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Disturbances of fetal autonomic brain development can be evaluated from fetal heart
rate patterns (HRP) reflecting the activity of the autonomic nervous system. Although
HRP analysis from cardiotocographic (CTG) recordings is established for fetal surveillance,
temporal resolution is low. Fetal magnetocardiography (MCG), however, provides stable
continuous recordings at a higher temporal resolution combined with a more precise heart
rate variability (HRV) analysis. A direct comparison of CTG and MCG based HRV analysis
is pending. The aims of the present study are: (i) to compare the fetal maturation age
predicting value of the MCG based fetal Autonomic Brain Age Score (fABAS) approach with
that of CTG based Dawes-Redman methodology; and (ii) to elaborate fABAS methodology
by segmentation according to fetal behavioral states and HRP. We investigated MCG
recordings from 418 normal fetuses, aged between 21 and 40 weeks of gestation. In linear
regression models we obtained an age predicting value of CTG compatible short term
variability (STV) of R2 = 0.200 (coefficient of determination) in contrast to MCG/fABAS
related multivariate models with R2 = 0.648 in 30 min recordings, R2 = 0.610 in active
sleep segments of 10 min, and R2 = 0.626 in quiet sleep segments of 10 min. Additionally
segmented analysis under particular exclusion of accelerations (AC) and decelerations
(DC) in quiet sleep resulted in a novel multivariate model with R2 = 0.706. According
to our results, fMCG based fABAS may provide a promising tool for the estimation of
fetal autonomic brain age. Beside other traditional and novel HRV indices as possible
indicators of developmental disturbances, the establishment of a fABAS score normogram
may represent a specific reference. The present results are intended to contribute to
further exploration and validation using independent data sets and multicenter research
structures.
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INTRODUCTION
Prenatal risk factors can permanently change the fetal brain
development and are associated with diseases in later age. Adverse
influences during fetal development that became permanently
programmed can increase the postnatal risk for cardiovascular,
metabolic, hyperkinetic, cognitive, learning and behavioral disor-
ders (e.g., Barker, 1998, 2002; Barker et al., 2002; O’Keeffe et al.,
2003; Van den Bergh et al., 2005).

Prenatal functional diagnosis is limited and requires
innovative concepts. In that context, the fetal autonomic
(neuro-vegetative) control plays a key role since it provides
valuable information about several control systems that are
mediated by the autonomic nervous system. The associated
heart rate patterns (HRP) are one of the few signals that can be
obtained non-invasively from the fetus, and hence, heart rate

variability (HRV) analysis is uniquely suited to assess the fetal
functional autonomic brain development. Fetal HRP provide
quantitative information about sympathetic and vagal activation,
fetal behavioral states, and fetal movements (Nijhuis et al., 1982;
Van Leeuwen et al., 1999; David et al., 2007; Hoyer et al., 2009;
Schmidt et al., 2014).

In order to obtain normal values of maturation indices in
healthy fetuses and deviations due to risk factors, a sophisticated
analysis of fetal HRP is required. Finally, the association between
prenatal and postnatal autonomic control and disturbances needs
to be investigated in that context.

Antepartum cardiotocography (CTG) is a predominant
established method that contributes to fetal surveillance and
risk assessment both antenatal and during labor based on
the analysis of fetal HRP age (Nijhuis et al., 2000; Pardey
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et al., 2002; Serra et al., 2008, 2009). FIGO (International
Federation of Gynaecology and Obstetrics) risk score as well
as the fluctuation indices short term variability (STV) and
long term variability (LTV) are realized in Dawes-Redman
methodology (Pardey et al., 2002). The fetal HRP displayed
in CTG depends on gestational age, fetal activity and a
variety of other factors, but classification of recordings pri-
marily aimed on distinguishing the healthy from the dis-
tressed fetus rather than precisely assessing maturation. Hence,
the resulting question to be followed in this study is, to
which extent CTG methodology allows a fetal autonomic brain
age assessment in comparison to the higher quality MCG
methodology.

Universal characteristics of evolution and development in
non-living and living nature are increasing fluctuation amplitude,
increasing complexity and pattern formation. Those character-
istics similarly apply in the phylogenetic and the ontogenetic
development. The fetal HRP reflect corresponding character-
istics of the maturating fetal autonomic brain activity. All of
those characteristics can be interpreted as reflecting autonomous
influences of the sympathetic and parasympathetic nervous sys-
tems, influenced by the superordinate medullary centers. In a
previous study, using continuous magnetocardiographic (MCG)
recordings at 1 ms temporal resolution, we designed a result-
ing “fetal autonomic brain age score” (fABAS; Hoyer et al.,
2013b).

