heparin (1000 u/kg, intraperitoneally (i.p.)) and were
euthanized with an overdose of sodium pentobarbital (Dolethal, Vetoquinol, Aartselaar,
Belgium, 200 mg/kg, i.p.). Hearts were harvested and perfused with a normal Tyrode
solution (137 mM NaCl, 5.4 mM KCl, 0.5 mM MgCl2, 1 mM CaCl2, 11.8 mM Na-HEPES,
10 mM glucose, 20 mM taurine, pH 7.4), and the right atrial appendages were collected.
The extracted right atrial appendage tissue was minced into pieces of ~1 mm3, washed
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with phosphate buffered saline (PBS), and enzymatically dissociated for 30 min in Hank’s
balanced salt solution containing 0.6 WU/mL collagenase NB 4 (Serva, Heidelberg, Ger-
many) and 20 mM CaCl2. Next, ALDH+ cells were stained according to the Aldefluor kit
(STEMCELL Technologies, Evergem, Belgium). ALDH+ cells were defined as CASCs and
were flow-sorted (BD FACS Aria) in X-VIVO 15 media (Lonza, Basel, Switzerland) supple-
mented with 20% fetal calf serum (FCS) and 2% penicillin/streptomycin (P/S). Isolated
CASCs were seeded in six-well plates at a density of 60,000 cells per well and incubated at
37 ◦C in a humidified incubator with a 5% CO2 atmosphere. Medium was changed every 2
to 3 days. When CASCs reached 80% confluence, they were harvested using trypsin. For
all experiments, passage 1 CASCs were used.

4.3. Experimental Protocol

Rats were randomly assigned into four groups undergoing surgery: SHAM, MI, MI
with CASCs transplantation (MI + CASCs), and MI with CASCs transplantation undergoing
additional PM treatment (MI + CASCs + PM). PM treatment (1 g/L in drinking water) was
started 1 week prior to surgery [40]. MI rats were subjected to left anterior descending
coronary artery (LAD) ligation, as described previously [40]. The mortality rate after
LAD occlusion in all MI groups was 35%, resulting in 39 surviving animals. In brief,
rats were anesthetized using 2% isoflurane supplemented with oxygen, intubated via a
transversal incision in the trachea and mechanically ventilated. A left thoracotomy was
performed in the intercostal space between the third and fourth ribs to expose the heart.
The pericardium was opened, and the thymus was partially removed. The LAD was
occluded with 6/0 Prolene suture (Ethicon, Deforce Medical, Ardooie, Belgium). Successful
occlusion was confirmed by LV pallor immediately after ligation. Rats undergoing MI
received either no injections (MI, n = 16) or intramyocardial injections, containing either
2 × 106 CASCs (MI + CASCs, n = 14) or 2 × 106 CASCs with PM (MI + CASCs + PM, n = 9).
CASCs were harvested at passage 1 for transplantation. Briefly, CASCs were centrifuged
for 5 min at 1200 rpm and resuspended at a density of 2 × 106 cells in a Matrigel construct
containing 44.4% X-VIVO media supplemented with 10% FCS, 2% P/S, 2% Amphotericin
B, 34% collagen type I, 16% Matrigel, and 1.7% NaHCO3. CASCs were kept on ice in
a 29-gauge needle until being used for transplantation. Intramyocardial injections were
performed with a maximal total volume of 150 µL at three different points around the
peri-infarct zone. After transplantation, the chest was closed, and the lungs were re-inflated.
After restoration of spontaneous respiration, the animal was extubated and the trachea
was closed. SHAM animals (n = 12) underwent the same surgical procedure without
LAD ligation and without CASCs transplantation. The non-steroidal anti-inflammatory
drug meloxicam (Metacam, Boehringer Ingelheim Vetmedica GmbH, Rohrdorf, Germany,
1 mg/kg, subcutaneously) was administered post-operatively once a day for 2 consecutive
days. Non-invasive echocardiographic and invasive hemodynamic measurements were
performed at sacrifice. After harvesting the hearts, single cardiomyocytes were isolated
from the injection zone in the LV. In addition, transversal sections of the LV were fixed in
4% PFA for 24 h and placed in 30% sucrose for cryopreservation. After 24 h, transversal
sections were embedded in frozen section compound (Leica Microsystems, Amsterdam,
The Netherlands) for storage at −80 ◦C until staining. Residual tissue of the LV was
crushed to a fine powder, immediately snap-frozen in liquid nitrogen, and stored at −80 ◦C
for further real-time PCR analysis.

