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How body motion influences 
echolocation while walking
Alessia Tonelli  1, Claudio Campus  1 & Luca Brayda  2

This study investigated the influence of body motion on an echolocation task. We asked a group of 
blindfolded novice sighted participants to walk along a corridor, made with plastic sound-reflecting 
panels. By self-generating mouth clicks, the participants attempted to understand some spatial 
properties of the corridor, i.e. a left turn, a right turn or a dead end. They were asked to explore the 
corridor and stop whenever they were confident about the corridor shape. Their body motion was 
captured by a camera system and coded. Most participants were able to accomplish the task with the 
percentage of correct guesses above the chance level. We found a mutual interaction between some 
kinematic variables that can lead to optimal echolocation skills. These variables are head motion, 
accounting for spatial exploration, the motion stop-point of the person and the amount of correct 
guesses about the spatial structure. The results confirmed that sighted people are able to use self-
generated echoes to navigate in a complex environment. The inter-individual variability and the quality 
of echolocation tasks seems to depend on how and how much the space is explored.

Echolocation is the ability to acquire spatial information from the reflection and the timber of sounds. It is well 
known that humans can develop such skills1–3, which can be learned by blind4,5 and sighted individuals6,7. In the 
last few years a number of studies have investigated the underpinning of sounds that can be used for locomo-
tion in the absence of vision, and most of these studies have tested echolocation. Rosenblum et al.8 showed how 
sighted blindfolded participants were able to detect and walk up to an estimated position of a wall, finding that 
participants were more accurate when emitting sounds during motion than when standing still, for four distances 
(around 90 cm, 180 cm, 275 cm and 365 cm).

Kolarik et al.9, assessed the ability of blindfolded sighted people to detect and circumvent an obstacle using 
mouth click sounds, compared to visual guidance. They showed that auditory information was sufficient to guide 
participants around the obstacle without collision, but there was an increase of movement time and the number 
of velocity corrections (number of changes in in forward velocity along the path) compared to visual guidance. 
Moreover, in a second study, Kolarik et al.10, used the same task to compare the performance between blindfolded 
sighted, blind non-echolocators and one blind echolocator using both self-generated sounds and an electronic 
sensory substitution device (SSD). They found that using audition, blind non-echolocators navigated better than 
blindfolded sighted with fewer collisions, lower movement times, fewer velocity corrections and greater obsta-
cle detection range. Instead, the performance using a SSD between the two groups was comparable. The expert 
echolocator had better performance than the other two groups using self-generated clicks, but was comparable to 
the other groups using SSD. All three groups gave 100% correct responses to detect and circumvent an obstacle 
using SSD. These findings support the hypothesis of enhancement: vision loss leads to enhanced auditory spatial 
ability due to an extensive experience and reliance on auditory information11,12 and cortical reorganization13–15.

Similar results were found by Fiehler et al.16: when listening to pre-recorded binaural echolocation clicks 
generated while a person was walking along a corridor, blind expert echolocators performed better than sighted 
novice participants in judging the main direction of the corridor (left, right or straight ahead). Even if sighted 
participants received training, their performance was around chance level.

Head movements during echolocation seem to have a crucial role5. Wallmeier and Wiegrebe17, showed how 
head rotations during echolocation can improve performance in a complex environmental setting. They also 
reported that during echolocation participants tend to orient the body and head towards a specific location18.

Here, we used the task of Fiehler et al.16, but instead of using pre-recorded echolocation clicks, we asked 
participants to freely perform the task in a real environment, while recording their body motion. Specifically, 
we installed inside a reverberant room a real corridor made of sound-reflecting panels. We asked participants 
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to judge a spatial property of the corridor, i.e. whether it was turning left, right or had a dead end. Importantly, 
participants were free to stop anywhere they wished when guessing the shape of the corridor.

First, we wanted to test whether novice blindfolded sighted participants were able to perform such a task. 
We also wished to compare whether the performance obtained in the study of Fiehler et al.16 was possibly influ-
enced by the use of binaural recordings. We hypothesized, in particular, that understanding spatial properties of 
unknown spaces is modulated by behavioural variables, such as body motion. If this is true, then observing echo-
location in real setups might extend knowledge about how this skill is developed with information that virtual 
setups a priori may exclude. More generally, we sought for body movements that can be overt signs of optimal 
echolocation skills.

