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Fibulin-4 is essential for maintaining arterial wall
integrity in conduit but not muscular arteries
Carmen M. Halabi,1* Thomas J. Broekelmann,2 Michelle Lin,1 Vivian S. Lee,2

Mon-Li Chu,3 Robert P. Mecham2

Homozygous or compound heterozygous mutations in fibulin-4 (FBLN4) lead to autosomal recessive cutis laxa
type 1B (ARCL1B), a multisystem disorder characterized by significant cardiovascular abnormalities, including
abnormal elastin assembly, arterial tortuosity, and aortic aneurysms. We sought to determine the consequences
of a human disease–causing mutation in FBLN4 (E57K) on the cardiovascular system and vascular elastic fibers
in a mouse model of ARCL1B. Fbln4E57K/E57K mice were hypertensive and developed arterial elongation, tortu-
osity, and ascending aortic aneurysms. Smooth muscle cell organization within the arterial wall of large con-
ducting vessels was abnormal, and elastic fibers were fragmented and had a moth-eaten appearance. In
contrast, vessel wall structure and elastic fiber integrity were normal in resistance/muscular arteries (renal, mes-
enteric, and saphenous). Elastin cross-linking and total elastin content were unchanged in large or small
arteries, whereas elastic fiber architecture was abnormal in large vessels. While the E57K mutation did not affect
Fbln4 mRNA levels, FBLN4 protein was lower in the ascending aorta of mutant animals compared to wild-type
arteries but equivalent in mesenteric arteries. We found a differential role of FBLN4 in elastic fiber assembly,
where it functions mainly in large conduit arteries. These results suggest that elastin assembly has different
requirements depending on vessel type. Normal levels of elastin cross-links in mutant tissue call into question
FBLN4’s suggested role in mediating lysyl oxidase–elastin interactions. Future studies investigating tissue-
specific elastic fiber assembly may lead to novel therapeutic interventions for ARCL1B and other disorders of
elastic fiber assembly.
INTRODUCTION
Extracellular matrix (ECM) proteins play an integral role in maintain-
ing arterial wall integrity. Perturbations or deficiencies of several ECM
proteins have been shown to alter the structure, biomechanical prop-
erties, and/or cell signaling within the arterial wall, leading to disease.
For instance, mutations in fibrillin 1, transforming growth factor–b
(TGFb) receptor type 2, collagen 3A1, and lysyl oxidase (LOX) cause
Marfan syndrome, Loeys-Dietz syndrome, vascular Ehlers-Danlos
syndrome, and familial thoracic aortic aneurysm, respectively, all of
which have weakening of large arterial wall and development of as-
cending aortic aneurysm as features. Recently, mutations in fibulin-
4 (FBLN4), also known as epidermal growth factor (EGF)–containing
fibulin-like extracellular matrix protein 2 (EFEMP2), were described
in humanswith autosomal recessive cutis laxa type 1B (ARCL1B) (1–9).
In addition to inelastic or redundant skin, some of the hallmark
features of this disease include arterial tortuosity, aortic aneurysm,
and pulmonary emphysema. Other more variable presentations in-
clude abnormalities of the skeletal system (10, 11).

FBLN4 belongs to a seven-member family of ECM proteins that
share significant sequence and structural homology characterized by
a C-terminal fibulin domain preceded by repeated Ca2+-binding EGF
(cbEGF)–like motifs (12–14). Originally discovered through sequence
homology to fibulin-1, fibulin-2, and fibulin-3 (15), FBLN4 is known
to play a critical role in elastic fiber formation. Fbln4 knockout (KO)
mice die perinatally from severe lung and vascular abnormalities, in-
cluding failure of alveolar septation, arterial tortuosity, aneurysms,
and rupture due to the absence of intact elastic fibers (16). In contrast,
smoothmuscle–specific KO and hypomorphicmousemodels (17–19)
of Fbln4 show elastic fiber fragmentation, arterial tortuosity, and an-
eurysmal dilation of the ascending aorta (20, 21), suggesting that elas-
tic fiber assembly is negatively affected when FBLN4 levels fall below a
critical level.

How FBLN4 functions in elastic fiber assembly is not known. In
vitro data show that the N terminus of FBLN4 can bind the pro-
peptide of LOX and promote the association of LOX with tropoe-
lastin (18, 22). This, in addition to the fact that the Lox null mouse
model has features in common with the Fbln4 KO mouse model
(23, 24), has led to the currently accepted hypothesis that FBLN4
functions to deliver LOX to tropoelastin to facilitate cross-linking.

To study the effects ofFBLN4missensemutations in vivo, Igoucheva et al.
(25) recently generated a knock-in mouse carrying the E57K mutation
identified in humans. This was the first mutation identified in a human
with ARCL1B (4). Skin biopsy from this patient showed fewer elastic
fibers, and studies using dermal fibroblasts suggested that the mutant
protein is poorly secreted, is unstable, or is unable to bindmatrix, leading
to aberrant elastic fiber formation and the resultant clinical pheno-
type (4). Initial characterization of Fbln4E57K/E57Kmice showed that the
mouse model recapitulates the clinical manifestations seen in humans,
including loose skin, bent forelimbs, pulmonary emphysema, arterial
tortuosity, and ascending aortic aneurysms (25). In addition to elastic
fiber abnormalities in the skin and large arteries, collagen fibrils were
irregularly shaped, with many large fibrils noted in the dermis of
Fbln4E57K/E57K mice (25).

