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Abstract

Identifying genomic locations of natural selection from sequence data is an ongoing challenge in population genetics.
Current methods utilizing information combined from several summary statistics typically assume no correlation of
summary statistics regardless of the genomic location from which they are calculated. However, due to linkage disequi-
librium, summary statistics calculated at nearby genomic positions are highly correlated. We introduce an approach
termed Trendsetter that accounts for the similarity of statistics calculated from adjacent genomic regions through trend
filtering, while reducing the effects of multicollinearity through regularization. Our penalized regression framework has
high power to detect sweeps, is capable of classifying sweep regions as either hard or soft, and can be applied to other
selection scenarios as well. We find that Trendsetter is robust to both extensive missing data and strong background
selection, and has comparable power to similar current approaches. Moreover, the model learned by Trendsetter can be
viewed as a set of curves modeling the spatial distribution of summary statistics in the genome. Application to human
genomic data revealed positively selected regions previously discovered such as LCT in Europeans and EDAR in East
Asians. We also identified a number of novel candidates and show that populations with greater relatedness share more
sweep signals.
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Introduction
Positive selection is one of the evolutionary processes through
which populations adapt to their environments, and identi-
fying positively selected genomic regions can help us uncover
the differences in genes and consequently phenotypes that
differentiate populations from one another. Differentiating
between diverse types of selective sweeps due to positive
selection (Hermisson et al., 2017), such as hard sweeps, which
result from a beneficial allele on a single genomic background
rising in frequency, and soft sweeps, which occur when a
beneficial allele on multiple genomic backgrounds rises in
frequency, can also provide us with insights into evolutionary
processes. However, identification of adaptive regions is a
nontrivial task, as signatures of adaptation are often muddled
by demographic events. For instance, both population bottle-
necks and selective sweeps can lead to similar decreases in
genetic diversity (Wall et al., 2002; Stajich and Hahn, 2005;
Jensen et al., 2005). Developments in our understanding of
evolutionary mechanisms and their individual importance
have led to increasingly complex models (e.g., Nielsen et al.,
2005), as well as numerous tests for statistical differentiation
between genomic regions undergoing natural selection and
neutrality (Vitti et al., 2013).

Several methods have recently been developed that incor-
porate information from multiple summary statistics to

locate positively selected genomic regions (Lin et al., 2011;
Ronen et al., 2013; Pybus et al., 2015; Sheehan and Song,
2016; Schrider and Kern, 2016b; Kern and Schrider, 2018;
Sugden et al., 2018). Most existing supervised learning
approaches for detecting sweeps use combinations of sum-
mary statistics calculated in genomic windows of simulated
chromosomes to train classifiers using methods such as sup-
port vector machines, random forests, neural networks, and
boosting. Differing mechanisms have been employed to han-
dle issues such as missing data and demographic obstruction
of selection signatures. For example, the approach taken by
Sheehan and Song (2016) attempts to jointly infer demo-
graphic and adaptive history. However, this framework
requires a tremendous amount of training data, making its
application computationally challenging. Schrider and Kern
(2016b) use a method of normalizing summary statistics that
lessens the impact of demographic events on selection foot-
prints. In both of these approaches, genomic regions missing
percentages of data above a certain threshold are not in-
cluded during analysis, leading to sizable regions labeled as
“unclassifiable.”

Current approaches (e.g., Sheehan and Song, 2016; Schrider
and Kern, 2016b) attempt to capture the spatial footprint of
adaptation by computing summary statistics at adjacent ge-
nomic windows. However, such methods do not explicitly
account for the autocorrelation expected due to similarity
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because of physical proximity of these statistics. Regions that
have experienced recent selective sweeps due to positive se-
lection exhibit wide stretches of linkage disequilibrium (LD;
Kim and Stephan, 2002; Sabeti, Reich, et al., 2002; Kim and
Nielsen, 2004), as recombination has not had sufficient time
to erode the signal. Therefore, directly accounting for corre-
lations of summary statistics computed at adjacent genomic
regions should be important, and may lead to improvements
in the ability to localize adaptive events.

In this article, we introduce a multinomial regression
method termed Trendsetter that directly models the genomic
spatial distribution of summary statistics. We employ trend
filtering within a multinomial regression framework to penal-
ize the differences between predictors, constraining them so
that they are similar to adjacent values. We explore how
penalizing differences in predictors for statistics between
one or more adjacent genomic regions transforms the regres-
sion model and affects classification. We further compare the
performance of Trendsetter to leading single-population clas-
sification approaches (Lin et al., 2011; Schrider and Kern,
2016b; Kern and Schrider, 2018) developed or modified to
differentiate among hard sweeps, soft sweeps, and neutrality.
Finally, we apply Trendsetter to whole-genome data from
worldwide human populations (The 1000 Genomes Project
Consortium, 2015), to study the global distribution of sweeps
in recent human history.

Materials and Methods
In this section, we formalize the multinomial regression with
trend-filtering approach employed by our classifier
Trendsetter. We discuss choice of summary statistics used
as features for the classifier, training and implementation of
the classifier, and calibration of class probabilities. We then
describe simulation settings and associated parameters to test
the performance of Trendsetter, as well as its robustness to
diverse demographic scenarios, confounding effects of back-
ground selection, and missing data. We finalize by discussing
the application of Trendsetter to empirical data from global
human populations.

Multinomial Regression with Trend Filtering
Trend filtering has enjoyed great attention in a number of
fields, including economics (e.g., Hodrick and Prescott, 1997),
finance (e.g., Tsay, 2005), and medicine (e.g., Greenland and
Longnecker, 1992). The essential idea behind this approach is
to fit a nonparameteric curve to time-series or spatially vary-
ing data, in which consecutive data points are highly corre-
lated. Specifically, in the case we consider here, we can
imagine that our data points are summary statistics calcu-
lated at adjacent SNPs, which are correlated due to LD. We
would expect that the spatial distribution of statistics calcu-
lated at these data points should behave like a curve under
models of natural selection, in which some statistics are in-
creased or decreased near a site under selection as portrayed
in figure 1.

Here, we plan to perform multinomial regression, account-
ing for correlations among observations of a particular statis-
tic across neighboring genomic regions through trend

filtering. We consider our response to come from K classes,
and we wish to classify a particular focal SNP as coming from
one of the K classes. For example, to classify focal SNPs as
undergoing neutrality, hard sweeps, or soft sweeps, we would
set K¼ 3. To accomplish this task, we will assume that we
have observations on m summary statistics, with each statistic
computed at the focal SNP, and D data points upstream and
D downstream of the focal SNP. These D data points can
either be contiguous or be specified more sparsely across
the data set, which is how we have chosen the set of data
points in this article. Therefore, for each summary statistic, we
will have p ¼ 2Dþ 1 observations of the statistic to capture
its spatial distribution. We choose to use the spatial distribu-
tion of a statistic at SNPs rather than at fixed physical dis-
tances (e.g., Chen et al., 2010; Schrider and Kern, 2016b), as it
may enhance robustness to missing data when not explicitly
accounted for in the training of the classifier.

Suppose we have training data from n simulated replicates.
Let the true class for simulated replicate i, i ¼ 1; 2; . . . ; n, be
yi. Suppose that the observed value of summary statistic s at
data point j in replicate i is denoted by xi;s;j. For observation i,
denote the probability of observing class yi given data xi by
P½yijxi�, where xi is a vector of length m� p and has
transpose

xT
i ¼½xi;1;1; xi;1;2; . . . ; xi;1;p; xi;2;1; xi;2;2; . . . ; xi;2;p; . . . ;

xi;m;1; xi;m;2; . . . ; xi;m;p�:

Let bk;s;j denote the coefficient for class k, k ¼ 1; 2; . . . ; K, for
summary statistic s, s ¼ 1; 2; . . . ;m, at point j,
j ¼ 1; 2; . . . ; p. For class k, let bk be a vector of length m� p
that has transpose

bT
k ¼ ½bk;1;1;bk;1;2; . . . ; bk;1;p; bk;2;1; bk;2;2; . . . ;

bk;2;p; . . . ; bk;m;1;bk;m;2; . . . ; bk;m;p�:

Define the matrix B containing m� p rows and K columns by

B ¼ ½b1; b2; . . . ; bK�:

Let bk;0; k ¼ 1; 2; . . . ; K, denote the intercept for class k,
and let b0 be a vector of length K containing these intercept
terms with transpose

bT
0 ¼ ½b1;0; b2;0; . . . ;bK;0�:

To learn a model that is capable of predicting class y from
observed data x, we need to provide a collection of observed
data point tuples fðyi; xiÞgn

i¼1 that represent example train-
ing inputs xi and outputs yi of the model. We then want to
learn a model that relates an observed input x to an output y
given model parameters fb0;Bg. We therefore wish to com-
pute the conditional probability (Hastie et al., 2009)

P½yi ¼ kjxi; b0;B� ¼ ebk;0þxT
i bkPK

‘¼1 eb‘;0þxT
i
b‘

of observing that the output yi of example i was class k
given the input xi and model parameters. Given this con-
ditional probability, the log likelihood of the model
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parameters fb0;Bg given the collection of observed data
point tuples fðyi; xiÞgn

i¼1 is

logLðb0;B; fðyi; xiÞgn
i¼1Þ

¼ 1

n

Xn

i¼1

XK

k¼1

log P½yijxi; b0;B�1fyi¼kg

¼ 1

n

Xn

i¼1

�XK

k¼1

ðbk;0 þ xT
i bkÞ1fyi¼kg

� log ð
XK

‘¼1

eb‘;0þxT
i b‘Þ
�

¼ 1

n

Xn

i¼1

�XK

k¼1

ðbk;0 þ
Xm

s¼1

Xp

j¼1

bk;s;jxi;s;jÞ1fyi¼kg

� log ð
XK

‘¼1

e
b‘;0þ
Pm

s¼1

Pp

j¼1
b‘;s;jxi;s;jÞ

�
;

where 1fyi¼kg; k ¼ 1; 2; . . . ; K, is an indicator random vari-
able that takes the value 1 if yi ¼ k and 0 otherwise.