To assess this, we used a motion capture system to record and code the kinematics of the participants who 
walked along a corridor while echolocating. First, we took into account several behavioral variables: the average 
and variability of velocity, the duration of motion, the position of each participant in the room at the moment of 
the response, and the motion of the head. Then we tested whether these variables correlated with the percentage 
of correct responses in the three possible shapes, i.e. turn left, right or straight ahead. We derived a predictive 
model that shows how the probability of correct guessing is accounted for by the variables explaining most of the 
behavioural variance. Finally, we recorded a video of the participants while they were performing echolocation 
to monitor the task. From the video we were able to extract the audio and made a qualitative analysis of a typical 
participant, since the main scope of this work regards evaluating kinematics during echolocation.

Materials and Methods
Participants. Nine sighted participants (4 females, with an average age of 27.5 years, SD = 7 years) were 
recruited. All participants gave written informed consent before starting the test. All participants took an audi-
ometric test to check for possible hearing impairments. The test was performed automatically by an audiometer 
(Amplaid A1171), by presenting tones that ranged between 200 Hz and 12 KHz at a stable intensity of 20 dB, while 
asking the participant to press a button when the tone became audible. One of the participants did not pass the 
test and was excluded from the experiment. None of the participants had prior experience in using self-generated 
sounds to perceive objects. The study followed the tenets of the Declaration of Helsinki and was approved by the 
ethics committee of the local health service (Comitato Etico, ASL 3, Genova).

Stimuli. The task was performed in a reverberant room (4.6 m × 6 m × 4 m). The floor of the room made by 
parquet, was completely covered by a 5 mm polyester carpet. The walls were made of concrete, more than 50 cm 
thick and plastered. The room had three doors of solid wood and one window, covered by solid wood panels. 
The high ceiling (about 4 m) was flat. The T60 of the reverberant room was approximately 1.4 seconds. We built 
a corridor (see Fig. 1) composed of 8 panels of poly-methyl methacrylate (PMMA). They were 2 m high and 1 m 
wide and were placed vertically next to each other. Each panel was supported by a metal frame positioned outside 
the corridor, so as not to interfere with the walking task or with sound reflections. The metal frame was provided 
with wheels to facilitate the movement of the panels between the trials.

The corridor was created along the smaller side of the room, so as to use one of the walls (made of concrete) of 
the room as the end of the corridor; to create the side walls we used the panels of PMMA, 4 for each side. The cor-
ridor was 4 m long and 1.1 m wide and was set in three different shapes: opened to the left, to the right or closed 
from both sides (see Fig. 1B for exact dimensions).

To record the body kinematics we used an infrared camera motion system with eight cameras (frame rate 
100 Hz, Vicon Motion Systems, Oxford, UK). The cameras were place along the perimeter of the room at about 
3 meters high (see Fig. 1), so that at least 3 cameras could focus on every corner of the corridor at the same time 
to ensure optimal recordings. Each participant was outfitted with eight lightweight retro-reflective hemispheric 

Figure 1. Experimental set-up. (A) Panel shows the position of the corridor inside the room and the position 
of the motion capture cameras. (B) Panel shows the corridor from above. For the wall at the end of the corridor 
was used one of the wall of the reverberant room (fixed wall). The end point is related just to the training 
session.
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markers (1 cm in diameter). We arranged three markers on the head to form a triangle with the marker on the 
forehead as tip; one marker on each shoulder, one at the level of the breastbone, one on the right elbow and one on 
the right wrist (see Fig. 2). A model of each subject’s marker placement then was calibrated using Vicon’s Nexus® 
software. However, the markers on the elbow and the wrist were not used during the data analysis, because none 
of the participants used finger snaps as echolocation signals.

After the data acquisition, each trial was individually inspected to check the correct uploading of the model 
after the pre-processing. We applied a low-pass Butterworth filter with a 6 Hz cut-off, to smooth the frequency 
response.

Variables related to head and body movements were computed with custom-written Matlab® scripts. The 
definitions of the variables are presented in Table 1.