Here, we examined the functional consequences of the E57K mu-
tation in Fbln4 on the cardiovascular system and noted significant hy-
pertension and large artery stiffness in mutant mice. Because blood
pressure is primarily regulated by resistance/muscular arteries, we in-
vestigated the effect of the E57Kmutation in Fbln4 on the structure of
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muscular arteries and noted surprising differences between conduit
and resistance arteries. Whereas elastic lamellae within the wall of
large vessels of the mutant mouse were severely fragmented and vas-
cular smooth muscle cells (SMCs) were disorganized, resistance ar-
Halabi et al., Sci. Adv. 2017;3 : e1602532 3 May 2017
teries were seemingly unaffected by the mutation. Furthermore,
unlike the skin (25), where elastin levels were decreased, we observed
no change in elastin content, as measured by desmosine levels, in large
conduit or small resistance arteries. Our data suggest tissue-specific
roles for FBLN4 in maintaining arterial wall integrity and raise the
interesting possibility that the requirements for elastic fiber assembly
differ depending on vessel and tissue type.
RESULTS
Adult Fbln4E57K/E57K mice have ascending aortic aneurysms,
arterial tortuosity, and elastic fiber fragmentation
Because arterial aneurysms and tortuosity are hallmark features of hu-
mans carrying recessive mutations in FBLN4 (4, 5, 10, 11), we used a
mouse model carrying a known human FBLN4mutation (Fbln4E57K/E57K)
to evaluate how the mutant protein influences cardiovascular develop-
ment and integrity. Mice recessive for the mutation were born at the
expected Mendelian ratio (25), were similar in size to their wild-type
Fig. 1. Fbln4E57K/E57K mice develop arterial elongation, vascular tortuosity,
ascending aortic aneurysms, elastic fiber fragmentation, and SMC disarray.
(A) Gross morphology of the thoracic aorta and its branches in adult Fbln4E57K/E57K

mice and control (Fbln4+/+ and Fbln4+/E57K) littermates injected with yellow latex
to visualize the vasculature. Arrows indicate aortic root dilatation and ascending
aortic aneurysm seen in approximately half of Fbln4E57K/E57K mice; arrowheads in-
dicate the different angles at which arterial branches come off the aortic arch.
Arterial tortuosity and elongation are noted in all Fbln4E57K/E57K mice. (B to D) VVG
(Verhoeff–van Gieson) stain (B) and transmission electron micrographs of the ascend-
ing aorta of 3-month-old Fbln4E57K/E57K mice and littermate controls at two different
magnifications (C versus D). In addition to severe elastic fiber fragmentation, there is
increased medial wall thickness and SMC disarray in the aorta of Fbln4E57K/E57K mice.
At higher magnification (D), the moth-eaten or spongy appearance of the frag-
mented elastic fibers is appreciated in the aorta of Fbln4E57K/E57K mice. In addition,
there is loss of smooth muscle contact with elastic fibers in Fbln4E57K/E57K vessels. Scale
bars, 8 mm (C) and 4 mm (D). Asterisks indicate vessel lumen.
Fig. 2. Elastic fiber fragmentation and SMC disarray in descending aorta of
Fbln4E57K/E57K mice. Transmission electron micrographs of descending aorta of
3-month-old Fbln4E57K/E57K and littermate mice (Fbln4+/+ and Fbln4+/E57K). (A and
B) In addition to severe elastic fiber fragmentation, there is increased medial wall
thickness and SMC disarray in the aorta of Fbln4E57K/E57K mice. At higher magni-
fication, the moth-eaten or spongy appearance of the fragmented elastic fibers
(B) and variable (arrows = larger) collagen fibril size (C) are appreciated in the
aorta of Fbln4E57K/E57K mice. Asterisks indicate vessel lumen.
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(WT) littermates (fig. S1), and had no increased mortality by 1 year of
age. As shown in Fig. 1A, arterial elongation and tortuosity, as well as
variable branching angles of arteries from the aortic arch, were noted in
all Fbln4E57K/E57Kmice, but not in WT or heterozygous littermates. As-
cending aortic aneurysms and/or aortic root dilations were noted in ap-
proximately half of the Fbln4E57K/E57K animals. No aneurysms or
dilations were seen in any other arterial segment or in WT or hetero-
zygous littermates.