We seek to find the set of coefficients fb0;Bg that max-
imize the log likelihood function with a penalty term that we
denote PENc;dðBÞ, which places a penalty on the coefficients
B. Denoting the pair of tuning parameters k1 � 0 and
k2 � 0, we therefore obtain parameters that maximize a pe-
nalized log likelihood function (Hastie et al., 2009) as

ðb̂0; B̂; k̂1; k̂2Þ ¼
argmax

b0;B; k1; k2

½logLðb0;B; fðyi; xiÞgn
i¼1Þ

� k1PENc1;0ðBÞ � k2PENc2;dðBÞ�;
(1)

where

PENc;dðBÞ ¼
XK

k¼1

Xm

s¼1

Xp�d

j¼1

j
Xd

h¼0

ð�1Þd�h
d

h

 !
bk;s;jþhjc

(2)

for c � 1 and d a nonnegative integer. When d¼ 0, 1, or 2,
the penalty respectively reduces to

PENc;0ðBÞ ¼
XK

k¼1

Xm

s¼1

Xp

j¼1

jbk;s;jjc

PENc;1ðBÞ ¼
XK

k¼1

Xm

s¼1

Xp�1

j¼1

jbk;s;jþ1 � bk;s;jjc

PENc;2ðBÞ ¼
XK

k¼1

Xm

s¼1

Xp�2

j¼1

jbk;s;j � 2bk;s;jþ1 þ bk;s;jþ2jc;

which represent summations across classes and summary
statistics for finite difference analogs to the zeroth, first, and
second derivatives of functions defined by summary statistic s
from class k. That is, the component of the penalty bk;s;jþ1

�bk;s;j in the second equation (d¼ 1) represents an approx-
imation to the first derivative of the function defined by sta-
tistic s at data point j for class k, whereas the component of
the penalty bk;s;j � 2bk;s;jþ1 þ bk;s;jþ2 in the third equation
(d¼ 2) represents an approximation to the second derivative
of the function defined by statistic s at data point jþ 1 for

class k. In general,
Pd

h¼0 ð�1Þd�h
d

h

 !
bk;s;jþh represents a

finite difference approximation to the dth derivative of the

FIG. 1. Schematic illustrating steps taken by Trendsetter to learn a multinomial regression model. For a given summary statistic (e.g., expected
haplotype homozygosity H1), we compute its value spatially across a genomic region for a set of neutral, hard sweep, and soft sweep simulations
used as training data. For H1, we expect elevated values near the site under selection (target SNP; indicated by a gray vertical dashed line) in sweep
simulations, and a greater magnitude of elevation in hard sweep compared with soft sweep settings. This summary statistic is then standardized
(mean centered and normalized by the standard deviation) at each position it is computed, so that different summary statistics are comparable.
For H1, this standardization will yield strong negative values for neutral simulations and positive values for hard sweep simulations near a target
SNP, and soft sweep simulations will exhibit values intermediate between the neutral and hard sweep scenarios. The model then performs trend
filtering on the spatial distribution of each summary statistic (here H1) for each class (here neutral, soft sweep, and hard sweep), leading to a curve
describing the spatial distribution of summary statistics around a target SNP. For H1, the curve dramatically reduces for the neutral class near the
center of the sequence, and is elevated near this position for the hard sweep class.
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function defined by statistic s for class k at data point j. Letting
c ¼ 1 gives the ‘1 penalty commonly employed in lasso, and
setting c ¼ 2 gives the ‘2 penalty commonly used in ridge
regression frameworks (Hastie et al., 2009).

In this article, we consider the situation in which
c1 ¼ c2 ¼ 1, permitting simultaneous regularization and fea-
ture selection. The first penalty term PEN1;0ðBÞ associated
with tuning parameter k1 is identical to the one used by lasso
(Hastie et al., 2009). This penalty ensures that the values of
regression coefficients for summary statistics that are highly
correlated with other selected (important) summary statistics
will be reduced to zero, thus reducing the effects of multi-
collinearity. In contrast, the second penalty term deals with
the autocorrelation of summary statistics, or how each sum-
mary statistic is correlated across physical space. For the sec-
ond penalty term PEN1;dðBÞ associated with tuning
parameter k2, we consider values of d¼ 1 and d¼ 2. The
scenario with d¼ 1 approximates a function with a step or
piecewise-constant function and is termed constant trend
filtering, whereas d¼ 2 approximates a function with a
piecewise-linear function and is termed linear trend filtering
(Kim et al., 2009; Hawkins and Maboudou-Tchao, 2013;
Tibshirani, 2014; Wang et al., 2016). Using d¼ 2 measures
the curvature of the function for statistic s at data point
jþ 1. The entire penalty PEN1;2ðBÞ therefore represents the
total curvature across all summary statistics, and assesses the
ruggedness of the set of curves. By penalizing in this manner,
we are imposing a smoothness on the spatial distribution of
the summary statistics. The combination of this trend penalty
with that of the lasso penalty PEN1;0ðBÞ has a similar effect to
a group lasso (Ming and Yi, 2006) penalty, in which the in-
clusion or exclusion of all values of a summary statistic is
decided rather than the inclusion or exclusion of each feature
separately. Other trend penalties focusing on lower- and
higher-order derivatives have been considered in the litera-
ture (Tibshirani, 2014; Wang et al., 2016).

Choosing Summary Statistics
The choices of summary statistics are critical when designing
a regression approach for isolating signals of natural selec-
tion. First, summary statistics that interrogate different
aspects of genetic variation are important. For example, sta-
tistics such as the mean pairwise sequence difference p̂
(Tajima, 1983) can be used to evaluate skews in the site
frequency spectrum. LD statistics, such as the squared cor-
relation coefficient r2 (Hill and Robertson, 1968) between a
pair of SNPs can be used to evaluate speed of decay of SNP
correlation with distance from a focal SNP. Furthermore,
summaries of haplotypic variation, such as the number of
distinct haplotypes Nhaps and expected haplotype homozy-
gosity H1 (Garud et al., 2015) can be used to evaluate skews in
the distribution of haplotypes as a function of distance from
a focal SNP. Second, summary statistics that should be rela-
tively robust to the confounding effects of background se-
lection, such as haplotype-based statistics (Enard et al., 2014),
should be considered, as background selection has been
demonstrated to be a ubiquitous force in a number of di-
verse lineages (e.g., McVicker et al., 2009; Comeron, 2014). In

this article, we focus on a set of m¼ 6 summary statistics:
mean pairwise sequence difference p̂ (Tajima, 1983), the
squared correlation coefficient r2 (Hill and Robertson,
1968) of a SNP and the focal SNP, the number of distinct
haplotypes Nhaps, and the H1, H12, and H2=H1 statistics of
Garud et al. (2015). The latter three statistics were chosen as
they have been demonstrated to exhibit high power to de-
tect both hard and soft sweeps, as well as the ability to col-
lectively distinguish between hard and soft sweeps.

It is important to note that it is possible to extend our
approach to unphased genotypes, by using unphased-
genotype analogs of the haplotype-based statistics. That is,
following Harris et al. (2018), we can substitute the number of
distinct haplotypes Nhaps with the number of distinct multi-
locus genotypes Ngeno, replace H1, H12, and H2=H1 respectively
with G1, G123, and G2=G1 (Harris et al., 2018), and use HR2

(Sabatti and Risch, 2002) as a surrogate for r2. Because the
multilocus genotype analogs G1, G123, and G2=G1 have been
demonstrated to retain similar detection and classification
abilities as H1, H12, and H2=H1 (Harris et al., 2018), they should
be suitable substitutions. Making these summary statistic
substitutions permits application of Trendsetter to data
from organisms that cannot be phased, as well as for studies
in which it is important to avoid phasing errors (see
Discussion).

Training the Classifier
We computed the value of a summary statistic at each of the
2Dþ 1 data points centered on a focal SNP, as described in
the Multinomial Regression with Trend Filtering subsection.
In this article, we use D¼ 100, so that each summary statistic
yields 201 data points. Summary statistics were calculated in
11-SNP windows comprising five SNPs directly upstream and
five SNPs directly downstream of each of the 201 data points
(supplementary fig. S1, Supplementary Material online).
Specifically, Nhaps, H1, H12, and H2=H1 for a given data point
were based on the haplotypic variation defined by the 11-SNP
window surrounding (and including) the data point. The
mean pairwise sequence difference p̂ for a given data point
was computed as the mean across all 11 SNPs in the window
surrounding (and including) the data point. The squared cor-
relation coefficient r2 for a given data point was computed as
the mean r2 for all 11 SNPs in the window with the focal SNP
within the set of 2Dþ 1 data points. Computing r2 in such a
way permitted the method to evaluate the speed at which LD
decays from a focal data point (putative site under selection).
Adjacent SNPs will be highly correlated, and we have a trade-
off between the number of data points to learn the function
for the summary statistic through trend filtering and the
running time due to increased numbers of features. To ac-
complish this, we chose to compute summary statistics cen-
tered on data points at every fifth SNP, so that we still capture
the genomic signal across a wide spatial distribution, while
also having adjacent data points that are highly correlated.
Such an approach permits us to examine the spatial variation
of a summary statistic spanning a total of 10ðDþ 1Þ SNPs,
while only using 2Dþ 1 data points. As a consequence of
how we compute summary statistics at each data point,
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values at neighboring data points will be based on data from a
partially overlapping set of SNPs, and will therefore be corre-
lated by construction. For a sample of size 100 haplotypes, in a
population with diploid effective size N ¼ 104 (Takahata,
1993) and per-site per-generation mutation rate l ¼ 1:25�
10�8 (Scally and Durbin, 2012), setting the 10ðDþ 1Þ ¼ 1;
010 SNPs (segregating sites) equal to its neutral expectation
(Ewens, 1974) gives the expected length of a neutrally evolv-
ing region with this many SNPs to be 10ðDþ 1Þð4NlP100�1

i¼1 1=iÞ ¼ 390; 159 nucleotides, or approximately
390 kb. In regions that have undergone recent strong selective
sweeps, much of the genetic variation would have been lost,
and so the genomic region with the same number of SNPs
would be considerably wider.