However, a certain part of variance could not be explained
by the score and the question arises how and to which extent a
more sophisticated model may improve the performance. In that
context, segmentation of the measured HRP under consideration
of behavioral states as well as of the particular exclusion of
acceleration (AC) and deceleration (DC) patterns may provide
information about different aspects of autonomic modulations in
more detail.

The aims of the present study are: (i) to compare the fetal mat-
uration age predicting value of the MCG based fABAS approach
with that of Dawes-Redman methodology; and (ii) to elaborate
fABAS methodology by segmentation of the recordings according
to behavioral states and HRP.

MATERIALS AND METHODS
SUBJECTS AND DATA AQUISITION
From the study database of the Biomagnetic Center, Department
of Neurology, and Department of Obstetrics, both Jena Uni-
versity Hospital, recordings of 418 normal singleton fetuses,
aged between 21 and 40 weeks of gestation (WGA), healthy
according to standard obstetric observation methods, single
recording in a non-stress situation were included. The study
was approved by the Local Ethics Committee of the Friedrich
Schiller University. All women signed a written, informed consent
form.

All measurements were taken in a magnetically shielded room
at the Biomagnetic Center, Department of Neurology, Jena Uni-
versity Hospital using the vector-magnetograph ARGOS 200
(ATB, Chieti, Italy). Pregnant women were positioned supine or
with a slight twist to either side to prevent compression of the
inferior vena cava. The dewar was positioned as close as possible

above the fetal heart determined by sonographic localization,
but without contact to the maternal abdominal wall. The MCG
signal was recorded over a period of 30 min with a sampling
rate of 1024 Hz. The fetal heart beats were detected using a
newly developed independent component analysis based strategy
(Schmidt et al., 2014). The fetal body movements were recon-
structed from the fMCG signal (for details see Schmidt et al.,
2014).

CTG COMPATIBLE ANALYSIS ACCORDING TO DAWES-REDMAN
In the present work the heart beat intervals (MCG sampling
period ≈1 ms) were integrated over 3.75 s epochs in order
to obtain a CTG compatible signal of the identical recording.
Analyzable 1 min sections were considered as those that contain
neither large decelerations nor more than 50% artifacts (not
detected beats/beat intervals; Pardey et al., 2002).

• STV is calculated as mean difference between consecutive heart
beat interval epochs in all analyzable 1 min sections. The results
of all analyzed 1 min sections are averaged.

• LTV is calculated as fluctuation range of heart beat interval
epochs in analyzable 1 min sections. The fluctuation range is
calculated as a sum between maximal deviation above baseline
and maximal deviation below baseline. The fluctuation ranges
of all analyzed 1 min sections are averaged.

Furthermore, the Dawes-Redman criteria for normality from
26 WGA upwards, that require up to 60 min recordings, were
formally applied to the 30 min recordings of the fetuses aged at
least 26 WGA (n = 313). The following criteria have to be met
(adapted from Pardey et al., 2002):

• The recording must contain at least one episode of high varia-
tion.

• STV >3.0 ms, but if it is <4.5 ms LTV averaged across all
episodes of high variation must be >3rd percentile for WGA.

• No evidence of a high-frequency sinusoidal rhythm.
• At least one AC, or a fetal movement rate of ≥20 per hour

and a LTV averaged across all episodes of high variation >10th
percentile for WGA.

• At least one fetal movement or three AC.
• No DC of >20 lost beats if the recording is <30 min, no more

than one DC of 21–100 lost beats if it is >30 min, and no DC
at all >100 lost beats.

• The basal fetal heart rate must be 116–160 beats/min if the
recording is <30 min.

• LTV within 3 SD of its estimated value or (a) STV >5.0 ms;
(b) an episode of high variation with ≥0.5 fetal movements per
minute; (c) the basal fHR ≥120 beats/min; and (d) the signal
loss <30%.

• The final epoch of the recording must not be part of a DC.
• No suspected artifacts at the end of the recording if the record-

ing is <60 min.

In that context, an AC is defined as an increase in heart rate
for more than 15 s with a minimum deviation from baseline
exceeding 10 bpm. A DC is defined as a decrease below the
baseline for more than 30 s and a deviation >20 bpm or 60 s and
>10 bpm, respectively (Pardey et al., 2002).
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Table 1 | Heart rate variability indices.