VVG staining of the ascending aorta of Fbln4E57K/E57Kmice showed
extensive elastic fiber fragmentation and disarray (Fig. 1B) as well as
increased wall thickness (fig. S2) due mainly to thickening of the me-
dial layer. Ultrastructural examination of the large vessels by electron
microscopy showed moth-eaten or spongy appearance of elastin and
round-shaped SMCs reminiscent of dedifferentiated cells that are
detached from the elastic lamellae (Fig. 1C). Notably, the severity of
elastic fiber fragmentation and disarray was variable in different regions
Halabi et al., Sci. Adv. 2017;3 : e1602532 3 May 2017
of the same vessel cross section. The arterial wall abnormalities were
seen in both aneurysmal and nonaneurysmal areas of the ascending
aorta, and there was no evidence of arterial calcification, as shown by
negative von Kossa staining (fig. S3), up to 1 year of age. Similar ultra-
structural changes were evident in the wall of the descending thoracic
aorta (Fig. 2, A and B), although this vascular segment did not develop
aneurysms. In addition to the elastic fiber and SMC abnormalities,
collagen fibril size was slightly variable, with significantly larger fibrils
in the adventitia of Fbln4E57K/E57K aorta (Fig. 2C).

Fbln4E57K/E57K mice have large artery stiffness and
systolic hypertension
Perturbations in elastin/collagen content or elastic fiber integrity often
lead to changes in arterial stiffness.When themechanical properties of
large arteries in adult Fbln4E57K/E57K mice were characterized, we
found that the ascending aortae and carotid arteries reached maximal
Fig. 3. Fbln4E57K/E57K mice develop large artery stiffness and systolic hypertension. Pressure-diameter relationships of ascending aorta (A) and carotid arteries (B) from
3- to 6-month-old Fbln4E57K/E57K male mice and littermates (Fbln4+/+ and Fbln4+/E57K). At each pressure, the vessel outer diameter was compared to that of WT vessels
using two-way analysis of variance (ANOVA) with Tukey’s multiple comparisons test. n = 7 to 10 for ascending aorta except for aneurysmal Fbln4E57K/E57K, where n = 3 (A)
and 8 to 9 (B) for carotid arteries. Arterial systolic blood pressure (SBP) (C), diastolic blood pressure (DBP) (D), and pulse pressure (PP) (E) of 3- to 4-month-old Fbln4E57K/E57K male
and female mice and littermates. PP was calculated as the difference between measured SBP and DBP. Pressure was compared among all genotypes using one-way ANOVA
with Tukey’s multiple comparisons test. n = 10 to 12 per genotype. (F) Heart weight–to–body weight ratios between the three genotypes presented in two distinct age groups.
At 6 to 7 months of age, mice with aortic root dilatation developed cardiac hypertrophy. Data are means ± SD. *P < 0.05, ****P < 0.0001.
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dilation at lower pressures than those of heterozygous or WT mice,
indicating that they have stiffer large arteries (Fig. 3, A and B). Because
of significant differences in the outer diameter of aneurysmal versus
nonaneurysmal Fbln4E57K/E57K ascending aortae, the data were
separated into two groups. As shown in Fig. 3A, although the aneurys-
mal Fbln4E57K/E57K ascending aortae have a larger diameter at 0 mmHg,
their pressure-diameter curve has the same compliance as that of non-
aneurysmal Fbln4E57K/E57K aortae (that is, parallel curves), suggesting
that the material properties or mechanics of Fbln4E57K/E57K ascending
aortae are not influenced by the presence of an aneurysm.

To assess the physiologic consequences of elastic fiber fragmen-
tation and large artery stiffness, we measured arterial blood pressure
and found that Fbln4E57K/E57K mice have significant systolic hyper-
tension with widened PP, but no elevation in DBP compared to WT
or heterozygous littermates (Fig. 3, C to E). The systolic hypertension
and widened PP were completely penetrant and independent of
Halabi et al., Sci. Adv. 2017;3 : e1602532 3 May 2017
aneurysm formation. There were no differences in circumferential
arterial stiffness or blood pressure between WT and heterozygous
(Fbln4+/E57K) mice (Fig. 3, A to E). Heart rate was not different among
all three genotypes (fig. S4). As shown in Fig. 3F, we noted differences
in Fbln4E57K/E57K heart size at 6 months of age. Echocardiographic
evaluation of Fbln4E57K/E57K mice with aortic root dilation at 6 weeks
of age showed normal shortening fraction. However, by 6 months of
age, the mice with the larger heart sizes had aortic root dilation and
aortic root insufficiency, leading toworse shortening fraction, suggest-
ing that cardiomyopathy develops over time (table S1).