To train a classifier under a given demographic model, we
used the coalescent simulator discoal (Schrider and Kern,
2016a) to generate 103 neutral, 103 hard sweep, and 103

soft sweep scenarios to use as training data, and computed
the 2Dþ 1 values for each of the six summary statistics using
the set of SNPs closest to the center of the simulated region.
All simulations assumed a uniform per-site per-generation
mutation rate of l ¼ 1:25� 10�8 (Scally and Durbin,
2012) and a uniform per-site per-generation recombination
rate of r ¼ 10�8 (Payseur and Nachman, 2000) across
sequences of length L¼ 1.1 Mb. For all selection simulations,
beneficial mutations were introduced at the center of the
simulated region with per-generation selection coefficient s
drawn uniformly at random on a log scale over the interval
½0:005; 0:5�. Moreover for soft sweeps on standing variation,
the starting frequency of the beneficial allele was drawn uni-
formly at random over the interval ½0:01; 0:10�. For all selec-
tive sweep simulations, the time at which the adaptive allele
reached fixation was drawn uniformly at random between
zero and 1, 200 generations in the past. Note that because
discoal conditions on the time at which a sweep completes,
given a specified selection coefficient, the time at which the
sweep initiated is already some function of these parameters.
Therefore, sweeps associated with small selection coefficients
tend to initiate farther in the past than those with larger
selection coefficients. Moreover, because discoal allows the
specification of both sweep strength and sweep completion
time, selected alleles with very small selection coefficients will
still not be lost, but will instead have been introduced dis-
tantly in the past. We expect that selection on such weakly
beneficial alleles would be difficult to identify with sweep
detection methods like Trendsetter.

As is common for regularized regression models (Hastie
et al., 2009; Simon and Tibshirani, 2012), values for summary
statistic s at data point j were standardized so that they had
mean zero and standard deviation one across the set of 3
�103 simulated training replicates. We then used equation
(1) to estimate the coefficients from these data points using
10-fold cross-validation (Hastie et al., 2009) with balanced
training samples from each class. We subsequently applied
Trendsetter to simulated and empirical data to classify focal
SNPs, where we standardized each summary statistic in the
test and empirical data sets using the standardization param-
eters we applied for the respective training sets.

Implementation
The optimization problem in equation (1) is convex, but is
nontrivial as it contains two different components—one that
is smooth (i.e., the log likelihood function) and the other that
is nonsmooth (i.e., the penalty function). Liu et al. (2010)
developed an efficient algorithm for solving this problem,
and we adapted this framework for our purposes.
Specifically, we augmented the approach of Liu et al. (2010)
to add linear trend filtering, which requires solving a penta-
diagonal rather than tridiagonal system of linear equations as
was used by the original constant trend filtering implemen-
tation. More generally, for a given value of the derivative d,
this linear system amounts to inverting a symmetric banded
Toeplitz matrix with bandwidth d. To ensure that the opti-
mization is computationally feasible in reasonable time, we
employed the PTRANS-1 algorithm (Liu et al., 2010) for solv-
ing general pentadiagonal linear systems, which requires only
O(n) operations for a matrix of size n� n (where n ¼ p� 2
¼ 2D� 1 in our scenario for linear trend filtering), and there-
fore has complexity O(D) for D data points flanking either side
of the focal SNP.

Calibrating Class Probabilities
Our model, similar to others (e.g., Lin et al., 2011; Schrider and
Kern, 2016b; Sugden et al., 2018), not only assigns class labels,
but also provides a probability for each of the K classes. A
properly calibrated classifier should be one in which the prob-
ability of observing a given class is the actual fraction of times
that the classifier chooses this class. This calibration ensures
that the assigned probability for each class can be interpreted
as the empirical proportion of simulations at each threshold.

To examine whether Trendsetter yielded properly cali-
brated probabilities, we plot a set of reliability curves for
each trained classifier. To calibrate classifier probabilities, it
is possible to employ Platt scaling (Platt, 1999) applied to the
output probabilities of a classifier. Specifically, an extra set of
training data must be set aside to train a multinomial logistic
model using the probabilities output from Trendsetter as the
independent variables, and the true class as the dependent
variable (Naeini, 2017). To calibrate our classifiers, we use
1,000 examples from each class, for a total training set of
3,000. Because we expect the majority of polymorphisms in
some species (e.g., humans) to be classified as neutral, it may
in some cases be useful to calibrate a classifier with this as-
sumption in mind, as increasing the number of neutral exam-
ples may be necessary to achieve proper calibration (Sugden
et al., 2018).

Simulations to Examine Trendsetter Performance
We examined a number of simulation settings to better un-
derstand the ability of Trendsetter to detect and classify
sweeps, as well as its robustness to common confounding
factors. Specifically, we considered differences in demographic
history inspired by population size fluctuations inferred from
human genomic data (Terhorst et al., 2017), the influence of
soft shoulders (Schrider et al., 2015), background selection
due to long-term purifying selection (McVicker et al., 2009;
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Comeron, 2014), extensive missing data due to regions of
poor alignability or mappability, sample size, and selection
strengths.

Demographic History
We considered a constant-size demographic history with ef-
fective size of N ¼ 104 diploid individuals (see Training the
Classifier), as well as models incorporating population size
change that are inspired by parameters inferred from human
history (Terhorst et al., 2017)—with models that incorporate
recent population expansions that occurred in populations of
sub-Saharan African ancestry (e.g., LWK and YRI), and models
with strong recent population bottlenecks that occurred in
populations of non-African ancestry (e.g., GIH, TSI, CEU, CHB,
and JPT). We used these piecewise constant demographic
histories inferred by Terhorst et al. (2017) to train our models.
We chose to use the models of Terhorst et al. (2017) instead
of those from Tennessen et al. (2012), because in addition to
allele frequency information used by Tennessen et al. (2012),
Terhorst et al. (2017) also incorporated patterns of LD to infer
demographic histories, thereby potentially making their in-
ferred models more accurate (Beichman et al., 2017)—
though linked selection may bias inferences of demographic
history from whole-genome methods that incorporate LD,
and so masking such regions, as can be done within the
Terhorst et al. (2017) framework, may be important. We
used 200 time points and corresponding effective population
sizes throughout human history for each of our seven pop-
ulations of interest, which included African (YRI and LWK),
European (CEU and TSI), South Asian (GIH), and East Asian
(CHB and JPT) groups (see Application to Empirical Data).
We utilized these data points as 200 intervals describing the
growths and declines of these populations as inputs to discoal
along with a range of selection strengths s 2 ½0:005; 0:5� for
hard and soft sweeps. The per-site per-generation mutation
and recombination rates used for simulating all Terhorst et al.
(2017) demographic histories are l ¼ 1:25� 10�8 and
r ¼ 10�8, respectively. In simulations with hard and soft
sweeps, we ensure the beneficial allele fixes between 1,200
generations ago and the present, with fixation time drawn
uniformly at random over this time period.

Linked-Sweep Classes
Previous work has shown that when classifying genomic
regions with window-based methods, it may be possible to
misclassify genomic regions near a hard sweep as soft sweeps
via a phenomenon termed “soft shoulders” (Schrider et al.,
2015; Schrider and Kern, 2016b). To test whether Trendsetter
is affected by soft shoulders, we simulated linked-sweep
regions by moving the location of a beneficial mutation
away from the center in steps of 100 kb, in both the upstream
and downstream directions. We do this for both hard sweeps
and soft sweeps. To form the training set for the linked-sweep
classes, we combine 100 simulations from each of the 10 sets
of sweep simulations with selected sites distant from the test
site.

Background Selection
To evaluate the robustness of Trendsetter to regions evolving
under background selection, we first followed the protocol
described in Schrider and Kern (2017). We employed the
forward-time simulator SLiM 2 (Haller and Messer, 2017) to
generate 103 simulated replicates for sequences of length
1.1 Mb, where the number, lengths, spatial distribution, and
distribution of fitness effects of functional elements across the
simulated region matched random regions from the human
genome. Specifically, we sampled a 1.1-Mb region of the hu-
man genome uniformly at random, and determined the sites
within that region that are either included in the phastCons
database (Siepel et al., 2005) or found within an exon in the
GENCODE database (Harrow et al., 2012). In simulations, sites
falling within these regions were determined to be undergo-
ing purifying selection, with 25% of mutations occurring in
these sites being neutral and 75% having a selection coeffi-
cient drawn from a gamma distribution with mean –0.0294
as described by Boyko et al. (2008).