Specifically, Average velocity (AV) and variability of velocity (VV) were computed by excluding the 
point-to-point trajectory of the participants: only the starting point and the end point location were considered 
and divided by the total motion duration (MD).

Then, the Distance to the Left Side (DLS) and the Distance to the Front (DF) helped to reconstruct where the 
participant stopped with respect to the end of the corridor, highlighting if the stop point was closer to either wall.

Finally, Head movement (HM), Head Movement on the Left (HML) and Head Movement on the Right 
(HMR) accounted for head motion. HM helped to give a general idea of the amount of head movement made 
by the participant, whereas HML and HMR informed about how often the lateral portions of space is explored. 

Figure 2. The kinematic model derived from the motion capture system showing the position of the markers 
on the body.

Variable

Average velocity (AV) Average velocity of the marker on the torso from the starting point to the stop (mm/s)

Variability of velocity (VV) The torso marker was used for standard deviation from the average velocity, from the starting point 
to the stop (mm/s)

Motion duration (MD) The torso marker was used for average duration of movement from the starting point to the stop (s)

Distance left side (DLS) The ended position of torso marker was used to calculate the distance from the left wall (mm)

Distance front (DF) The ended position of torso marker was used to calculate the distance from the front wall (mm)

Head movement (HM) Mean rotation angle of the head with respect to the sagittal plane (deg). Have been used the left and 
right markers of the head.

Head movement on the left (HML) Mean rotation angle of the head with respect to the sagittal plane, only when it is rotated to the left 
(deg). The left and right markers of the head have been used

Head movement on the right (HMR) Mean rotation angle of the head with respect to the sagittal plane, only when it is rotated to the right 
(deg). Have been used the left and right markers of the head.

Table 1. Assessed dependent variables and their descriptions.
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Head position was accounted for by the HML/HMR variable if the head was to the left/right of the sagittal plane 
perpendicular to the shoulders, taken as relative reference.

We located a Go Pro camera (HERO4) between the two Vicon cameras on the left wall (Fig. 1A), so that we 
could record all the area of the corridor.

Procedure. The participants were instructed on how to generate echolocation signals using mouth clicks, 
taking as an example the clicks generated by expert echolocators (recordings were found in the supporting infor-
mation of the paper by Thaler et al.19). They practiced for few minutes to generate sounds as similar as possible to 
each other. Before entering the room of the experiment, all participants were blindfolded, to prevent them gaining 
prior knowledge of the structure of the room and the set up.

First, each participant performed a training session, in which they were brought by the experimenter to the 
‘Start’ point (see Fig. 1B) of the corridor. From that position they were instructed to walk straight through the 
corridor. The participant was free to move: however, in this training session, a heavy box (0.8 × 0.5 m × 0.5m) 
was placed on the ground at the ‘End’ point (see Fig. 1B), 1m from the end wall, to force the participant to stop 
and estimate in 20 s the shape of the corridor: opening to the left, to the right or closed from both sides. The 
participant was not aware of the relative position of the box with respect to the end wall and was always forced to 
respond. If the participant touched the walls of the corridor, the trial was repeated. Each participant performed 27 
trials, 9 for each corridor configuration. No feedback was provided about the correct response.

The experimental and the training sessions were identical, except for the stop point. The stop point was not 
present in the experimental session: here, the experimenter asked each participant to stop as soon as they under-
stood the shape of the corridor and to give right away the answer. The trial was repeated if the participant touched 
the walls of the corridor. Also in the experimental session, each participant performed 27 trials, 9 for each corri-
dor configuration.

Results
We analyzed the kinematics of head and body for the experimental condition only. The partic-
ipants were able to perform the task without collision on 75% of the trials (SD = 15).

In Table 2, we reported the average and the standard deviation of the considered variables (Table 1).
To understand the relationship between the behavioural variables shown in Table 1, we ran a factorial ana-

lyzes. Useing a varimax rotation20 based on the sum of the variance of normalized body weight squares. We 
extracted four factors that explained most of the variance in the data (64.2%, χ2 = 2.7, p = 0.26). We defined these 
factor as Time, Head exploration, Head and Space.