Small resistance arteries have normal elastic fibers and
normal wall structure in Fbln4E57K/E57K mice
Blood pressure is largely regulated by small resistance vessels. To de-
termine whether these vessels were also affected by the E57Kmutation,
we examined the ultrastructure of saphenous arteries and second-order
Fig. 4. The E57Kmutation in Fbln4 has differential effects on elastic versus resistance artery integrity. Alexa Fluor 633 hydrazide staining of carotid (A, a and b) and
renal arteries (B, a and b) from 3-month-old Fbln4E57K/E57K (b) and WT littermate mice (a). Red indicates elastic fibers, and blue depicts nuclear staining with 4′,6-
diamidino-2-phenylindole (DAPI).Mutant vessels are indistinguishable fromWTvessels using Alexa Fluor 633 hydrazide staining. Transmission electronmicrographs of carotid
(A, c and d) and renal arteries (B, c and d) from 3-month-old Fbln4E57K/E57Kmice are shown. Micrographs in (d) are higher magnification of the inset demarcated in (c). Note the
moth-eaten appearance of the inner two elastic fibers compared to the normal appearance of the outer two elastic fibers in the carotid artery (A, d). (C) Transmission
electronmicrographs of second-order mesenteric arteries from 3-month-old (a and b) and 1-year-old (c and d) Fbln4E57K/E57K and WT littermate mice in addition to 1-year-old
renal arteries. Asterisks indicate vessel lumen. (D) Table summarizing the presence or absence of elastic fiber abnormalities in the different Fbln4E57K/E57K arteries examined.
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mesenteric arteries of 3-month-old Fbln4E57K/E57K mice and littermate
controls. Surprisingly, these vessels showed none of the structural ab-
normalities evident in the large vessels and were similar to vessels from
heterozygous mutant or WTmice (Fig. 4C, a and b, and fig. S5). The
internal elastic lamina of Fbln4E57K/E57K mesenteric and saphenous
arteries showed the normal amorphous appearance of elastin on
electron microscopy, as opposed to the moth-eaten and fragmented
appearance noted in large vessels. In addition, the medial layer of
Halabi et al., Sci. Adv. 2017;3 : e1602532 3 May 2017
Fbln4E57K/E57K mesenteric and saphenous arteries consisted of the
typical two to three SMC layers and was not thickened compared
to WT arteries.

The elastic laminae of Fbln4E57K/E57K arteries are adversely
affected in conducting but not muscular arteries
The normal elastic fibers present in mesenteric and saphenous arteries
suggested that the E57K mutation has different effects on elastin
assembly in muscular arteries as compared to elastic arteries. Visualiza-
tion of elastic fibers with Alexa Fluor 633 hydrazide in the carotid (Fig.
4A, a and b) and renal (Fig. 4B, a and b) arteries did not indicate any
significant structural differences betweenWTand Fbln4E57K/E57K vessels.
However, ultrastructural examination ofFbln4E57K/E57K commoncarotid
artery, which has four elastic lamellae, by transmission electron micros-
copy showed moth-eaten appearance of the two inner elastic lamellae,
whereas the two outer laminae closest to the adventitia were unaffected
(Fig. 4A, c andd). In contrast, ultrastructural examinationofFbln4E57K/E57K

main renal artery, which only has an internal and an external elastic lam-
ina (muscular artery), showed intact elastic laminae and normal arterial
wall structure (Fig. 4B, c and d). To assess whether elastic fiber abnor-
malities developed over time with aging in Fbln4E57K/E57K muscular ar-
teries, we examined the ultrastructure of mesenteric and renal arteries at
1 year of age. As shown in Fig. 4C, the elastic laminae of Fbln4E57K/E57K

muscular arteries remained intact at 1 year of age. A table summa-
rizing elastic fiber abnormalities noted by electron microscopy in the
different Fbln4E57K/E57K arteries examined is available in Fig. 4D.

Elastic fiber fragmentation and medial wall thickness of
Fbln4E57K/E57K ascending aortae are present at birth
To determine whether elastic fiber fragmentation in the Fbln4E57K/E57K

ascending aorta is a problem with fiber assembly in early development
Fig. 5. Large artery elastic fiber fragmentation and medial wall thickening
occur developmentally in Fbln4E57K/E57K mice. Transmission electron micro-
graphs of P1 ascending aorta from Fbln4+/+ (A and B) and Fbln4E57K/E57K (C and
D) mice. Asterisks indicate vessel lumen. Scale bars, 10 mm.
Fig. 6. E57K mutation in Fbln4 does not alter arterial elastin or collagen content. Desmosine (A and C) and hydroxyproline (B and D) content were determined in
ascending aortae (A and B) and mesenteric arteries (C and D) of 3- to 4-month-old Fbln4E57K/E57K (closed triangles) male and female mice and littermates (open circles,
Fbln4+/+; gray squares, Fbln4+/E57K).
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or is a postnatal degenerative process that occurs with aging, we
examined the ultrastructure of ascending aorta right after birth [post-
natal day 1 (P1)]. As shown in Fig. 5, there is significant elastic fiber
fragmentation and medial wall thickening in Fbln4E57K/E57K ascend-
ing aorta compared to WT vessels, suggesting that mutant FBLN4
leads to abnormal elastic fiber formation during fetal development.
In addition, SMCs in the mutant aorta were less organized and did
not show the tightly layered structure seen with WT animals.