Along with this empirically based background selection
scenario, we wanted to investigate a potentially more ex-
treme setting, with a single genic element located at the
center of a large genomic region, in which strongly deleterious
alleles arise continually within this genic element. We also
used SLiM 2 to generate 103 simulated replicates for sequen-
ces of length 1.1 Mb, where a central 11-kb “gene” evolved
under purifying selection. Specifically, this central genic region
was composed of 50 and 30 untranslated regions (UTRs) that
flanked a set of 10 exons, which were separated by introns as
in Cheng et al. (2017). We set the lengths of these UTRs,
exons, and introns to be based on their means in the human
genome (Mignone et al., 2002; Sakharkar et al., 2004), such
that the lengths of each intron, exon, 50 UTR, and 30 UTR were
1,000, 100, 200, and 800 nucleotides, respectively. We simu-
lated differences in proportions of deleterious mutations aris-
ing in each of these genic elements, by simulating 75%, 50%,
and 10% of mutations arising in exons, UTRs, and introns as
deleterious, respectively, and deleterious mutations having a
strong selective disadvantage of s ¼ �0:1 per generation.
Finally, as a third background selection scenario, we also con-
sidered the exact setting as this second central genic element
scenario, but with the recombination rate decreased to 100-
fold lower in the 11-kb genic region relative to the surround-
ing neutral regions. This scenario permitted us to examine
whether Trendsetter was robust to strongly deleterious muta-
tions arising in regions of elevated LD. We then tested
whether this set of three background selection settings would
be falsely classified as a sweep by Trendsetter trained using
simulations of the constant-size demographic history dis-
cussed in the Training the Classifier section.

Missing Data
Due to a number of technical issues, large segments of missing
data are scattered throughout the genome (Lander, 2011).
Filtering such segments can lead to a large fraction of the
genome that cannot be classified (Sheehan and Song, 2016;
Schrider and Kern, 2016b), unless it is properly accounted for
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within the training data set, as missing data can masquerade
as footprints of lost diversity, mimicking patterns expected
from selective sweeps. Trendsetter computes summary statis-
tics at data points rather than as averages over physical
regions, potentially enabling it to be robust to falsely attrib-
uting regions with missing data as candidate sweeps. The
rationale is that missing data would cause data points to be
farther in terms of both physical and genetic distance than if
there was no missing data, thereby making data points close
to the focal SNP less correlated than expected under selection
models. Such an approach should be conservative, likely lead-
ing to classifications of sweeps as neutral and not misclassify-
ing neutral regions as sweeps. To evaluate robustness to
missing data, we masked SNPs in the testing data set,
amounting to 30% of the total number of SNPs in each sim-
ulation and approximately 30% of the total length of the
chromosome. We did this by removing 10 genomic chunks
each with size equaling 3% of the total number of simulated
SNPs, with a starting position for each missing chunk chosen
uniformly at random from the set of SNPs, provided the
chunk did not overlap with previously missing chunks.
Removing SNPs in this fashion simulates missing data that
would be filtered due to genomic regions with poor align-
ability or mappability (Mallick et al., 2009).

Effect of Sample Sizes on Classification Rates
The number of individuals sequenced can differ in projects
depending on sample availability and funding resources for
sequencing. Larger sample sizes are expected to yield better
estimates of summary statistics, and therefore more accurate
interrogations of genomic diversity. To explore how sample
size affects classification accuracy, we tested the ability of
Trendsetter to correctly classify hard sweeps, soft sweeps,
and neutral regions as a function of sample size, choosing
sample sizes of 100, 25, and 10 diploid individuals for a set of
selection strengths s 2 ½0:005; 0:5� ranging from moderate to
strong.

Selection Strengths and Classification Rates
The strength of selection has an impact on the speed at which
a selected allele increases in frequency toward fixation, and
thus the amount of time for mutation and recombination to
erode the signature. Specifically, the size of the genomic foot-
print Lfootprint can be approximated by the equation
Lfootprint ¼ s=ð2rlnð4NsÞÞ, where s is the per-generation se-
lection coefficient, r is the per-site per-generation recombina-
tion rate, and N is the diploid effective population size
(Gillespie, 2004; Hermisson and Pennings, 2005; Garud et al.,
2015). Here, the footprint is positively correlated with the
strength of selection, whereas it is negatively correlated
with the rate of recombination. To test the effects that dif-
ferent selection strengths have on overall classification rates,
we simulated hard and soft sweeps with selection coefficients
chosen from two nonoverlapping intervals: strong selection
with s 2 ½0:05; 0:5� and moderate selection with
s 2 ½0:005; 0:05�. We conducted simulations under a
constant-size demographic model using discoal as described
in the Training the Classifier section.

Application to Empirical Data
We used phased haplotypes from variant calls of the 1000
Genomes Project (The 1000 Genomes Project Consortium,
2015). Specifically, we analyzed genomes from the sub-
Saharan African Yoruban (YRI) population, Gujarati Indian
from Houston, Texas, USA (GIH), Han Chinese in Beijing,
China (CHB), Japanese in Tokyo, Japan (JPT), Luhya in
Webuye, Kenya (LWK), Toscani in Italy (TSI), and Utah
Residents with European Ancestry (CEU). We first filtered
regions with poor mappability and alignability as in Huber
et al. (2016). Specifically, we segmented each chromosome
into 100-kb nonoverlapping regions, and filtered SNPs in
regions with a mean CRG100 score (Derrien et al., 2012)
less than 0.9. Because sweeps tend to affect large genomic
regions, filtering in this manner will remove large regions with
poor average quality, decreasing the likelihood that
Trendsetter would be misled by genetic variation in unreliable
genomic regions. After masking these regions, we computed
summary statistics in an identical manner as for the simulated
data sets. However, for each chromosome, we classify every
fifth SNP, beginning from the 505th SNP as the focal SNP,
using information from D¼ 100 data points (spanning 505
SNPs) upstream and D¼ 100 data points (spanning 505
SNPs) downstream of the focal SNP. It is important to note
that each focal SNP classified by Trendsetter should not be
viewed as the site or exact location of the beneficial mutation,
but rather should be considered as a proxy for the location. If
the focal SNP is close enough to the location of the adaptive
variant, then we would expect the genetic variation surround-
ing the focal SNP to look similar to the diversity around the
adaptive site. Therefore, using summary statistics that com-
pute a single value at a given SNP (e.g., iHS or XP-EHH; see
Discussion) may enhance the ability of Trendsetter to only
classify polymorphisms that are close to the true adaptive site
as a sweep.

When training Trendsetter for application to empirical
data, our treatment differed from when we evaluated
Trendsetter’s performance on simulated data in two ways.
First, because human recombination rate varies across the
genome, we accounted for recombination rate variation by
following Schrider and Kern (2017) and drawing the recom-
bination rate for a particular training simulation from an ex-
ponential distribution with mean 10�8 and truncated at
three times the mean. Second, because we have introduced
another variable into our training simulations (namely re-
combination rate), we chose to increase the number of inde-
pendent training simulations by 5-fold, leading to 5,000
neutral, 5,000 hard sweep, and 5,000 soft sweep replicates.

Comparison to Other Methods
A number of powerful approaches have recently emerged to
localize and classify sweeps from genomic data. We compare
the classification ability of Trendsetter to the binary classifier
evolBoosting (Lin et al., 2011), as well as the multiclass
approaches of S/HIC (Schrider and Kern, 2016b) and
diploS/HIC (Kern and Schrider, 2018). Following Schrider
and Kern (2016b), to compare binary to multiclass classifiers,
we expanded evolBoosting to greater than two classes by
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training a classifier to differentiate between sweeps (com-
bined hard and soft) and neutrality, and training another
classifier to differentiate between hard and soft sweeps. This
procedure is analogous to how Lin et al. (2011) differentiated
among sweeps, population bottlenecks, and a constant-size
demographic history in the article that introduced
evolBoosting. Moreover, to enable direct comparison of S/
HIC and diploS/HIC to Trendsetter, we employed three-class
versions of S/HIC and diploS/HIC approaches, whereas their
native states include five classes. We later expand Trendsetter
to five classes to permit direct comparison with the default
states of S/HIC and diploS/HIC. In addition to direct compar-
ison across methods, we also evaluated detection capabilities
and robustness to confounding factors when Trendsetter
operates on the expanded set of summary statistics used by
S/HIC. Specifically, S/HIC uses 10 summary statistics: Tajima’s
D (Tajima, 1983), the maximum value of x (Kim and Nielsen,
2004), Tajima’s p̂ (Tajima, 1983), H1 (Garud et al., 2015), H12

(Garud et al., 2015), H2=H1 (Garud et al., 2015), number of
haplotypes Nhaps, Zns (Kelly, 1997), Fay and Wu’s H (Fay and
Wu, 2000), and Watterson’s ĥW (Watterson, 1975) calculated
in each of 11 contiguous windows. Because Trendsetter uses
many more data points for summary statistics to capture
their spatial distribution across the genome, we computed
each of the 10 summary statistics in each of 110 contiguous
windows, where each window was 1/10th the size of the
window used by S/HIC, thereby requiring Trendsetter to op-
erate on the same data.

We tested the classification rates for both the constant
(d¼ 1) and linear (d¼ 2) trend penalties employed by
Trendsetter. Moreover, because S/HIC was developed to clas-
sify genomic regions as either neutral, a sweep, or linked to a
sweep, we also included linked-hard and linked-soft classes to
examine whether they enhance the robustness of Trendsetter
to soft shoulders (Schrider et al., 2015; Schrider and Kern,
2016b). Finally, we compared Trendsetter to diploS/HIC
(Kern and Schrider, 2018), a recently developed approach
that utilizes deep neural networks and image analysis to learn
the spatial distribution of summary statistics nearby a sweep
region—similar in concept to accounting for the spatial ori-
entation of summary statistics that gives Trendsetter its
power. Similarly to testing with S/HIC-specific statistics, we
tested Trendsetter using the statistics specified by diploS/HIC
in 110 contiguous windows. This feature vector includes sta-
tistics measuring the variance, skewness, and kurtosis of the
distribution of multilocus genotype distances.