Parameter Meaning, Interpretation Calculation

Dawes-Redman
STV Short Term Variability

Integrative sympatho-vagal modulations,
fluctuation periods of seconds

Mean difference between consecutive
heart beat interval epochs of 3.75 s, w/o DC
and artifacts <50%

LTV Long Term Variability
Fluctuation periods of minutes

Mean fluctuation range of heart beat inter-
val epochs in 1 min sections, w/o DC and
artifacts <50%

fABAS
AMP Fluctuation range of heart beat intervals,

overall sympatho-vagal modulations
20–95 inter-quantile distance of detrended
NN interval series

gMSE3 Complexity of sympatho-vagal rhythms Generalized Mutual Information at coarse
graining level 3 of beat interval series, see
Hoyer et al. (2013a)

skewness Asymmetry, contribution of vagal and sym-
pathetic activity with their different time
constants, decline of DC and formation of
AC

skewness of instantaneous heart rate
series

pNN5 Fast, vagal
Mainly vagally modulated rhythms

Percentage of differences between adja-
cent NN intervals that are >5 ms.

lnVLF/LF Baseline fluctuation in relation to
sympatho-vagal modulations

Ratio between very low (0.02–0.08 Hz) and
low (0.08–0.2 Hz) frequency band power

Pattern segmented
gMSE3 w/o DC
gMSE3 basic w/o DC - parameters under exclusion of DC Mean of parameter of subsegments

without DC
skewness w/o DC
skewness basic
pNN5 w/o DC basic - parameters of basic rhythm Mean of parameter of subsegments w/o

DC and w/o ACpNN5 basic

lnVLF/LF w/o DC
lnVLF/LF basic

* Segmented analysis of fluctuation range (AMP) was not performed due to lacking significance in quiet sleep. Partly adapted from Hoyer et al. (2013b), further

details in TaskForce (1996), Pardey et al. (2002), Hoyer et al. (2013a).

MCG BASED HEART RATE VARIABILITY ANALYSIS—FETAL
AUTONOMIC BRAIN AGE SCORE
The fABAS was previously proposed by the authors using a cal-
culation precision of ≈1 ms according to the MCG sampling rate
(Hoyer et al., 2013b). Fetal autonomic brain age score based on
particular HRV parameters that were selected according to univer-
sal developmental characteristics, namely increasing fluctuation
amplitude (assessed by AMP), increasing complexity (assessed by
gMSE3), and pattern formation (assessed by skewness, pNN5,
lnVLF/LF, see Table 1). In that previous work, the fetal age was
predicted by multivariate linear regression models (forward pro-
cedure: stepwise inclusion of variables while P(F) < 0.05; back-
ward procedure: stepwise exclusion of variables while P(F) > 0.1)
for each sleep state independently. The resulting models for quiet
and active sleep were considered fABAS. While [gMSE3, skewness,
VLF/LF, pNN5] contributed in the quiet sleep model, [AMP,
skewness, gMSE3, pNN5, VLF/LF] contributed in the active sleep
model. Here, an additional model was built for the entire 30
min recordings that can include only one or several behavioral
states. The resulting additional model constitutes a third branch
of fABAS. Furthermore, the linear regression models were sup-
plemented with quadratic term regression models that were built
using the same HRV parameters.

SLEEP STATE SEGMENTATION
From the entire 30 min recordings 10 min segments according
to quiet and active sleep related HRP I, HRP II were selected
following a consensus decision by three independent obstetricians
according to an advanced version of standard criteria (Nijhuis
et al., 1982; Schneider et al., 2009; Hoyer et al., 2013b).

• HRP I (quiet state, correlated to quiet sleep 1F): stable fetal
heart rate (fHR) (variation of visually determined floating
baseline <10 bpm/3 min) with a small oscillation bandwidth
(< ±5 bpm from floating baseline fHR), isolated (maximum
2 per 10 min) AC (>15 bpm over >15 s) and a floating baseline
fHR that does not exceed 160 bpm.

• HRP II (active state, correlated to active sleep 2F): fluctuating
fHR with an oscillation bandwidth exceeding +/− 5 bpm from
floating baseline, frequent (at least 3 per 10 min) AC (>15 bpm,
>15 s), and the fHR exceeding 160 bpm only during AC.

• HRP III (active state, correlated to active awakeness 4F): fHR
patterns with long-lasting AC exceeding 160 bpm, frequently
fused into a sustained tachycardia.