Figure 3 shows the outcome of the factorial analysis, namely the weights of the changes of all the variables 
on the four factors, i.e. the contribution of each variable to the underlying factor. We found that the first factor 
included mainly the variables AV, VV and MD, that are variables related to the time dimension (TIME fac-
tor). The second factor was mainly influenced by variables related to the exploration with the head (HEAD 
EXPLORATION factor): HML, HMR, with a contribution from the spatial factor DF. The third factor was found 
to be almost purely related to head movements (HEAD factor). Instead, the fourth factor is related to the space 
domain (SPACE factor) because of the strong weight of the DF variable.

Considering performance, we checked whether the percentage of correct responses (i.e. the correct guesses 
about the corridor shape) was beyond chance level (i.e. 33%) for both the training and the experimental session 
(see Fig. 4). The percentage of correct responses in the training session was 68.28% (t-test, t7 = 6.7, p < 0,001) 
and for the experimental session was 58% (t-test, t7 = 2.71, p = 0,03), both significantly above the chance level. 
Moreover, we calculated whether there was a relationship between the performance and the type of shape of the 
corridor. One-way Anova with factor SHAPE did not show any significant difference (F2,14 = 1.48, p = 0.26).

Then we tested whether the kinematic variables were related to the participants’ ability to echolocate. To 
this aim, we used the scores of each factor obtained from the factorial analysis and the variable CORRIDOR’S 
SHAPE (open to the left, open to the right, closed) as independent variables in a logistic regression model21 with 
RESPONSE (correct and incorrect) in the echolocation task as dependent variable.

We found a significant main effect for factor HEAD EXPLORATION (χ2 = 8.027, p = 0.004), factor HEAD 
(χ2 = 4.54, p = 0.03) and factor SPACE (χ2 = 14.14, p = 0.0001). Only one significant interaction was found 
CORRIDOR’S SHAPE x factor HEAD EXPLORATION x factor HEAD x factor SPACE (χ2 = 6.15, p = 0.04). The 
TIME factor did not reveal itself to be linked to the RESPONSE. Given the graphic limitation in representing the 
significant interaction, in Fig. 5 we plotted the probability of correct response predicted by the model for each 

Variable Descriptive value (mean, SD)

Average velocity (AV) 272.46 mm/s ± 71.47

Variability of velocity (VV) 124 mm/s ± 28.84

Motion duration (MD) 14.68 s ± 4.88

Distance left side (DLS) 546.95 mm ± 99.99

Distance front (DF) 650.76 mm ± 392.53

Head movement (HM) 21 deg ± 8.94

Head movement on the left (HML) 22.15 deg ± 9.16

Head movement on the right (HMR) 19.85 deg ± 8.59

Table 2. Report the mean and SD for each variable analyzed.
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level of the variable CORRIDOR’S SHAPE in relation of each single factor, i.e. the variation of the slope is related 
to the variation of the probability to give a correct response.

Importantly, the strongest predictor of performance (i.e. the steepest slope) was the SPACE FACTOR. More 
specifically, from Fig. 5 we derive that the highest probability of correctly guessing the corridor shape is associated 
with negative values of the SPACE FACTOR, therefore with larger values of the DF variable and lower values of 
the MD variable: the earlier the spontaneous stop point (i.e. the farther away from the end wall), the better the 
guess. Specifically, the participants stopped on average at 0.65 m (sd = 0.29) from the end of the corridor.

To further check whether this result was unbiased with respect to the corridor shape, we then calculated 
whether there was a significant difference of DF in function of the corridor shape (Fig. 6). As expected, a one-way 
Anova with factor SHAPE did not show any significant difference (F2,14 = 2.35, p = 0.12).

Since the HEAD EXPLORATION factor appears to be important, we hypothesized that such factor could be 
intertwined with the vocal emissions. That is, if acoustic knowledge about the environment (specifically about the 
shape of the corridor) is gained through head exploration, then a significant part of clicks (i.e. more than 50%) 
should be emitted while the head is turning. Therefore, in a sub-group of participants (n = 4) we investigated 
whether the “vocal emissions” were used during the exploration with the head. We considered significant head 
motion both when the participant was walking and when he/she was standing still. Specifically, we synchro-
nized the beginning of the audio recordings to the head motion (variable HM of Table 1) and we considered the 
intervals in which the head had an aperture greater than ± 5 degrees with respect to the sagittal plane. For each 

Figure 3. Outcome of the factorial analysis. Weights of each variable on each factor are shown. Only weights 
over 0.4 were considered, because they explain the majority of the variance (around 16%)31.