Results
To examine the power and robustness of Trendsetter, we
evaluate its performance under common settings that would
typically be encountered in empirical data. Specifically, we
test the ability of Trendsetter to correctly classify simulated
sweeps of differing selection strengths, scenarios that include
extensive missing data, and settings of realistic population size
changes. We compare the accuracy and robustness of
Trendsetter to other powerful methods designed to localize
sweeps in single populations such as evolBoosting (Lin et al.,

2011), S/HIC (Schrider and Kern, 2016b), and diploS/HIC
(Kern and Schrider, 2018), and exclude complementary
approaches developed to isolate sweep signals using data
from multiple populations (e.g., SWIF(r); Sugden et al., 2018).

Detecting and Classifying Selective Sweeps
We trained Trendsetter with a linear (d¼ 2) trend filter pen-
alty on data simulated under a constant-size demographic
model as described in the Materials and Methods section. We
obtained optimal values for k1 and k2 through 10-fold cross-
validation. We first examined whether probability calibration
was required for Trendsetter, and the reliability curves in sup-
plementary figure S2, Supplementary Material online, suggest
that no further calibration is needed. Based on this trained
classifier, we are able to correctly classify 81.9% of hard, 97.1%
of neutral, and 78.3% of soft sweep scenarios (fig. 2). Of the
misclassified soft sweeps scenarios, 15.5% are misclassified as
hard sweeps, and 6.2% are misclassified as neutral. We com-
pared the performance of Trendsetter against several existing
classification methods, where each method was modified to a
three-class classification system (Lin et al., 2011; Schrider and
Kern, 2016b; Kern and Schrider, 2018). Note that the native
state of evolBoosting is two classes, whereas S/HIC and
diploS/HIC employ five classes by default. We will examine
classification ability of Trendsetter with five classes later in this
subsection, allowing for it to be directly compared with the
native states of S/HIC and diploS/HIC. From these simulated
scenarios, all methods had comparable ability to detect and
classify sweeps and to differentiate between hard and soft
sweeps (figs. 2 and 3 and supplementary fig. S3,
Supplementary Material online).

By examining the values of the regression coefficients for
each summary statistic, we can identify the relative impor-
tance of each statistic as well as the spatial distribution mod-
eled. Specifically, summary statistics will tend to be more
important when their regression coefficients are of larger
magnitudes than other statistics. Moreover, the spatial distri-
bution of the regression coefficients for a particular summary
statistic calculated for a specific class should yield a curve,
with summaries important for detecting sweeps likely exhib-
iting a sharp increase in magnitude near the site (central
single nucleotide polymorphism [SNP]) under selection (see
schematic in fig. 1). These sharp peaks are the result of the
combination of lasso and trend filter penalties that
Trendsetter employs when fitting a regression model. If the
value of a regression coefficient is reduced to zero, neighbor-
ing regression coefficients are also more likely to be zero. In
contrast, the values of regression coefficients in regions of
importance will be constrained by the higher values of neigh-
boring coefficients. Figure 4 depicts the regression coefficients
for H12 and the number of haplotypes Nhaps under both con-
stant (d¼ 1) and linear (d¼ 2) trend filter penalties as a
function of the class and SNP position, with Trendsetter
trained on a range of selection strengths s 2 ½0:005; 0:5�.
We can see that number of haplotypes is clearly a less impor-
tant statistic, with regression coefficients exhibiting low mag-
nitudes at the peaks. The likely reason for this lack of
importance is that, conditional on the number of SNPs, the
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number of distinct haplotypes will likely be narrowly con-
strained. In contrast, H12 played a large role in distinguishing
between sweeps and neutrality, with its peak reaching the
greatest magnitude, likely due to sweeps skewing the

distribution of haplotype frequencies and thereby having a
large influence on the H12 statistic. We also notice that some
regression coefficients (such as H1 in supplementary fig. S4,
Supplementary Material online) tend to increase in

FIG. 3. Receiver-operating characteristic curves comparing the powers of various methods to distinguish sweeps from neutrality. (Left) Powers to
differentiate sweeps from neutrality, by comparing the combined probability of any sweep (hard or soft) under equally mixed hard and soft sweep
simulations with the same probability under neutral simulations. (Middle) Powers to differentiate hard sweeps from neutrality, by comparing the
probability of a hard sweep under hard sweep simulations with the same probability under neutral simulations. (Right) Powers to differentiate soft
sweeps from neutrality, by comparing the probability of a soft sweep under soft sweep simulations with the same probability under neutral
simulations. All simulations were performed under a constant-size demographic history with selection coefficients for sweep scenarios drawn
uniformly at random on a log scale of ½0:005; 0:5�. All methods were trained with three classes: neutral, hard sweep, and soft sweep.

FIG. 2. Confusion matrices comparing classification rates of Trendsetter with constant (d¼ 1) and linear (d¼ 2) trend penalties, evolBoosting, S/
HIC, and diploS/HIC for simulations under a constant-size demographic history and selection coefficients for sweep scenarios drawn uniformly at
random on a log scale of ½0:005; 0:5�. All methods were trained with three classes: neutral, hard sweep, and soft sweep.
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magnitude toward the beginning or end of the analyzed
region. This phenomenon may be due to the value of the
coefficient only being constrained from a single direction,
rather than both directions. We explore whether these
upticks or downticks in regression coefficients at the
ends of the analyzed region affect the accuracy of
Trendsetter in the Discussion section.

In a similar manner to fitting a linear (d¼ 2) trend penalty,
we trained Trendsetter with a constant (d¼ 1) trend penalty
that resulted in similar classification performance as when we
trained under the linear penalty (figs. 2 and 3). This overall
similarity in classification rates between constant (d¼ 1) and
linear (d¼ 2) trend filtering is reflected in their similar distri-
butions (fig. 4), with comparable relative importance levels,
magnitudes, and spatial distributions of regression coeffi-
cients. Interestingly, the linear penalty is better at localizing

the SNP closest to the site of selection relative to the constant
penalty, based on the regression coefficients for H12 (fig. 4).
Because of their similarity in performance, our discussion will
be based on linear trend filtering (d¼ 2), unless otherwise
specified.

We expect a disparity in the power of Trendsetter to detect
sweeps resulting from different selection strengths s. The se-
lection strength of test simulation sets strongly influences its
hard sweep classification rates (supplementary fig. S5,
Supplementary Material online), in that simulations of strong
hard sweeps are classified correctly more often than moderate
hard sweeps. Further, from the curves displayed in supple-
mentary figure S6, Supplementary Material online, we find
that Trendsetter exhibits equal power in differentiating be-
tween neutrality and soft sweeps, regardless of the selection
strength. This pattern is also reflected in supplementary figure

FIG. 4. Spatial distributions of regression coefficients (bs) in neutral, hard sweep, and soft sweep scenarios for summary statistics H12 and number of
distinct haplotypes Nhaps, for Trendsetter applied with constant (d¼ 1) and linear (d¼ 2) trend penalties. Trendsetter was trained on simulations
with selection strength s 2 ½0:005; 0:5� sampled uniformly at random on a log scale. Note that the distributions of regression coefficients for
both summary statistics are plotted on the same scale, thereby making the distribution of Nhaps difficult to decipher as its magnitude is small
relative to H12.
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S5, Supplementary Material online, which indicates that se-
lection strength does not lead to substantial differences in
misclassification rates of soft sweeps for the selection
strengths that we have considered—though Trendsetter as
well as other approaches would likely have little ability to
detect and classify soft sweeps from sufficiently weak selected
alleles.

In contrast to the models we have considered so far, both
S/HIC and diploS/HIC include two other classes in their native
states, so that in addition to classes representing neutrality,
hard sweeps, and soft sweeps, there are also classes represent-
ing regions that are linked (or nearby) to hard sweeps and
linked to soft sweeps. The motivation for including these
classes was to increase robustness of these methods to soft
shoulders (Schrider et al., 2015; Schrider and Kern, 2016b;
Kern and Schrider, 2018). We observe a slight increase in
the misclassification of linked-hard regions as soft sweeps
(supplementary fig. S7, Supplementary Material online)
when we test simulations containing linked sweeps using
Trendsetter trained to differentiate among three classes (neu-
trality, hard sweeps, and soft sweeps). We next chose to test
whether incorporating additional (linked-hard and linked-
soft) classes will increase Trendsetter’s robustness to soft
shoulders. Under this five-class model, the spatial distribu-
tions of regression coefficients for linked-sweep regions are
modeled distinctly from sweep regions (supplementary fig. S8,
Supplementary Material online). Although Trendsetter’s abil-
ity to distinguish between hard sweeps and linked-hard
regions is limited, we show that our misclassification of
linked-hard regions as soft sweeps is not dramatically different
from that of S/HIC (supplementary figs. S9–S11,
Supplementary Material online). Because S/HIC and diploS/
HIC were designed to include linked-sweep classes, we test

whether including these classes alters their classification rates
under confounding factors in the Missing Data subsection of
the Results section.

Influence of Population History
Populations tend not to maintain constant sizes, with sizes
instead fluctuating over time (Graci�a et al., 2015; Osborne
et al., 2016; Sherry, 2018). For example, it is widely accepted
that global human populations have undergone different re-
cent demographic events, such as more rapid expansions and
more extreme bottlenecks in European and Asian popula-
tions when compared with Africans (Gravel et al., 2011;
Tennessen et al., 2012). However, population size changes
alter local genomic diversity, and can mimic signatures of
selective sweeps (Galtier et al., 2000; Stajich and Hahn,
2005). It is therefore important to assess the effects of pop-
ulation size change on method performance.