Based on the classification results we selected 10 min sections of
quiet sleep (n = 137) and active sleep (n = 344). Consequently,
in 63 of the 418 recordings, sections of both, HRP I and HRP
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FIGURE 1 | Tachograms of 30 min recordings of four different fetuses.
Upper part: changes between sections of active (marked by red horizontal
bar) and quiet sleep related heart rate patterns in a younger (28 WGA) and an

older (37 WGA) fetus. Lower part: quiet sleep related heart rate patterns at 22
and 33 WGA. DC and AC (>10 bpm deviation from floating baseline, marked
by blue *) are identified in the quiet sleep sections only.

II, were classified. Active awakeness classified recordings were not
analyzed because of their small sample size (n = 29).

PATTERN SEGMENTATION–PARTIAL EXCLUSION OF HEART RATE
ACCELERATIONS AND DECELERATIONS
In addition, periods without DC and segments of basic activity
(with neither DC nor AC), respectively, were analyzed in the
HRP I segments. The methodology of the here proposed MCG
based segmented HRV analysis is different from the CTG—
Dawes-Redman methodology used above. In the present context,
the definitions of AC and DC were modified according to the
following rules:

• Sections without DC were identified in moving 3 min windows
(shifted by 1 min over 10 min segment) if there were no devia-
tions below the baseline (estimated for each 3 min window) >

10 bpm;
• Sections of basic activity were identified in moving 3 min

windows (shifted by 1 min over 10 min segment) if there were
no deviations below or above the baseline (estimated for each 3
min window) > 10 bpm.

The baseline was estimated according to original Dawes-Redman
methodology (Pardey et al., 2002). From all identified windows
the HRV parameters were calculated and averaged.

This kind of pattern segmentation was performed for all sig-
nificantly age predicting HRV parameters of fABAS (see Table 1).

The example recordings shown in Figure 1 demonstrate the
diversity of the recorded pattern. In the upper part a change
between active and quiet state in a premature age of 28 WGA
is compared with a clear change from quiet to active state in

the mature age of 37 WGA. In the part underneath, recordings
classified as quiet sleep at 22 and 33 WGA are shown. Please
notice partly unstable baseline, AC and DC are marked in the
quiet sleep section. There are neither periods of incorrect heart
beat detections (beat intervals) nor periods of dropouts.

STATISTICAL ANALYSIS
The predictive value of the HRV parameters was assessed by
univariate and multivariate, linear and quadratic term regression
models over the entire investigated maturation period (corrected
coefficient of determination R2). The cases were weighted to
approximate equal distribution over gestational age. P < 0.05
was considered significant. Since most of the predictors were
significant, only non-significant results are marked by “n.s.”. For
better reading, predictors with R2 > 0.3 were marked by bold
letters. All statistical analyses were carried out using IBM SPSS
Statistics 21.

RESULTS
30 MIN RECORDINGS
Traditional STV and LTV were calculated from analyzable periods
according to CTG methodology like outlined above. Short term
variability predicted the maturation age with a low coefficients
of determination (R2 = 0.200, 206, linear and quadratic model,
Table 2). The Dawes-Redman criteria were met with increasing
frequency between 26 and 32 WGA and were consistently met
from 32 WGA onwards (Figure 2).

From the fABAS related HRV parameters, AMP, skewness,
and pNN5 and provided strong univariate linear age predictors
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Table 2 | Analyses of 30 min recordings: univariate and multivariate,
linear and quadratic term regression models, coefficients of
determination R2, parameters selected according to CTG
(Dawes-Redman related (Pardey et al., 2002)) and MCG based fABAS
related (Hoyer et al., 2013b), R2 > 0.3 in bold, all cases significant.

Parameter 30 min recording

Linear Quadratic

CTG compatible
STV (ms) 0.200 0.206
LTV (ms) 0.085 0.116
fMCG based, fABAS related
Time domain
AMP 0.312 0.321
skewness 0.458 0.502
pNN5 0.347 0.367
Power spectra
lnVLF/LF 0.034 0.060
Complexity
gMSE3 0.226 0.231

Multivariate model, fABAS
[AMP, skewness, pNN5, lnVLF/LF, gMSE3] 0.648 0.656

Multivariate model, fABAS + STV
[AMP, skewness, pNN5, lnVLF/LF, gMSE3, STV] 0.649 0.657

FIGURE 2 | Relative frequency of recordings that meet the
Dawes-Redman criteria (1 = 100%) vs. chronological age (in weeks GA)
of 30 min recordings. In absolute values, 134 of 167 cases met the criteria
in the subset of ≤32 WGA and 130 of 146 in the subset of >32 WGA,
respectively.