The E57K mutation in Fbln4 does not affect arterial collagen
or elastin content or elastic fiber gene expression
To determine the effect of E57K mutation in Fbln4 on elastin cross-
linking and collagen concentration in arteries, we measured desmo-
sine and hydroxyproline content in ascending aorta (Fig. 6, A and
B) and carotid (fig. S6) and mesenteric arteries (Fig. 6, C and D) of
3- to 4-month-old Fbln4E57K/E57K and littermate mice. Desmosine
and hydroxyproline content was equivalent in vessels from all three
genotypes, indicating normal elastin and collagen cross-linking and
protein levels. There were also no significant differences in the ex-
pression of the elastic fiber genes Fbln4, Fbln5, elastin (Eln), Lox, or
fibrillin 1 (Fbn1) in the ascending aorta or mesenteric arteries of all
three genotypes (Fig. 7, A and B). Similar results were seen in the
lung (fig. S7). Because elastic fiber formation starts in late gestation
and continues until maturation at ~P21, we sought to determine
the effect of the E57K mutation in Fbln4 on elastic fiber gene ex-
pression while elastin assembly is ongoing. As shown in Fig. 7 (C
and D) and similar to what was seen in adult vessels, the E57K mu-
tation in Fbln4 did not affect elastic fiber gene expression in P7
aorta or mesenteric arteries.
Halabi et al., Sci. Adv. 2017;3 : e1602532 3 May 2017
FBLN4(E57K) protein level is reduced in extracts of
Fbln4E57K/E57K ascending aorta, but not mesenteric arteries
Western blot analysis of urea extracts from the adult ascending aor-
ta of Fbln4E57K/E57K and littermate control mice showed significant-
ly reduced protein in the aorta of mutant mice, an observation
confirmed by immunofluorescence staining of FBLN4 protein in
ascending aorta and carotid artery (Fig. 8, A and C). However, in
mesenteric arteries, the amount of FBLN4(E57K) protein was
equivalent to WT (Fig. 8B). Similar trends of FBLN4 protein levels
were observed in aorta and mesenteric arteries of P7 Fbln4E57K/E57K

and littermate mice (fig. S8). The effect of the E57K mutation on
FBLN4 secretion was also tested in dermal fibroblasts. As shown in
fig. S9 and consistent with previous results (25), there was signifi-
cantly more protein in the cell lysates of Fbln4E57K/E57K cells and
less in the culture medium compared to cells from WT or hetero-
zygous mice, suggesting reduced mutant protein secretion.
DISCUSSION
Homozygous or compound heterozygous mutations in FBLN4
(EFEMP2) lead to ARCL1B, a devastating multisystem disorder
characterized by loose inelastic skin, arterial tortuosity and aneur-
ysms, pulmonary emphysema, and skeletal abnormalities (1–11). Re-
cently, a mouse model carrying a missense mutation in Fbln4 (E57K)
found in two independent infants with ARCL1B was generated (25).
Focusing primarily on the cutaneous and skeletal features, initial
characterization of Fbln4E57K/E57K mice identified abnormalities in
elastic fibers and collagen fibrils as the basis for the observed pheno-
types (25). By characterizing the cardiovascular phenotype of this
Fig. 7. E57K mutation in Fbln4 does not affect arterial elastic fiber gene expression. Expression of indicated elastic fiber–associated genes (Fbln2, fibulin-2; Fbln4,
fibulin-4; Fbln5, fibulin-5; Eln, elastin; Lox, lysyl oxidase; Fbn1, fibrillin 1) in ascending aortae (A and C) and mesenteric arteries (B and D) of 3- to 4-month-old (A and B) and
P7 (C and D) Fbln4E57K/E57K (closed bars) and littermate mice (open bars, Fbln4+/+; gray bars, Fbln4+/E57K). Gene expression was normalized to that of Gapdh. Data are
means ± SD and were compared using one-way ANOVA with Tukey’s multiple comparisons test. n = 3 to 8 per genotype.
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mouse, we identified several novel findings that extend our knowl-
edge and raise further questions on the role of FBLN4 in elastic fiber
formation and in maintaining arterial wall integrity, not only between
different tissues, such as the skin and the vasculature, but also along
the arterial tree.

All Fbln4E57K/E57Kmice had systolic hypertension with widened PP
and large artery stiffness. Higher systolic pressure contrasts with the
Fbln4SMKO and the hypomorphic Fbln4 mouse models that exhibited
normal SBP but lower DBP (20, 21). This difference, coupled with the
fact that Fbln4E57K/E57K mice live to over 1 year of age, suggests that
the E57K mutation is not a loss-of-function mutation but may alter
or interfere with normal FBLN4 function or availability. Cardiac dys-
function and hypertrophy were only seen in Fbln4E57K/E57K mice with
aortic insufficiency secondary to aortic root dilation at 6 months of
age, but not at 6 weeks of age, indicating that cardiac dysfunction is
exacerbated by the aortic insufficiency, arterial stiffness, and systolic
hypertension seen with mutant FBLN4.