Figure 4. Percentage of correct responses for the echolocation task. (A, left) Percentage of correct guesses about 
the corridor shape during the training session (yellow) and the experimental session (in magenta). The whiskers 
are the standard errors of the mean. (B, right) Percentage of correct guesses in the experimental session, split for 
each corridor shape: closed (red), right (green) and left (blue).



www.nature.com/scientificreports/

6SCIenTIfIC REPORts |  (2018) 8:15704  | DOI:10.1038/s41598-018-34074-7

interval we counted the numbers of vocal emissions to calculate the percentage of clicks produced during head 
motion (example of trial Fig. 7A). Most of the “vocal emissions” (62% - Fig. 7B) were produced during the move-
ment of the head (t-test two tails against the chance level of 50%, t = 3.22, p = 0.048).

Discussion
The novelty of this study lies in the fact that, in addition to identifying kinematic variables of echolocation, we 
have identified the influence and the interaction of each kinematic variables with echolocation performance. The 
major points of this study were to test: (1) whether sighted people are able to perform an echolocation task in a 
complex real environment, without using recordings. We tried to maintain the environment as much ecological 
as possible. i.e. performing the task in a reverberant room, without no sound-absorbing materials attenuating 
internal or external noises, and using different kind of sound-reflecting materials (the wall along the corridor 
were made by Plexiglas, instead the wall at the end of the corridor was made by concrete); (2) whether some 
behavioural variables, such as average and variability of velocity, motion duration, distance from the end wall, 
head movements etc. (Table 1), might be correlated with the percentage of correct responses in naïve sighted 
echolocators into such a real environment.

Previous studies already have shown that sighted people were able to learn echolocation in a brief amount of 
time, by performing tasks as detection, size perception or acuity discrimination6,7,22,23 that involve sound reflec-
tions from a restrained set of objects. None of these studies tested the ability to perform in more complex scenar-
ios, with reflecting walls in multiple configurations and by granting freedom to move the whole body.

Figure 5. Linear regression linking behavioral factors and performance, showing the probability of the correct 
response predicted by the model for each level of the variable CORRIDOR’S SHAPE, in relation to each factor 
that presents significant interaction in the logistic regression.

Figure 6. Average distance (with standard errors of the mean) from the bottom of the corridor at which 
participants spontaneously stop, for each corridor shape.
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Our first result is that sighted people are able to perform a complex auditory task such as understanding the 
shape of a corridor. Unlike the behavioral results of Fiehler et al.16, where the performance of sighted people was 
at chance level, we found that sighted people do accomplish such a task.

Probably the different result is due to the modality in which the task was completed: in Fiehler’s study, binaural 
recordings were used (since the main purpose of the study was to investigate the neural correlate using fMRI); 
instead, in our study the participants could link acoustic, proprioceptive and vestibular perceptual cues, therefore 
possibly integrating multiple sources of information17 and sensory-motor association24. It should be emphasized 
that, although we have tried to make the experiment as much realistic as possible under real conditions, the 
experiment presents some limitations such as the use of the same reflecting material for the side walls; the use 
of different kind of materials could increase or decrease the performance. We speculate that if we had used less 
sound-reflecting materials, such as plasterboards, the participants would have obtained less acoustic informa-
tion from the echoes. In this study we chose to obtained as much information as possible from reflected sounds 
because all our participants were completely naïve to echolocation tasks. We do not exclude that experienced 
participants might echolocate well even with less sound-reflecting walls. In this vein, blind persons, that start 
undergoing echolocation training, with special emphasis on people who have recently lost their sight, might take 
benefit from setup such as the one considered in this study.

The limited size of the room did not allow to change the starting point: and in some occasions the participants 
could have relied on other information besides echoes to reach the endpoint, like for example count the steps to 
made to reach the stop point. This is true especially for the training session in which they path to cover was always 
identical for each trial. This is not completely for the experimental session because in the last case the task was 
to stop as soon as the participant understood the shape of the corridor and not to reach by her/himself the end 
point, settled in the training session, so the path covered could vary considerably between participants and trials.