(R2 = 0.312, 0.458, 0.347). They were partly improved by includ-
ing a quadratic term (R2 = 0.321, 0.502, 0.367). In the multi-
variate models all parameters significantly contributed leading to
R2 = 0.648 and R2 = 0.656, respectively (Table 2, Figure 3). In
contrast, STV and LTV did not provide additional predictive value
to the multivariate models.

SEGMENTED RECORDINGS
Active sleep 10 min segments
In the active sleep data, AMP (R2 = 0.392 and 0.430, linear
and quadratic), skewness (R2 = 0.352 and 0.431) and pNN5

FIGURE 3 | Fetal autonomic brain age score [AMP, skewness, pNN5,
lnVLF/LF, gMSE3] vs. chronological age (in WGA) of 30 min recordings,
mean ± standard deviation.

Table 3 | Analyses of 10 min segments in active sleep: linear and
quadratic regression models, coefficients of determination R2,
parameters selected according to fABAS (Hoyer et al., 2013b),
R2 > 0.3 in bold.

Predictor R2

Linear Quadratic

Time domain
AMP 0.392 0.430
Skewness 0.352 0.431
pNN5 0.350 0.376
Power spectra
lnVLF/LF 0.098 0.103
Complexity
gMSE3 0.128 0.130
Multivariate model - -
[AMP, Skewness, gMSE3, pNN5, lnVLF/LF] 0.610 0.636

(R2 = 0.350 and 0.376) clearly predicted the fetal maturation age.
In the multivariate models, additionally gMSE3 and lnVLF/LF
contributed leading to R2 = 0.610 and 0.636 in the linear and
quadratic, respectively, models (Table 3).

Quiet sleep 10 min segments
In the quiet sleep data, gMSE3 (R2 = 0.542 and 0.565), but
also pNN5 (R2 = 0.320 and 0.338) and skewness (R2 = 0.316
and 0.320) were stronger predictors than lnVLF/LF (R2 = 0.147
and 0.159). AMP did not provide predictive value. The stepwise
built multivariate model included [skewness, gMSE3, pNN5]
(R2 = 0.626 and 0.641; Table 4).

Further pattern segmentation in quiet sleep
Further pattern segmentation, namely the exclusion of DC and
AC removed the predictive value of skewness. This result is consis-
tent with the fact that skewness mainly reflects asymmetries due
to DC and AC which are important maturation characteristics.
Other aspects of behavior are basic activity, i.e., the basic rhythm
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Table 4 | Analyses of 10 min segments in quiet sleep: additional
pattern segmentation (without decelerations: w/o DC; basic activity,
neither DC nor AC: basic), linear and quadratic regression models,
coefficients of determination R2, parameters according to Table 2,
R2 > 0.3 in bold.

Predictor R2

Linear Quadratic

Time domain
AMP n.s. n.s.
Skewness 0.316 0.320

skewness w/o DC 0.123 0.127
skewness basic 0.032 0.038

pNN5 0.320 0.338
pNN5 w/o DC 0.396 0.451
pNN5 basic 0.374 0.428

Power spectra
lnVLF/LF 0.147 0.159
lnVLF/LF w/o DC 0.192 0.201
lnVLF/LF basic 0.195 0.206

Complexity
gMSE3 0.542 0.565

gMSE3 w/o DC 0.609 0.627
gMSE3 basic 0.632 0.657

Multivariate model, fABAS indices
[Skewness, gMSE3, pNN5] 0.626 0.641
Multivariate model, pattern segmented
[Skewness, gMSE3, gMSE3w/oDC, gMSE3basic] 0.706 0.714

containing neither AC nor DC, and activity under exclusion of
DC. Concerning those aspects, the predictive value of pNN5,
gMSE3 and lnVLF/LF was increased. The gMSE3 related indices
were the strongest univariate predictors (gMSE, gMSEw/oDC,
gMSE3basic: R2 = 0.542, 0.609. 0.632 in the linear models, and
R2 = 0.565, 0.627. 0.657 in the quadratic models, see Table 4).

The stepwise built multivariate model resulted on the inclu-
sion of [skewness, gMSE3, gMSEw/oDC, gMSE3basic] with
R2 = 0.706 in the linear and R2 = 0.714 quadratic model. This
result indicates a relevant advantage compared to the consider-
ation of data that are classified as quiet sleep as a total without
further pattern segmentation.