We trained and tested Trendsetter on data simulated un-
der realistic demographic models with recent population
bottlenecks and expansions that are consistent with genetic
variation observed in empirical human data. In particular, we
generated simulation and training data from inferred human
demographic parameters (Terhorst et al., 2017, see Materials
and Methods). In general, Trendsetter performs well when
trained and tested on realistic demographic histories (fig. 5).
Simulations of African populations (LWK and YRI) showed
the lowest rates of misclassification (fig. 5), likely due to their
larger effective sizes and therefore greater neutral haplotypic
diversity (Tenesa et al., 2007). Overall, the classification rates
of simulations using Trendsetter with constant (d¼ 1) trend
filtering (supplementary fig. S12, Supplementary Material on-
line) are virtually identical to those under linear (d¼ 2) trend
filtering (fig. 5). Additionally, classification rates appear to be

FIG. 5. Confusion matrices comparing classification rates of Trendsetter with a linear (d¼ 2) trend penalty under demographic parameters
estimated (Terhorst et al., 2017) from African (LWK and YRI), South Asian (GIH), European (TSI and CEU), and East Asian (CHB and JPT)
populations. Selection coefficients for sweep scenarios were drawn uniformly at random on a log scale of ½0:005; 0:5�.
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correlated with effective population size (supplementary fig.
S13, Supplementary Material online), with larger effective
sizes such as in Africans leading to a greater percentage of
correctly classified simulations.

Though all classifiers performed well under diverse models
of population size change, demographic misspecification (i.e.,
testing on a population history that is different from the one
that was used to train the classifier) leads to high misclassifi-
cation rates if the training and test demographic histories are
highly different (supplementary fig. S14, Supplementary
Material online). We chose to compare classification rates
with demographic misspecifications for populations with
similar (e.g., CHB vs. GIH) and different (e.g., LWK vs. CEU)
histories. For all methods tested, when demographic histories
of populations are similar, classification rates are not dramat-
ically affected. However, when training on a history without a
bottleneck (LWK) and testing on one with a bottleneck
(CEU), Trendsetter (as well as evolBoosting) classified neutral
regions as soft sweeps, whereas S/HIC and diploS/HIC classi-
fied soft sweeps as hard. Interestingly, by training Trendsetter
with a combination of simulations conducted under specifi-
cations for several diverse demographic histories, we are able
to improve classification rates for all test populations when
demographic history is misspecified (supplementary fig. S15,
Supplementary Material online), and a similar performance
rescue would be expected for evolBoosting, S/HIC, and
diploS/HIC. As illustrated in this experiment, increasing the
range of simulation parameters to reflect a more general de-
mographic history may be desirable when training classifiers
in populations for which the demographic history is not well
studied.

Effect of Sample Size
Though under ideal scenarios there will be sufficient resources
for studies to produce large quantities of high-quality se-
quence data, this is not always the case. Instead, studies
may often have access only to data sets with relatively small
sample sizes. The sample sizes of simulated data used to train
Trendsetter should match that of the empirical data set in a
particular study. In our simulation examples, we evaluated the
performance of Trendetter on a modest sample size of 50
diploid individuals. Here, we explore whether an increase or
decrease in the sample size would substantially affect classi-
fication rates of Trendsetter, and find that the sample size
does not have a great effect on classification rates. In partic-
ular, for situations in which we have half the sample size of 25
diploids (supplementary fig. S16, Supplementary Material on-
line), correct classification of hard sweep, soft sweep, and
neutral scenarios was almost identical to samples of 50 dip-
loids (fig. 2), with a slight decrease in the correct classification
of hard sweeps. When we instead use a small sample of ten
diploid individuals, Trendsetter shows a slight decrease in cor-
rect classification rates for all classes, although it is not a
dramatic difference from a sample ten times larger (supple-
mentary fig. S16, Supplementary Material online).

Differences in sample sizes may have more of an effect on
classification rates when sampled populations have gone
through recent expansions or bottlenecks as experienced

by human populations. For our original analysis we sampled
50 diploid individuals from each population. To test the effect
of sample size on the classification rates for a population
known to have gone through a strong bottleneck (CEU) as
well as no bottleneck (LWK), we trained and tested models
with 100 and 25 diploid individuals for LWK and CEU demo-
graphic histories (Terhorst et al., 2017). We find that there is
no appreciable difference in the classification rates between
sample sizes (fig. 5 and supplementary fig. S17,
Supplementary Material online).

Common Confounding Factors
Removal of low-quality genomic regions is necessary when
scanning empirical genomic data for selective sweeps.
Depending on the stringency of filtering, this process can
lead to large fractions of the genome as unclassifiable to avoid
biasing scans of selection (e.g., Kelley et al., 2006; Schrider and
Kern, 2016b). However, it would instead be ideal if such
regions could still be robustly classified despite large percen-
tages of missing sites. We therefore chose to investigate the
robustness of Trendsetter to excessive levels of missing segre-
gating sites (see Materials and Methods). Substantial missing
data in the test data sets did not significantly alter the
Trendsetter classification rates, whereas evolBoosting, S/HIC,
and diploS/HIC incorrectly classified a large percentage of
simulations, including neutral simulations as hard or soft
sweeps (fig. 6 and supplementary fig. S18, Supplementary
Material online). Though we observed that missing data in-
creased the misclassification rate of soft sweeps with
Trendsetter, these soft sweep simulations tend to be classified
as neutral regions (supplementary fig. S18, Supplementary
Material online). Therefore, Trendsetter is more conservative
than other comparable approaches under settings with large
amounts of missing data without explicitly accounting for the
distribution of missing data. The inclusion of linked-sweep
classes in the model leads to most hard sweep, soft sweep,
and neutral simulations with missing data to be misclassified
as either linked hard or linked soft (supplementary figs. S19–
S21, Supplementary Material online). It should be noted that
a linked-sweep classification is regarded as neutral and inclu-
sion of linked classes leads to an increase in the performance
of the method. Importantly, however, S/HIC and diploS/HIC
trained with linked-sweep classes misclassify neutral simula-
tions with missing data as soft sweeps 23.7% and 18.5% of the
time, respectively (supplementary fig. S19, Supplementary
Material online).

The sensitivity of evolBoosting, S/HIC, and diploS/HIC is
due to their reliance on summary statistics computed over
large physical distances, and certain summaries, such as
Tajima’s D or the number of distinct haplotypes, may be
heavily affected by missing genomic regions. It should be
noted that because we randomly removed chunks of data
from simulated replicates, it is possible that data were by
chance not removed from the center of simulations under
neutral scenarios due to their large number of segregating
sites relative to sweep settings. To address this potential issue,
we randomly removed 30% of the SNPs within the central
1,010 SNPs for each neutral replicate simulation and applied
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Trendsetter to the central 1,010 SNPs after filtering, thereby
mimicking the application of Trendsetter in a genomic region
with extensive missing data. We find that Trendsetter retains
its high robustness even under this scenario (supplementary
fig. S22, Supplementary Material online).

However, as indicated by Kern and Schrider (2018), it is
also possible to train classifiers with simulations that model
the distribution of missing data to account for this confound-
ing factor. To test this idea, we trained Trendsetter,
evolBoosting, S/HIC, and diploS/HIC on simulations with sub-
stantial missing data (i.e., 30% of segregating sites missing as
described in the Materials and Methods section). Accounting
for the distribution of missing data when training the classi-
fiers rescued the accuracy of all methods under this scenario,
and also led to a slight boost in the overall classification rates
for Trendsetter (fig. 6 and supplementary fig. S23,
Supplementary Material online).

In addition to missing data, background selection is a ubiq-
uitous factor (e.g., McVicker et al., 2009; Comeron, 2014) that
can leave similar genomic signatures as selective sweeps
(Charlesworth, 2013; Nicolaisen and Desai, 2013), and which
has been demonstrated to mislead sweep-detection
approaches (e.g., Huber et al., 2016). We examined two dif-
ferent scenarios of background selection—one in which a
single centrally located 11-kb protein-coding gene with
strongly deleterious alleles arising continuously is flanked by
noncoding genomic regions (denoted Central gene BGS), and
another in which potentially functional genomic regions are
scattered throughout a 1.1-Mb genomic region, with the spa-
tial distribution and distribution of fitness effects of deleteri-
ous alleles inspired by their respective distributions in humans

(denoted Empirical-Based BGS) as described in the Materials
and Methods section.

Trendsetter, S/HIC, and diploS/HIC are relatively robust to
both forms of background selection (fig. 7 and supplementary
fig. S24, Supplementary Material online), with Trendsetter
demonstrating slightly better performance than S/HIC and
diploS/HIC as it almost always classifies background selection
as neutral. In contrast, S/HIC and diploS/HIC sometimes clas-
sify regions of background selection as soft sweeps, and
evolBoosting almost always classifies background selection
as a soft sweep. It is important to note that S/HIC and
diploS/HIC likely classify some background selection simula-
tions as soft sweeps because we have not included the two
linked-sweep classes that they generally employ. The inclu-
sion of such classes would probably lead to such regions being
classified as a linked sweep, which should be regarded as
neutral. Moreover, the poor performance of evolBoosting is
due to Tajima’s D being the feature of greatest importance for
all windows in the trained classifier, which can be misled by
background selection as it can generate distortions in the site
frequency spectrum that are similar to sweeps (Charlesworth,
2013; Nicolaisen and Desai, 2013).