Furthermore, in a sub-sample of participants, we checked when the “vocal emissions” were produced. We 
found that the majority of signals were associated with head motion. This result suggests that active exploration 
of the environment with the head was associated to an acoustic exploration (“vocal emissions”). This result is not 
excluding that knowledge can be gained when the head is clicking along the sagittal plane, but suggests that the 
act of emitting clicks is more frequently performed when the head is rotated. Indirectly, this explains why head 
rotation modulated the correctness of responses: it can be reasonably argued that head motion is relevant to gain 
knowledge about environmental features, because it is during head motion that vocal emissions are produced and 
therefore acoustic feedback is obtained. Note that our participants received no prior instructions about the role of 
the head, therefore our results describe spontaneous exploration strategies.

Regarding the kinematics data, based on our results, we identify three main factors that might influence echo-
location performance: time, space and head motion.

Motion duration seems not to influence echolocation performance. Our first behavioural factor 
was related to time. It is positively correlated with the average velocity and its variations and, as expected, nega-
tively with the duration of motion.

We did not find an influence of completion time in the amount of correct responses, that is fast body motion 
seems not related to a better understanding of an unknown environment. A similar result appears when eval-
uating travel aids such as white canes, that on one hand reduce collisions but do not necessarily decrease task 

Figure 7. (A) Example of trial where the amount of Head Motion (blue line, in degrees) is depicted across 
time. Positive/negative values of HM (in degrees) implies that the head is turning more to the left/right. The 
corresponding “vocal emissions” (squares) are depicted for duration of the whole trial. The squares in green 
represent the “vocal emissions” performed during the head movement, instead the ones in red are the “vocal 
emissions” when the head had an aperture minor. The dashed black lines represent the aperture of ±5 degrees. 
(B) The green bar plot represents the average percentage of “vocal emissions” produced during head motion. 
Black symbols are the percentages for each participant. The error bar shows standard deviation.
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completion time25. As well, completion time seems the weakest predictor of performance when both blind and 
visually impaired persons get explicit feedback on spatial properties of unknown paths26. Considering that head 
motion seems important to correctly guess the corridor shape, we interpret that exploring the acoustical proper-
ties by turning the head takes time: the amount of information with head exploration may force the participant 
to pay a price in terms of completion time, that therefore seems not relevant as a performance predictor. Further 
investigation on how effectively the body moves, or stops and then spends time, while acquiring information, 
is necessary to clarify this aspect. On the same lines, velocity seems not to be related to performance: our two 
variables related to the average body velocity and its variations are only accounted for by the time factor, which 
does not predict performance. As a counter-proof, they are absent from any other factor having an effect on 
performance. Our results find a resonance in current rehabilitation practices, where results measured by travel 
time are somewhat inconclusive and do not reflect the obtained benefits of orientation and mobility treatments27.

Head motion appears crucial for correct echolocation. Our second behavioral factor was related to 
head exploration. It is positively correlated with the average angle when the head is rotated to the left of the body 
midline (i.e. net of how the shoulders are rotated) and, as expected, negatively when the head is only rotated to 
the right. Interestingly, the factor accounts for almost equivalent amounts of these two variables, meaning that the 
influence of head motion seems not to be biased by some sort of lateralization. This well reflects our experimental 
setup, where participants started from the center of the corridor and had equal chance of finding a right-ended or 
left-ended corridor. Intuitively, they did not need to turn their head more to the right or to the left. When inves-
tigating the link between the factor related to head motion and performance, higher values of this factor reflect a 
probabilistic higher understanding of the environment. Conversely, when values of the factor become negative, 
the guess rate is close to chance level: the wider the lateral head movements, the better the guess.