DISCUSSION
Traditional HRV indices reflect: (i) vagal activity during quiet
sleep; (ii) sympathetic activity during active sleep; and (iii) inte-
grative control in longer recordings with changing states. In a
recent study, we have demonstrated a strong relationship between
those HRV indices and fetal maturation age (Hoyer et al., 2009).
Compared to those traditional HRV indices, we newly devel-
oped a fABAS based on universal developmental characteristics
assessing maturation age with a high precision in active and
quiet sleep (Hoyer et al., 2013b). In this study we show that
fABAS based methodology significantly improves fetal matura-
tion age assessment compared to established CTG. Those results
are based on our comprehensive database obtained from MCG
measurements.

The particular aims of the present study were: (i) to compare
the fetal maturation age predicting value of the MCG based
fABAS approach with that of CTG (Dawes-Redman) compatible

STV; and (ii) to elaborate fABAS methodology by segmentation
according to behavioral states (overall recording, active and quiet
sleep segments) and HRP.

30 MIN RECORDINGS
The maturation age predicting value of STV (R2 = 0.200, linear
model) was significantly lower in comparison to fABAS.

Interestingly, using the indices of fABAS applied to the entire
30 min recordings, the maturation age was clearly predictable
(R2 = 0.648, linear model), although the signals were very hetero-
geneous due to the occurrence of only one or several behavioral
states. The increased R2 in the quadratic models, moreover, may
reflect the saturating maturation after 32 WGA mainly expressed
in skewness (see Figure 3). This characteristic curve is in line with
previous results of power spectral analysis (Van Leeuwen et al.,
2003).

ACTIVE AND QUIET SLEEP 10 MIN SEGMENTS
The predictive value of the fABAS related models in active and
quiet sleep (R2 = 0.610, 0.626, linear models) was slightly lower
in comparison to the 30 min recordings. However, it should
be noticed that state dependent aspects of autonomic control,
such as vagal and sympathetic dominance, provided an almost
similar predictive value. Saturating maturation after 32 WGA
considered in quadratic models of vagal HRV (pNN5) in quiet
sleep and mainly sympathetic/overall HRV (AMP, skewness) in
active sleep may have also contributed to increased R2 in the
quadratic models.

FURTHER PATTERN SEGMENTATION IN QUIET SLEEP
Further segmentation in quiet sleep focused on the differential
contribution of basic activity and AC as well as DC of at least 10
bpm deviation from baseline. The resulting independent factors
of the novel model, namely skewness, gMSE3, gMSE3w/oDC,
gMSE3basic, may highlight the role of complex adjustments
between sympatho-vagally mediated fluctuations in connection
with AC and DC patterns. The predictive value (R2 = 0.706, linear
model) was clearly higher than that of fABAS. This result indicates
that the essential universal developmental characteristics, namely
increasing complexity and pattern formation which go hand
in hand with fetal development, also apply for the particular
pattern during quiet sleep. Furthermore, the result implies that
a consideration of the respective physiological pattern in detail,
might even improve the maturation assessment. Therefore, fABAS
may serve as classification tool for the general condition, whereas
further pattern segmentation provides a more detailed focus on
an observed abnormality.

Fetal autonomic brain age score indices in combination with
the novel pattern segmentation based on our comprehensive
MCG database can serve as a representative norm-sample of the
normal fetal autonomic maturation age (see Figures 3, 4). With
that it will be easy to detect even minor deviations from the
normal fetal development.

METHODOLOGICAL ISSUES
In principle, the application of the Dawes-Redman criteria and
LTV as a traditional CTG methodology to MCG based HRV
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FIGURE 4 | Fetal autonomic brain age score [Skewness, gMSE3, pNN5]
for quiet sleep segments ◦ and [AMP, Skewness, gMSE3, pNN5,
lnVLF/LF] for active sleep segments ∆ vs. chronological age (in WGA),
mean ± standard deviation, notice that 21–24 WGA and 37–40 WGA,
respectively, are merged due to the small number of samples.

analysis was possible. During a period of 60 min, which is rec-
ommended for the application of the Dawes-Redman criteria, at
least one active pattern is statistically expected to occur. However,
since only 30 min recordings were analyzed, a number of subjects
did not meet the criteria. Recordings of 60 min length would
allow direct consideration of FIGO Dawes-Redman criteria. Even
longer observations would furthermore lead to a better evaluation
of sleep state dynamics. However, due to patient compliance and
the possibly increasing number of artifacts in longer measure-
ments, the performance in shorter recordings is of particular
interest.