We also examined a modification to the Central gene BGS
scenario, by decreasing the recombination rate in the cen-
trally located 11-kb genic region by 100-fold (denoted Central
gene BGS with low recombination), which is meant to simulate
a massive reduction in haplotypic diversity within the central
genic region as strongly deleterious mutations arise in the
region. We find that classification rates for all methods de-
crease by only a few percentage points under this scenario
(supplementary fig. S24, Supplementary Material online). This

FIG. 6. Probability of misclassifying neutral regions with extensive missing data as a sweep for various methods, under a constant-size demographic
history. Each panel compares the combined probability of any sweep (hard or soft) under simulations with missing data (probability of false signal)
to the same probability under neutral simulations (false positive rate) for scenarios in which missing data are (right) or are not (left) accounted for
when training a classifier to compute the probability of a false signal. All methods were trained with three classes: neutral, hard sweep, and soft
sweep.
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set of background selection simulations demonstrates that
Trendsetter, S/HIC, and diploS/HIC are robust to typical as
well as strong background selection, and robustness of all
methods could likely be improved by including an additional
class for background selection (Schrider and Kern, 2016b).

Another potential confounding factor is the fluctuation of
recombination rate across the genome, as recombination rate
changes can influence haplotypic diversity and therefore im-
pact sweep detection. To examine the influence of this factor
on sweep detection and classification, we simulated genomic
regions with lower (r ¼ 5� 10�9) and higher
(r ¼ 5� 10�8) recombination rates compared with the re-
combination rate (r ¼ 10�8) used to simulate the training
data. We find that both increasing and decreasing recombi-
nation rates leads to high misclassification rates (supplemen-
tary fig. S25, Supplementary Material online). In general,
regions of lower recombination typically lead to an increase
in the rate of misclassifying soft sweeps as hard sweeps across
all compared methods. In contrast, higher recombination rate
regions lead to an increase in rates of misclassifying hard
sweeps as soft sweeps across all methods. Moreover,
Trendsetter and evolBoosting also have an elevated rate of
misclassifying soft sweeps as neutral regions. These results
suggest that accounting for recombination rate variation
when training a classifier is highly important, as not consid-
ering a range of recombination rates could lead to misclassi-
fication of the types of identified sweeps.

Application to Empirical Data
Global human populations have encountered a number of
diverse environments in their past, likely leading to various

adaptive pressures experienced across populations (Sabeti,
Schaffner, et al., 2006; Hancock et al., 2008). For this reason,
we sought to identify genomic regions that are likely candi-
dates for recent selective sweeps in different populations.
Because our results on recombination rate changes on simu-
lated data indicated that Trendsetter is not robust to recom-
bination rate variation when it is not directly accounted for in
the training step, we simulated training replicates in which
recombination rates were drawn from an exponential distri-
bution with mean 10�8 and truncated at three times the
mean as in Schrider and Kern (2017). We also show that
classifiers are reasonably well calibrated for demographic his-
tories of all populations that we consider in our empirical
analysis after training with recombination rate variation (sup-
plementary fig. S26, Supplementary Material online).

Classification of populations from the 1000 Genomes
Project (The 1000 Genomes Project Consortium, 2015)
showed in general that recent hard sweeps are relatively
rare, as has been previously demonstrated in humans and
other species (e.g., Garud et al., 2015; Schrider and Kern,
2017). For our empirical scan we classify every fifth autosomal
SNP, beginning from the center SNP in the 101th window
(505th SNP) as described in the Application to Empirical Data
subsection of the Materials and Methods section. We com-
pute the fraction of autosomes classified as a certain class as
the fraction of classified SNPs belonging to that class. Between
0.00% and 1.83% of each chromosome was classified as a hard
sweep, and between 4.61 and 12.95% was classified as soft
when we trained Trendsetter using demographic parameters
inferred by Terhorst et al. (2017) (supplementary tables S1–
S3, Supplementary Material online). Trendsetter also detected

FIG. 7. Robustness of misclassifying genomic regions undergoing background selection for various methods, under a constant-size demographic
history and background selection parameters (number, lengths, and distribution of functional sites as well as distribution of fitness effects) drawn
from a distribution based on human data (see Materials and Methods). (Left) Classification rates for regions evolving under background selection.
(Right) Probability of misclassifying regions evolving under background selection, by comparing the combined probability of any sweep (hard or
soft) under simulations with background selection (probability of false signal) to the same probability under neutral simulations (false positive
rate). All methods were trained with three classes: neutral, hard sweep, and soft sweep, with selection coefficients for sweep scenarios drawn
uniformly at random on a log scale of ½0:005; 0:5�.
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genes previously identified as hard sweeps, such as EDAR in
CHB (Bryk et al., 2008). Supplementary figure S27,
Supplementary Material online, shows the probability of a
hard sweep under Trendsetter across the region on chromo-
some 2 surrounding EDAR in the seven global populations
considered, and displays a clear peak under the selected gene
EDAR in the East Asian (CHB and JPT) populations. By exam-
ining the values of the summary statistics calculated in the
region containing EDAR for the Han Chinese (CHB) popula-
tion (supplementary fig. S27, Supplementary Material online),
we see that there are clear decreases in the values of p̂, num-
ber of haplotypes Nhaps, and H2=H1, as well as increases in the
values of H1 and H12, providing support for the strong hard-
sweep classification in this region (supplementary fig. S27,
Supplementary Material online). We also find that the LCT
gene, which is classified as a soft sweep in the CEU population,
shows similar patterns of summary statistics in the region of
selection (supplementary fig. S28, Supplementary Material
online). Although the region surrounding LCT has been pre-
viously classified as a hard sweep (Peter et al., 2012), a more
recent study by Schrider and Kern (2016b) also classifies the
region surrounding LCT as soft. Moreover, we identify as soft
sweeps many genes previously hypothesized to be under pos-
itive selection, such as TRPV6 (supplementary fig. S29,
Supplementary Material online), PPARG, and EPHB6 (Akey
et al., 2004). TRPV6 was also discovered by Peter et al.
(2012), but was not classified as either hard or soft.

We also uncover a number of novel candidate sweeps. For
many genes classified as positively selected in a population,
these genes are also classified as under positive selection in
other human populations. Among these are cancer-related
genes, such as BRCA1 and FBXW7. BRCA1 was classified as a
soft sweep in East Asian (CHB and JPT), South Asian (GIH),
and European (CEU and TSI) populations (supplementary fig.
S30, Supplementary Material online). The distribution of sum-
mary statistic values used to classify this region also display
expected sweep patterns (supplementary fig. S30,
Supplementary Material online). Moreover, FBXW7, a tumor
suppressor gene in which mutations are associated with co-
lorectal, ovarian, and liver cancers (Jardim et al., 2014), was
classified as a soft sweep in six (LWK, GIH, TSI, CEU, CHB, and
JPT) out of the seven populations that we evaluated (supple-
mentary fig. S31, Supplementary Material online).
Interestingly, Schrider and Kern (2017) also reported that a
large number of genes they determined to be influenced by a
sweep have been associated with cancer. Furthermore, there
exists prior evidence of positive selection acting on cancer-
related genes, such as BRCA1 (Lou et al., 2014), which may
help explain the high percentage of cancer-related genes
flagged as candidate sweep targets by Trendsetter.

In addition to signals over specific genes, we observe in
general that regions classified as a sweep tend to be shared
across populations. Specifically, we find that genomic regions
classified as either hard or soft sweeps tend to be classified as
the same sweep class in other populations. To quantify this
observation, we measure the extent to which sweeps signals
in one population are also found in other populations. In
particular, we computed the fraction of nonoverlapping 10-

kb genomic segments classified as a soft (hard) sweep in a
given population that are also classified as a soft (hard) sweep
in another population. We find that populations share more
soft sweeps with populations from the same geographic re-
gion than with populations from other regions (fig. 8), most
likely resulting from shared ancestry rather than convergent
evolution. The African populations (LWK and YRI) form a
cluster of shared sweeps as do the East Asian (CHB and JPT)
and separately, European (TSI and CEU) populations.
European populations also form a sharing cluster with the
South Asian population GIH. Although the proportions are
much higher when quantifying shared hard sweeps (supple-
mentary fig. S32, Supplementary Material online), the pat-
terns of sweep sharing are similar to that of soft sweeps
(fig. 8) and mimic the sharing of haplotypes across globally
distributed human populations observed by Conrad et al.
(2006).

Discussion
In this article, we demonstrated the ability of Trendsetter to
localize and classify selective sweeps from the spatial distri-
bution of summary statistics in the genome. In its current
form, Trendsetter uses information from six different sum-
mary statistics to differentiate among three classes—
neutrality, hard sweeps, and soft sweeps. Based on this for-
mulation of Trendsetter, we found that it is resistant to com-
mon issues such as missing genomic segments (fig. 6 and
supplementary fig. S18, Supplementary Material online) and
background selection (fig. 7 and supplementary fig. S24,
Supplementary Material online). This robustness to such con-
founding factors is likely due to its reliance on haplotype-
based statistics such as H1, H12, and H2=H1 (Garud et al.,
2015), to its use of SNP-based windows for calculating sum-
mary statistics, and to the use of the spatial distribution of

FIG. 8. Heatmap representing the sharing of soft sweep classifications
across worldwide human populations. The cell at row j and column k
represents the proportion of nonoverlapping 10-kb genomic seg-
ments classified as a soft sweep in the population at row j that are
also classified as a soft sweep in the population at column k. By def-
inition, this heatmap is asymmetric.
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each summary statistic. Other approaches that rely on statis-
tics that emphasize the number of segregating sites or the site
frequency spectrum, such as Watterson’s ĥW or Tajima’s D, in
a window may have higher power to detect sweeps, but also
exhibit higher misclassification error rates, leading to regions
harboring extensive missing data or undergoing background
selection to be mistaken as candidate sweep regions (figs. 6
and 7 and supplementary fig. S18, Supplementary Material
online). However, as we demonstrated in supplementary fig-
ure S23, Supplementary Material online, this lack of robust-
ness to, for example, missing data may be remedied by
training models with simulations including missing data.