Fbln4E57K/E57K mice developed arterial tortuosity and elongation,
as well as ascending aortic aneurysms that were confined to the as-
Halabi et al., Sci. Adv. 2017;3 : e1602532 3 May 2017
cending aorta. No dilation or narrowing was noted anywhere else
along the arterial tree. The ascending aorta is the initial vessel seg-
ment that senses the volume/pressure ejected with each ventricular
contraction; therefore, with an abnormal wall, it may be at greatest
risk for dilation. Alternatively, the restriction of aneurysm formation
to the ascending aorta may be a consequence of the differing devel-
opmental origins of SMCs in the ascending aorta (neural crest), as
opposed to SMCs derived from the somatic or paraxial mesoderm
that make up the rest of the arterial tree (26). Although the variable
severity of elastic fiber fragmentation may explain why only 50% of
the homozygous mutant mice developed ascending aortic aneur-
ysms (25), one cannot rule out the presence of potential modifiers.
It is important to note that the presence of fragmented elastic fibers
and elevated blood pressure alone do not explain aneurysm forma-
tion. Humans or mice with elastin insufficiency (ELN+/−), or mice
completely lacking elastin (Eln−/−), are hypertensive and develop
vascular stenosis but their ascending aortae do not dilate (27–29).
Similarly, mice lacking fibulin-5 or humans with FBLN5 mutations
(autosomal recessive cutis laxa type 1A) have fragmented elastic fi-
bers, arterial tortuosity and elongation, and elevated SBP but do not
develop aneurysms (30, 31). Therefore, changes in cell-cell or cell-
ECM signaling may be responsible for aneurysm development.
Increased TGFb signaling has been implicated in aneurysm forma-
tion in the hypomorphic and SMKO Fbln4mouse models, as well as
mousemodels ofMarfan and Loeys Dietz syndromes (17, 20, 32–34).
Future studies will determine whether altered TGFb signaling plays a
role in aneurysm formation in Fbln4E57K/E57K mice.

An interesting finding in this study was the unchanged elastin con-
tent, as assessed by desmosine levels, in both the ascending aorta and
carotid arteries of Fbln4E57K/E57K mice despite extensive elastic fiber
fragmentation. Even with normal elastin levels, the mutant vessels
are significantly stiffer than WT, which indicates that the integrity
and organization of elastin, and not quantity alone, are important
for normal vessel function. A significant increase in desmosine content
was recently reported in the ascending aorta of SMC-specific Fbln4KO
(SMKO) mice (35). Normal or increased elastin cross-linking in the
mutant aortae is in sharp contrast to the Fbln4E57K/E57K skin, where
desmosinewas decreased (25), and to the globalFbln4KOmousemodel,
where elastin cross-links were decreased by 94% in the aorta (16). These
tissue-specific differences are intriguing. Although not well elucidated,
evidence for tissue-specific differences in elastic fiber assembly were
found in a mouse model of autosomal dominant cutis laxa (ADCL).
In this mouse model, a bacterial artificial chromosome carrying the hu-
man elastin gene with a single base pair deletion known to result in
ADCL was expressed as a transgene in mice. In mice carrying the trans-
gene, skin and lung incorporated mutant elastin, whereas the aorta
incorporated very low levels of the mutant protein, suggesting that elas-
tin assembly was different in the aorta than in the skin and lung (36).

Another striking example of tissue-specific differences in FBLN4
function is the normal appearance of elastin in the Fbln4E57K/E57K

muscular arteries, specifically mesenteric, saphenous, and renal ar-
teries. To our knowledge, all current data in the literature presume
that the process of elastic fiber formation, particularly arterial elastic
lamellae, is similar along the arterial tree. The data presented herein
suggest that elastic lamellae may develop differently in different ar-
terial beds. The finding that the muscular vessels are unaffected by
the Fbln4 mutation suggests either that FBLN4 is not necessary for
resistance or muscular artery elastic fiber formation or that there is
functional compensation by another protein.
Fig. 8. FBLN4(E57K) protein level is reduced in ascending aortae, but not in
mesenteric arteries of adult mice. Western blot analysis of urea extracts from
ascending aortae (A) and mesenteric arteries (B) of Fbln4E57K/E57K mice and
littermate controls using a polyclonal rabbit anti-FBLN4 antibody. FBLN4 level
was normalized to that of b-actin. The normalized data are represented in the
bar graphs on the right. n = 4 to 7 per genotype. Data are means ± SD and were
compared using one-way ANOVA with Tukey’s multiple comparisons test. *P < 0.05,
**P < 0.01, ***P < 0.001. (C) Immunofluorescence of ascending aorta and carotid
artery sections of 3-month-old Fbln4E57K/E57K and WT control mice. Green, FBLN4;
red, autofluorescence of elastic fibers; blue, DAPI. Asterisks indicate vessel lumen.
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FBLN4’s presumed function in elastic fiber assembly is to initiate
cross-linking by guiding LOX to tropoelastin (18). The fact that des-
mosine levels are essentially normal suggests that the cross-linking
function of LOX is intact in Fbln4E57K/E57Kmice. This suggests either
that the E57K mutation affects secretion or amount of the protein
rather than its function or that FBLN4 is not necessary for cross-
linking but rather serves another function important for elastic fiber
formation and integrity that is altered by the E57K mutation. This
latter possibility is supported by the normal cross-linking seen
when FBLN4 is deleted from arterial SMCs (35). Fibulins have been
shown to play a role in maintaining cell morphology, growth, and
adhesion (14, 37–41). To that end, SMC contractile genes were
down-regulated in the ascending aorta of Fbln4SMKO mice, suggest-
ing that FBLN4 may play a role in SMC differentiation and matura-
tion (19). It is clear that FBLN4 is crucial developmentally because
Fbln4E57K/E57K mice had elastic fiber fragmentation and increased
large vessel medial wall thickness as early as P1, but its exact role
in vessel wall development or homeostasis remains unclear.