The segmentation according to behavioral state classification
is the result of a consensus decision of three experts based on HRP
that furthermore slightly change with maturation age between
21–40 WGA. This classification is not always unequivocal, but it
reflects the heterogeneity of recordings and the state of the art.

The present results are mainly representative for the
investigated 30 min recordings and 10 min segments. A next
necessary step would be the validation and improvement of the
presented methodology in recordings from different measure-
ment sites.

For a fair evaluation of the here proposed methodology and
search for the optimum, other HRV indices should also be taken
into consideration. The here presented methodology allows the
inclusion of further precise MCG HRV indices as well of FIGO
recommended CTG compatible indices.

In the subsequent steps, multifactorial models are required to
consider both, maturation age and developmental disorders.

CONCLUSION
Heart rate variability indices selected according to fABAS using
30 min fMCG recordings and segmented HRV analysis provide
a promising tool for the estimation of the fetal autonomic brain

age that is superior to CTG based indices. Resulting normograms
of normal autonomic brain maturation may constitute significant
references for the identification of developmental disturbances.
The presented methodology is intended to contribute to further
exploration and validation with regard to the early identification
of developmental disorders using independent data sets in multi-
center studies.

ACKNOWLEDGMENTS
This work was supported by the German Research Founda-
tion (Deutsche Forschungsgemeinschaft, HO 1634 12-2, Schn
775/2-3) and the Curie Intra-European Fellowship IEF-2009-
237290. We thank Stefan Claus for editing the manuscript.

REFERENCES
Barker, D. J. (1998). In utero programming of chronic disease. Clin. Sci. (Lond) 95,

115–128. doi: 10.1042/cs19980019
Barker, D. J. (2002). Fetal programming of coronary heart disease. Trends

Endocrinol. Metab. 13, 364–368. doi: 10.1016/s1043-2760(02)00689-6
Barker, D. J., Eriksson, J. G., Forsén, T., and Osmond, C. (2002). Fetal origins of

adult disease: strength of effects and biological basis. Int. J. Epidemiol. 31, 1235–
1239. doi: 10.1093/ije/31.6.1235

David, M., Hirsch, M., Karin, J., Toledo, E., and Akselrod, S. (2007). An estimate of
fetal autonomic state by time-frequency analysis of fetal heart rate variability. J.
Appl. Physiol. (1985) 102, 1057–1064. doi: 10.1152/japplphysiol.00114.2006

Hoyer, D., Heinicke, E., Jaekel, S., Tetschke, F., Di Pietro Paolo, D., Haueisen, J.,
et al. (2009). Indices of fetal development derived from heart rate patterns. Early
Hum. Dev. 85, 379–386. doi: 10.1016/j.earlhumdev.2009.01.002

Hoyer, D., Nowack, S., Bauer, S., Tetschke, F., Rudolph, A., Wallwitz, U., et al.
(2013a). Fetal development of complex autonomic control evaluated from
multiscale heart rate patterns. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304,
R383–R392. doi: 10.1152/ajpregu.00120.2012

Hoyer, D., Tetschke, F., Jaekel, S., Nowack, S., Witte, O. W., Schleußner, E., et al.
(2013b). Fetal functional brain age assessed from universal developmental
indices obtained from neuro-vegetative activity patterns. PLoS One 8:e74431.
doi: 10.1371/journal.pone.0074431

Nijhuis, J. G., Prechtl, H. F., Martin, C. B. Jr., and Bots, R. S. (1982). Are there
behavioural states in the human fetus?. Early Hum. Dev. 6, 177–195. doi: 10.
1016/0378-3782(82)90106-2

Nijhuis, I. J., ten Hof, J., Mulder, E. J., Nijhuis, J. G., Narayan, H., Taylor, D. J., et al.
(2000). Fetal heart rate in relation to its variation in normal and growth retarded
fetuses. Eur. J. Obstet. Gynecol. Reprod. Biol. 89, 27–33. doi: 10.1016/s0301-
2115(99)00162-1

O’Keeffe, M. J., O’Callaghan, M., Williams, G. M., Najman, J. M., and Bor, W.
(2003). Learning, cognitive and attentional problems in adolescents born small
for gestational age. Pediatrics 112, 301–317. doi: 10.1542/peds.112.2.301

Pardey, J., Moulden, M., and Redman, C. W. (2002). A computer system for the
numerical analysis of nonstress tests. Am. J. Obstet. Gynecol. 186, 1095–1103.
doi: 10.1067/mob.2002.122447