4.4. Echocardiographic Measurements

Transthoracic echocardiographic images were obtained from all animals under 2%
isoflurane anesthesia supplemented with oxygen 4 weeks post-operative with a Vevo
3100 system and a 21 MHz linear probe MX250 (FUJIFILM VisualSonics Inc., Amsterdam,
The Netherlands), as described previously [56]. Rats were placed in a supine position,
the thorax was shaved, and depilatory cream was applied to prevent hair-based artifacts.
Heart rate, respiratory rate, and ECG signals were monitored while measurements were
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taken, using the accompanying Vevo Imaging Station. Parasternal long-axis and short-
axis views at mid-ventricular level were acquired in both B-mode and M-mode. Four-
dimensional images were acquired. The apical four-chamber view was used to obtain
mitral inflow profiles by pulsed wave Doppler for estimation of diastolic function. In
addition, diastolic annular velocities were captured by tissue Doppler imaging at the septal
mitral annulus. Echocardiographic images were analyzed using the Vevo Lab 3.2.6 software
(FUJIFILM VisualSonics Inc.). Standard measures of systolic function, diastolic function,
and LV structure were analyzed. To reduce bias, analysis of the echocardiographic data
was blinded.

4.5. Hemodynamic Measurements

Invasive hemodynamic measurements were obtained at sacrifice under 2% isoflurane
anesthesia supplemented with oxygen, as described before [57]. Hemodynamic parameters
were measured with an SPR-320 Mikro-Tip single pressure catheter (Millar Inc., The Hague,
The Netherlands) placed into the LV via the right carotid artery. The catheter was connected
to a quad-bridge amplifier and PowerLab26T module (AD Instruments, Oxford, United
Kingdom) to transfer the pressure data to LabChart v7.3.7 software (AD Instruments).
Hemodynamic parameters were obtained from this software (peak rate of pressure rise
(dP/dtmax), peak rate of pressure decline (dP/dtmin), and time constant for isovolumetric
relaxation (Tau)).

4.6. Cardiomyocyte Isolation and Unloaded Cell Shortening

Four weeks after surgery, rats were injected with heparin (1000 u/kg, i.p.) and
euthanized by injection with an overdose of sodium pentobarbital (Dolethal, Vetoquinol,
200 mg/kg, i.p.). Hearts were harvested and single cardiomyocytes were isolated from
the LV by enzymatic dissociation through retrograde perfusion of the aorta, as described
previously [58,59]. The hearts were perfused for 1 min with a normal Tyrode solution and
then connected to a Langendorff perfusion system for following perfusion steps at 37 ◦C
and 100% O2 oxygenation. Perfusion with a Ca2+-free solution (130 mM NaCl, 5.4 mM KCl,
1.2 mM KH2PO4, 1.2 mM MgSO4, 6 mM HEPES, 20 mM glucose, pH 7.2) was performed
for 8 min, followed by perfusion with an enzyme solution (Ca2+-free solution containing
1.5 g/L collagenase type II (Worthington, Brussels, Belgium) and 0.06 g/L protease type
XIV (Sigma-Aldrich, Overijse, Belgium)) for variable time periods (12–20 min). Finally,
hearts were perfused with a low Ca2+ solution (Ca2+-free solution containing 0.1 mM
CaCl2 and 20 mM taurine) for 5 min. The digested LV tissue was minced and filtered, after
which Ca2+ concentration was gradually increased to 1 mM with normal Tyrode solution.
Unloaded cell shortening experiments were performed on intact cardiomyocytes in normal
Tyrode at room temperature. Measurements were performed on cardiomyocytes from
the remote border zone of the infarct of MI-operated animals. The cardiomyocytes from
SHAM animals were also isolated from the same area in the LV. Cardiomyocyte shortening
was measured with a video-edge detector (Crescent Electronics, London, UK) during field
stimulation with constant pulses above the threshold at 1, 2, and 4 Hz using platinum
electrodes. Unloaded cell shortening was normalized to diastolic cell length (L/L0, %). The
kinetics of cell shortening were assessed by measuring time to peak of contraction (TTP,
ms) and time to half-maximal relaxation (RT50, ms).