In conclusion, we have characterized the structural and function-
al consequences of an FBLN4mutation associated with ARCL1B on
the cardiovascular system. In addition to ascending aortic aneu-
rysms, arterial tortuosity, and elongation, homozygous mutant mice
have stiff large arteries and systolic hypertension, a finding not de-
scribed or reported in ARCL1B patients (1–11). Although previously
known to be associated with elastic fiber formation in large arteries,
data presented herein indicate that FBLN4 is not required for elastic
fiber formation in small muscular arteries, thereby calling into ques-
tion the assumed requirement of FBLN4 in elastic fiber assembly.
This model will provide a useful tool to study tissue-specific differ-
ences in elastic fiber formation and to better understand the role of
FBLN4 in elastic fiber assembly.
MATERIALS AND METHODS
Mice
Generation of mice carrying a knock-in mutation (G to A) in exon 4,
leading to substitution of glutamate to lysine at amino acid 57, was
previously described (25). Briefly, C57BL/6 embryonic stem cells were
targeted with a vector carrying the point mutation in Fbln4 and loxP/
FRT-flanked Neo cassette in intron 4. After identification of germline
transmission of the targeted allele, the neomycin resistance gene was
removed by crossing the resulting mice with mice ubiquitously
expressing FLP1 recombinase on the C57BL/6 background. Mice het-
erozygous for knock-in allele were intercrossed to generate mice of all
three genotypes (Fbln4+/+, Fbln4+/E57K, and Fbln4E57K/E57K) used in the
experiments, as described in this article. Tail DNA was used to geno-
type the mice, as previously described (25). Themice were housed un-
der standard conditions with free access to food and water. All
protocols were approved by the Animal Studies Committee of Wash-
ington University School of Medicine.

Gross morphology
After euthanasia with CO2, the abdominal and chest walls of Fbln4+/+,
Fbln4+/E57K, and Fbln4E57K/E57K adult mice were dissected away. To
drain the blood from the vasculature, 5 ml of 1× phosphate-buffered
saline (PBS) (pH 7.4) was flushed through the apex of left ventricle
after transecting the left common iliac (32). Yellow latex (1 to 2 ml)
(Ward’s Science) was then injected through the left ventricle. The yel-
low latex was allowed to set by keeping the mice moist for 3 to 4 hours
Halabi et al., Sci. Adv. 2017;3 : e1602532 3 May 2017
at 4°C. Mice were then fixed in 10% neutral buffered formalin (Fisher
Scientific) at 4°C overnight, after which they were stored in 70% eth-
anol at 4°C until dissection was performed.

Vessel dissection for histology or electron microscopy
After euthanasia with CO2, the abdominal and chest walls of Fbln4+/+,
Fbln4+/E57K, and Fbln4E57K/E57K mice were dissected away, and an in-
cision was made through the right atrium. Five milliliters of 1× PBS
(pH 7.4) was flushed through the apex of the left ventricle. Maintain-
ing the needle in the same position, we exchanged the PBS for 10%
neutral buffered formalin (Fisher Scientific), which was allowed to
flow through the left ventricle at 95-cm H2O, equivalent to the mean
arterial pressure. After pressure fixation, vessels (ascending aorta, de-
scending aorta, carotid arteries, and/or mesenteric arteries) were
dissected and placed at 4°C either in 10% neutral buffered formalin
for histology or in a solution containing 2.5% glutaraldehyde and
0.1 M sodium cacodylate for electron microscopy.

VVG and von Kossa staining
After fixation with neutral buffered formalin, vessels were washed with
1× PBS (twice for 15 min) and then dehydrated by running through an
ethanol gradient (30, 50, and then 70% for 30 min each), after which
they were taken to the Histology Core Facility, where dehydration
was completed and the samples were paraffin-embedded and sectioned.
Sections were deparaffinized with xylene and hydrated by running
through an ethanol gradient (100, 90, 80, 70, 50, and then 30%), followed
by distilled water. Von Kossa staining was performed by the Histology
Core Facility, whereas VVG staining was performed following the IHC
World protocol. Briefly, sections were stained in Verhoeff’s solution for
30 min, differentiated in 2% ferric chloride for 1 to 2 min, treated with
5% sodium thiosulfate, and then counterstained with van Gieson’s
solution for 5min. Solutionswerepurchased fromAmericanMasterTech.
The sections were then dehydrated to 100% ethanol and treated with
xylene before mounting with VectaMount (Vector Laboratories Inc.)
and coverslip placement. Images were obtained using a Zeiss Axioskop
50 microscope and QCapture Pro software (Media Cybernetics Inc.).

Transmission electron microscopy
After isolation, vessels were fixed in 2.5% glutaraldehyde and 0.1 M
sodium cacodylate at 4°C overnight. Vessels were then sent to
Washington University’s Center for Cellular Imaging for processing
and thin sectioning. Images were taken using a JEOL JEM-1400Plus
transmission electron microscope that is equipped with an Advanced
Microscopy Techniques XR111 high-speed, 4000 × 2000–pixel, phosphor-
scintillated, 12-bit charge-coupled device (CCD) camera.