Schmidt, A., Schneider, U., Witte, O. W., Schleussner, E., and Hoyer, D.
(2014). Developing fetal motor-cardiovascular coordination analysed from
multi-channel magnetocardiography. Physiol. Meas. 35, 1943–1959. doi: 10.
1088/0967-3334/35/10/1943

Schneider, U., Schleussner, E., Fiedler, A., Jaekel, S., Liehr, M., Haueisen, J.,
et al. (2009). Fetal heart rate variability reveals differential dynamics in the
intrauterine development of the sympathetic and parasympathetic branches of
the autonomic nervous system. Physiol. Meas. 30, 215–226. doi: 10.1088/0967-
3334/30/2/008

Serra, V., Bellver, J., Moulden, M., and Redman, C. W. (2009). Computerized
analysis of normal fetal heart rate pattern throughout gestation. Ultrasound
Obstet. Gynecol. 34, 74–79. doi: 10.1002/uog.6365

Serra, V., Moulden, M., Bellver, J., and Redman, C. W. (2008). The value of the
short-term fetal heart rate variation for timing the delivery of growth-retarded
fetuses. BJOG 115, 1101–1117. doi: 10.1111/j.1471-0528.2008.01774.x

TaskForce. (1996). Heart rate variability: standards of measurement, physiological
interpretation and clinical use. Task Force of the European Society of Cardiology

Frontiers in Human Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 948 | 7

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Hoyer et al. Fetal autonomic brain age assessment

and the North American Society of Pacing and Electrophysiology. Circulation
93, 1043–1065. doi: 10.1161/01.CIR.93.5.1043

Van den Bergh, B. R., Mulder, E. J., Mennes, M., and Glover, V. (2005). Antenatal
maternal anxiety and stress and the neurobehavioural development of the fetus
and child: links and possible mechanisms. A review. Neurosci. Biobehav. Rev. 29,
237–258. doi: 10.1016/j.neubiorev.2004.10.007

Van Leeuwen, P., Geue, D., Lange, S., Hatzmann, W., and Gronemeyer, D. (2003).
Changes in the frequency power spectrum of fetal heart rate in the course of
pregnancy. Prenat. Diagn. 23, 909–916. doi: 10.1002/pd.723

Van Leeuwen, P., Lange, S., Bettermann, H., Grönemeyer, D., and Hatzmann, W.
(1999). Fetal heart rate variability and complexity in the course of pregnancy.
Early Hum. Dev. 54, 259–269. doi: 10.1016/s0378-3782(98)00102-9

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 11 September 2014; accepted: 07 November 2014; published online: 25
November 2014.
Citation: Hoyer D, Kowalski E-M, Schmidt A, Tetschke F, Nowack S, Rudolph A,
Wallwitz U, Kynass I, Bode F, Tegtmeyer J, Kumm K, Moraru L, Götz T, Haueisen
J, Witte OW, Schleußner E and Schneider U (2014) Fetal autonomic brain age scores,
segmented heart rate variability analysis, and traditional short term variability. Front.
Hum. Neurosci. 8:948. doi: 10.3389/fnhum.2014.00948
This article was submitted to the journal Frontiers in Human Neuroscience.
Copyright © 2014 Hoyer, Kowalski, Schmidt, Tetschke, Nowack, Rudolph, Wallwitz,
Kynass, Bode, Tegtmeyer, Kumm, Moraru, Götz, Haueisen, Witte, Schleußner and
Schneider. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution and reproduction in
other forums is permitted, provided the original author(s) or licensor are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Human Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 948 | 8

http://dx.doi.org/10.3389/fnhum.2014.00948
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive

	Fetal autonomic brain age scores, segmented heart rate variability analysis, and traditional short term variability
	Introduction
	Materials and methods
	Subjects and data aquisition
	CTG compatible analysis according to Dawes-Redman
	MCG based heart rate variability analysis—fetal autonomic brain age score
	Sleep state segmentation
	Pattern segmentation–partial exclusion of heart rate accelerations and decelerations
	Statistical analysis

	Results
	30 min recordings
	Segmented recordings
	Active sleep 10 min segments
	Quiet sleep 10 min segments
	Further pattern segmentation in quiet sleep


	Discussion
	30 min recordings
	Active and quiet sleep 10 min segments
	Further pattern segmentation in quiet sleep
	Methodological issues

	conclusion
	Acknowledgments
	References