4.7. AGEs’ Content in Heart Tissue

Transversal frozen sections of 10 µm were obtained and immunohistologically stained
for AGEs with DAB staining. First, antigen retrieval was performed with citrate buffer
(pH = 6). The sections were blocked for 1 h at room temperature with serum-free pro-
tein block (X0909, Dako Agilent, Diegem, Belgium). Tissue sections were incubated
overnight at 4 ◦C with a rabbit anti-rat primary antibody for AGEs (1/250, Abcam, ab23722).
EnVision™ + Dual Link System-HRP (Dako Agilent, anti-rabbit/anti-mouse, K4061) was
applied for 30 min at room temperature. DAB solution was added (Dako Agilent) and
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sections were counterstained with hematoxylin. Coupes were dehydrated and mounted
with DPX mounting medium. Negative controls were included in each staining, in which
the staining procedure was performed with omission of the primary antibody. Images
were acquired using a Leica MC170 camera connected to a Leica DM2000 LED microscope.
The AGEs deposition was quantified with Fiji/ImageJ software (1.53c) in four randomly
chosen regions. The AGEs-positive area was normalized to the total cardiomyocyte area
and expressed as AGEs’ content in %.

4.8. Interstitial Fibrosis and Infarct Size Measurement

Transversal frozen tissue sections of 10 µm were obtained and stained according to the
Sirius Red/Fast Green Collagen Staining Kit for frozen sections (Chondrex Inc., Redmond,
WA, USA). After staining, sections were dehydrated in increasing concentrations of ethanol,
followed by a xylene wash, and mounted in DPX mounting medium. Collagenous tissue
stains red, while non-collagenous tissue stains green. Interstitial fibrosis was measured
in four randomly chosen 10× zoomed-in images, obtained in the peri-infarct zone and
LV remote region using a Leica DM2000 LED microscope (Leica Microsystems). Infarct
size was assessed on images of whole tissue slides using the AxioScan (Zeiss, Zaventem,
Belgium). The percentage of interstitial collagen deposition and infarct size was assessed
using the color deconvolution plugin in Fiji/ImageJ software (1.53c) [60] and was expressed
as % of the total surface area of interest.

4.9. Real-Time PCR

As described previously [61], total RNA was extracted from ±30 mg snap-frozen LV
tissue using RNeasy fibrous tissue kit (Qiagen, Venlo, The Netherlands) following the
manufacturer’s guidelines. The concentration and purity of RNA were assessed with the
NanoDrop 2000 spectrophotometer (Isogen Life Science, Utrecht, The Netherlands). RNA
was reverse-transcribed to cDNA using the qScript cDNA SuperMix (Quantabio, VWR,
Leuven, Belgium). The expressions of interferon-γ (IFN-γ) and interleukin-6 (IL-6) were
studied. Primers (Table S2) were designed in the coding sequence of the mRNA. Real-time
PCR was carried out in a MicroAmp Fast Optical 96-well reaction plate (Thermo Fisher
Scientific, Merelbeke, Belgium) using the QuantStudio 3 Real-Time PCR System (Thermo
Fisher Scientific). SYBR Green (Thermo Fisher Scientific) chemistry-based qPCR was per-
formed [62]. Gene expression data were analyzed via the ∆∆Ct method with consideration
of the MIQE guidelines [63]. The most stable reference genes for this experimental set-up
were determined by geNorm (hypoxanthine-guanine phosphoribosyl transferase (HPRT)
and phosphoglycerate kinase 1 (PGK1); Table S2).

4.10. Statistics

Statistical analyses were performed using GraphPad Prism 9.0.0 software (San Diego,
CA, USA). Normal distribution of data was assessed with the Shapiro–Wilk test. Experi-
mental data that were normally distributed were subjected to a one-way ANOVA followed
by Bonferroni’s multiple comparisons test. If data were not normally distributed, Kruskal
Wallis followed by Dunn’s multiple comparisons test was used. All data are expressed as
mean ± standard error of the mean (SEM). A value of p < 0.05 was considered statistically
significant.

5. Conclusions

We have demonstrated in a ratmodel of MI that transplantation of CASCs can prevent
worsening of cardiac function after an ischemic injury. These findings are an important
stepping stone towards the use of CASCs as an effective stem cell therapy in the clinic.
However, additional PM treatment and reduced tissue AGEs’ levels did not display added
value when combined with CASCs transplantation. Whether or not other anti-AGEs
therapies specifically targeting inflammation combined with CASCs therapy could have
beneficial effects cannot be excluded, and remains to be further investigated.
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