Similar considerations hold for the third behavioural variable, mainly related to the mean head rotation angle, 
that is the only variable with a significant weight. This factor highlights the importance that head movements have 
during echolocation in line with previous results independently from the environment and the kind of task per-
formed5,18. Taken together, these results are important because they emphasize that the head has a key role. Active 
head exploration therefore seems necessary to understand structural properties from echolocation. A limitation 
of our study is that it treats sighted persons only. The link between active head motion and echolocation perfor-
mance of echolocation experts is not treated here. Although we cannot claim that our results are immediately 
applicable to blind participants, that in general show reduced head motion compared to sighted persons28, the 
head could still play a role. Whether the amount of head motion, or the density of vocal emissions during head 
motion are important factors for echolocators it is still unknown. Importantly, other evidence suggest to treat 
sensorial deprived children with exercises based on head motion29. Therefore, teaching blind persons to actively 
move their head while echolocating might be useful to induce a behaviour correlated with the collection of greater 
acoustic information.

Space: we don’t stop by chance. We found a significant link between the spontaneous stop point and the 
probability of correct guessing, with people stopping earlier as more reliable predictors of the corridor shape. This 
result may serve, together with head behavior, as a guideline for orientation and mobility practitioners to evaluate 
the improvement in the use of echolocation to navigate in the environment.

The average distance from the bottom of the corridor was 0.65 m (sd = 0.29): interestingly, almost the same 
distance was found by Kolarik et al.9 when the obstacle was located along the body midline (0.61 m).

Our task was different than in Kolarik et al.9: in that task the person had to stop when detecting an obstacle 
(assumed to exist), while in our task one or more lateral obstacles (i.e. the presence or absence of one or two aper-
tures on the end sides of the corridor) could be present or not, while the end of the corridor was always in a fixed 
position. Nevertheless, we might start assuming that the distance to which spatial properties of an object reveal 
themselves by echolocation may not be a function of the sound environment. Further research is necessary to 
discover acoustical spatial invariants30.

Finally, the configuration of the corridor did not have a main effect on performance. The shape of the corridor 
therefore did not significantly bias the guess rate. However, we found an interaction with all the factors influ-
encing it, suggesting that the structure of the environment seems to have an influence on how the body moves, 
but not on the final outcome of the task. This is interesting, since it could hint that body motion reflects spatial 
structures before these are explicitly externalized.

Purely looking at performance, then, in both our training and experimental session the percentage of correct 
guesses was on average double than that expected by chance. Although not significant, the experimental session 
exhibited a slightly lower performance due to the absence of the physical stop constraint. Therefore, free motion 
seems to add ecological validity to our setup without paying a price in terms of understanding of spatial prop-
erties. A practical implication of this result is that rehabilitation practitioners might use stop-distance from the 
walls in echolocation tasks as one proxy for a successful training, or at least as a sign that guesses are not being 
given by chance.

General conclusions. Two main contributions emerge from this study:

 (1). It is the first time that a study provides information about the kinematics of echolocation for sighted 
participants in an direction discrimination task. The information includes variables such as average ve-
locity, motion duration and head exploration, which we demonstrate to be important factors to assess the 
efficacy of daily echolocation-based navigation. More importantly, this is the first study that correlates task 
performance with variables linked to body motion. Our analysis may be a useful baseline for future studies 
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regarding the effects of echolocation training, or for comparisons between kinematic models of trained 
versus untrained blind echolocators.

 (2). The accuracy of responses in an echolocation task does not depend on how long or fast sighted naïve echo-
locators move the body; rather, the accuracy depends on the distance from the object to be detected and 
on how often the head explores the space while producing vocal emissions. Our results can explain why 
in Fiehler et al.16 sighted participants were not able to discriminate among path directions. It is entirely 
possible that participants that stationary listen to pre-recorded echolocation clicks (with no possibility of 
free moving when performing an echolocation task) cannot obtain accurate spatial information. This point 
was already discussed by Milne et al.5.

Overall, this study adds new information about behavior during echolocation. It might be useful in perspec-
tive to possible rehabilitative solution for blind individuals. Our results suggest that in addition on focusing on 
the type/quality of clicks produced during echolocation, attention should be paid to the movements and the 
amount of active exploration that the body is doing. Specifically, while travel time seems not to be important to 
assess echolocation skills, rehabilitation practitioners may work on improving their trainee’s head motions, which 
are so important in better obtaining information about acoustic spatial properties, and may observe the walking 
trajectories of their trainees during echolocation, that may hint whether a tendency to correctly guess spatial cues 
is occurring. Knowing which movements are most suitable and how to use them can help to speed up the learning 
of a technique such as echolocation.
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