Flexibility in the choice of summary statistics allows
Trendsetter as well as other complementary approaches
(Lin et al., 2011; Schrider and Kern, 2016b; Kern and
Schrider, 2018) to be easily applied to a number of settings,
and for this reason, particular choices of summary statistics
for other approaches may also lead to greater robustness to
confounding factors but with likely power trade-offs.
Trendsetter’s ability to correctly classify sweeps and distin-
guish sweeps from neutrality increases when we trained a
model with S/HIC and diploS/HIC-specific statistics calculated
in 110 contiguous windows each of length 10 kb (supplemen-
tary fig. S33, Supplementary Material online). We chose this
large number of windows so that we could learn the spatial
distribution of each summary statistic. However, if we nor-
malize each statistic across the set of windows it is calculated
(as in S/HIC and diploS/HIC; Schrider and Kern, 2016b; Kern
and Schrider, 2018), misclassification between hard and soft
sweeps increases (supplementary fig. S33, Supplementary
Material online, right column).

The types of summary statistics employed by Trendsetter
contribute to the reason for its robustness to missing data.
We tested whether training Trendsetter with the comple-
mentary sets of summary statistics as used by S/HIC or
diploS/HIC would affect Trendsetter’s classification rates un-
der missing data. In contrast to the patterns displayed by S/
HIC (supplementary fig. S18, Supplementary Material on-
line), we observed a larger percentage of misclassifications
toward soft sweeps rather than toward hard sweeps, when
we use nonnormalized versions of S/HIC-specific statistics
(supplementary fig. S34, Supplementary Material online). If
we chose to instead normalize statistics, then misclassifica-
tion to hard sweep increases (supplementary fig. S34,
Supplementary Material online). Moreover, these latter
results mirror those observed for S/HIC (supplementary
fig. S18, Supplementary Material online), which uses the
identical normalization procedure for summary statistics
computed across a genomic region. Similarly, we observe
that simulations with missing data tend to be misclassified
as hard when Trendsetter employs normalized versions of
diploS/HIC statistics (supplementary fig. S34, Supplementary
Material online), computed in an analogous manner with
110 contiguous windows each of length 10 kb.

As in supplementary figure S23, Supplementary Material
online, using the set of S/HIC and diploS/HIC statistics com-
bined with training under missing data would likely lead to a

powerful classifier that is also robust to missing data.
Interestingly, when we also trained and tested Trendsetter
using diploS/HIC-specific summary statistics with demo-
graphic misspecifications as described in the Influence of
Population History section, we found that when Trendsetter
is trained and tested with normalized diploS/HIC-specific sta-
tistics (supplementary fig. S35, Supplementary Material on-
line), we recapitulate the classification patterns of diploS/HIC
trained and tested under demographic misspecification (sup-
plementary fig. S14, Supplementary Material online).
Therefore, the choice of the set of summary statistics may
have a large influence on the behavior of a sweep classifier,
regardless of the diverse set of approaches (e.g., random for-
ests, neural networks, or regularized regression) employed to
model the data.

We also tested the classification rates of Trendsetter when
operating on S/HIC- and diploS/HIC-specific statistics for
K¼ 5 classes, representing neutral, hard sweep, soft sweep,
linked to hard sweep, and linked to soft sweep scenarios, used
by those methods, calculated in 110 contiguous 10-kb-long
windows. Trendsetter using Trendsetter-specific statistics (sup-
plementary figs. S9–S11, Supplementary Material online)
exhibited comparable performance to Trendsetter using
diploS/HIC- and S/HIC-specific statistics (supplementary fig.
S36, Supplementary Material online). Testing the classification
of simulations with missing data we find that most neutral
simulations missing data are classified as linked to a soft
sweep (supplementary fig. S37, Supplementary Material on-
line), though there is also a large misclassification rate toward
soft sweeps. We also examined the magnitude and spatial
distribution of regression coefficients for Trendsetter using
diploS/HIC-specific statistics to evaluate feature importance
(supplementary fig. S38, Supplementary Material online).
Based on the magnitudes of the regression coefficients, we
find that Fay and Wu’s H and Watterson’s ĥW are the most
informative, whereas Tajima’s D is among the least informa-
tive. Moreover, the peaks of the curves modeling each sum-
mary statistic tend to be narrow, and identify the location of
the polymorphism closest to the selected site from the sweep
classes. Importantly, we computed these summary statistics
across data encompassing entire 1.1-Mb genomic regions
when compared with the SNP-based summary statistics
that we employed earlier where we used information across
only 1,010 SNPs. The SNP-based method of calculating sta-
tistics often used information from less than one-third of the
1.1-Mb genomic region.

Unphased multilocus genotype data are more widely avail-
able than phased haplotype data, as it can be difficult to phase
genotypes for a number of study systems (Browning and
Browning, 2011). Although it is possible and common to infer
haplotypes from genotype data, this process is not error free
(Browning and Browning, 2011), and these errors may have
deleterious effects on downstream efforts to localize selective
sweeps. However, it should still be possible to uncover and
classify sweep regions without phased haplotypes (e.g., Harris
et al., 2018; Kern and Schrider, 2018). Substituting haplotype-
based summary statistics with their unphased multilocus
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genotype analogs (see Materials and Methods), we find that
Trendsetter can still differentiate well among hard sweeps, soft
sweeps, and neutrality (supplementary fig. S39,
Supplementary Material online, six summary statistics). By
examining the spatial distributions of regression coefficients
for each summary statistic (supplementary fig. S40,
Supplementary Material online), we find that the inferred
model relied heavily on the number of multilocus genotypes
to make predictions, with the other summary statistics pro-
viding marginal information conditional on the number of
multilocus genotypes. For settings in which phased haplo-
types cannot be obtained, a hybrid approach of incorporating
some additional summary statistics computed by diploS/HIC
(e.g., measures of the distribution, such as variance, skewness,
and kurtosis of differences between pairs of individuals) in
SNP-based rather than physical distance-based windows may
aid classification. Incorporating these statistics slightly
increases the overall accuracy (supplementary fig. S39,
Supplementary Material online; nine summary statistics)
and shows similar feature importance patterns as when
Trendsetter is trained without these statistics (supplementary
fig. S41, Supplementary Material online).

In some scenarios (e.g., for H1 in supplementary fig. S4,
Supplementary Material online), the distribution of regression
coefficients for particular summary statistics exhibited sudden
increases or decreases in magnitude near edges of their ge-
nomic range. This phenomenon may be due to the fact that
the coefficients at the ends of this range are only constrained
from one side by Trendsetter, whereas coefficients near the
center are constrained on both sides. To verify that these
changes in magnitude at the edges do not affect the classifi-
cation rates of Trendsetter, we discarded five coefficients (and
associated summary statistic values) at each end to make
predictions after the model was trained, thereby removing
these potential artifacts. We tested the model whose coeffi-
cients are depicted in supplementary figure S4,
Supplementary Material online, without the first 5 and last
5 predictors for all summary statistics, and find that there is
virtually no difference in classification rates from when they
are included in the model (compare fig. 2 and supplementary
fig. S42, Supplementary Material online).

Our experiments show no extensive difference in classifi-
cation rates when we apply a constant (d¼ 1) versus linear
(d¼ 2) trend filter penalty for differentiating among hard
sweeps, soft sweeps, and neutrality (supplementary figs. S38
and S43–S45, Supplementary Material online). However, it is
possible that for differentiating between other selection set-
tings, such as in scenarios of adaptive introgression (Racimo
et al., 2017) or in distinguishing between partial sweeps and
recent balancing selection, the application of a linear rather
than constant trend filter penalty will create a meaningful
difference between classification rates. Regardless of the form
of the trend filter penalty, we have shown that Trendsetter is
flexible and has comparably high power to a number of pre-
viously published statistical learning approaches for single
populations. Moreover, the model learned by Trendsetter is
a set of curves modeling summaries of genetic variation, and

it is therefore easy to visualize the broad spatial distribution of
summary statistic importance by construction.

Implementing Trendsetter as we have generally considered
in this article with the six summary statistics r2, p̂; Nhaps, H1,
H12, and H2=H1 calculated in 201 overlapping windows is
unable to identify the beneficial polymorphism. Scans across
simulations of hard sweeps under a constant-size demo-
graphic history with the beneficial mutation arising in the
center of a 1.1-Mb region pinpoint the mean physical dis-
tance of the classified polymorphism with highest sweep
probability to be 2,093 bases away from the center, with
the largest physical distance of 331 kb. The ability to localize
adaptive regions in empirical data would also likely be af-
fected by additional factors, such as nonequilibrium demo-
graphic history, recombination rate fluctuation, and missing
data. However, incorporation of summary statistics such as
iHS (Voight et al., 2006) and nSL (Ferrer-Admetlla et al., 2014)
may more precisely localize the SNP under selection. These
statistics, although haplotype based, provide a value at every
SNP and are by construction not window based, in con-
trast to the haplotype-based statistics employed in this
article. Moreover, incorporating information from an ad-
ditional population (e.g., Sugden et al., 2018) would also
allow us to apply powerful cross-population haplotype-
based statistics such as XP-EHH (Sabeti, Varilly, et al.,
2007) that are also based on population differentiation,
and that compute a single value at each SNP. We note
that large numbers of summary statistics may be provided
to the model with our incorporation of a lasso penalty to
help alleviate issues with over-fitting (Tibshirani, 1996).
Finally, we show how Trendsetter can easily use any sum-
mary statistics specified by the user, which allows
Trendsetter to be adaptable to a variety of selection sce-
narios users may be interested in. A Python script imple-
menting Trendsetter as well as probabilities of neutral,
hard sweep, and soft sweep classes for polymorphisms
classified in our empirical scans can be downloaded at
http://www.personal.psu.edu/mxd60/trendsetter.html.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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