Alexa Fluor 633 hydrazide staining
Vessels (left common carotid artery and right renal artery) from
Fbln4+/+, Fbln4+/E57K, and Fbln4E57K/E57Kmice were dissected and fro-
zen in optimal cutting temperature (OCT) compound (Sakura Finetek)
at−80°C.With a cryostat, 3-mmsectionswere obtained and fixed in 4%
paraformaldehyde for 10 min at 4°C. Sections were washed twice with
1× PBS for 5 min each and then incubated in 1:1000 of a 2 mM Alexa
Fluor 633 hydrazide (Life Technologies) stock in 1% bovine serum
albumin (BSA)/1% fish gelatin/0.05% Triton-X in 1× PBS for 5 min at
roomtemperature. Sectionswere thenwashed twicewith1×PBS for 5min
each. SlidesweremountedwithDAPIFluoromount-G (SouthernBiotech)
and coverslipped. Images were obtained using a Zeiss Axioskop 50
microscope and QCapture Pro software (Media Cybernetics Inc.).
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Blood pressure measurement
Mice were anesthetized with 1.5% isoflurane and maintained on a
heating pad to keep their body temperature at 37°C, monitored via a
rectal thermometer. A 2- to 3-mm midline incision was made in the
neck; the lobes of the thymus were separated to expose the right com-
mon carotid artery. After clamping andmaking a small nick in the right
common carotid artery, a Millar pressure transducer (model SPR-671)
was introduced and advanced to the ascending aorta. SBP, DBP, and
heart rate were recorded using the PowerLab data acquisition system
(ADInstruments), and data were analyzed using LabChart 7 for Mac
software (ADInstruments).

Compliance studies
Arterial pressure-diameter curve measurements were performed as
previously described (42). Briefly, after blood pressure measure-
ment, mice were euthanized under isoflurane anesthesia, and the
ascending aorta and the left common carotid artery were excised
and placed in physiology saline solution (PSS) composed of 130 mM
NaCl, 4.7 mM KCl, 1.6 mM CaCl2, 1.18 mMMgSO4-7H2O, 1.17 mM
KH2PO4, 14.8 mMNaHCO3, 5.5 mM dextrose, and 0.026 mM EDTA
(pH 7.4). After the vessels were cleaned of surrounding fat, they were
mounted on a pressure arteriograph (Danish Myo Technology) and
maintained in PSS at 37°C. Vessels were visualized with an inverted mi-
croscope connected to aCCDcamera and a computerized system, which
allows continuous recording of vessel diameter. Because intravascular
pressure was increased from 0 to 175 mmHg by 25-mmHg increments,
the vessel outer diameter was recorded at each step (12 s per step). The
average of three measurements at each pressure was reported.

Echocardiography
Noninvasive cardiac ultrasound examination of 6-week-old and
6-month-old Fbln4+/+ and Fbln4E57K/E57K was performed under
light anesthesia by the Mouse Cardiovascular Phenotyping Core at
WashingtonUniversity School ofMedicine in St. Louis. AVisualSonics
echocardiography machine (FUJIFILM VisualSonics Inc.) with a
15-MHz linear transducer was used to characterize the structure
and function of the heart and great vessels.

Desmosine and hydroxyproline assays
After completion of compliance studies, ascending aorta and carotid
arteries were dried of excess physiologic saline solution and kept at
−20°C until protein quantification, and desmosine/hydroxyproline
measurement assays were performed as previously described (42).
All mesenteric artery branches from each mouse were dissected and
included as one sample. Briefly, each sample was hydrolyzed with
20 ml of 6 N hydrochloric acid (Thermo Scientific) at 105°C for 48 hours.
Samples were dried at 65°C for 90 min in SpeedVac, and each pellet was
dissolved in 400 ml of water and filtered with a 0.45-mm filter.

A ninhydrin-based assay was used to determine the protein content
of each sample (43). An aliquot of each hydrolyzed sample was reacted
with 100 ml of 100 mM ninhydrin [dissolved in 75% ethylene glycol
containing SnCl2 (2.5 mg/ml) and 1 M sodium acetate (pH 5.5)] at
85°C for 10 min. The protein content of each sample was determined
by measuring the absorbance at 575 nm and comparing it to a calibra-
tion standard for protein hydrolysis (Pickering Laboratories).

A chloramine-T colorimetric assay was used to determine hy-
droxyproline content (44). An aliquot of each hydrolyzed sample
was oxidized with 1.5 mg of chloramine-T for 20 min at room tem-
perature and then reactedwith 20mgofp-dimethylaminobenzaldehyde
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dissolved in propanol containing 20% perchloric acid for 20min at 65°C.
Samples were done in duplicate. Absorbance at 550 nm was measured
using a Synergy H4 Multi-Mode plate reader, and hydroxyproline con-
tent was determined by comparison to a standard curve. Reagents for this
assay were purchased from Sigma-Aldrich.

To determine desmosine content in the hydrolyzed samples, a
competitive enzyme-linked immunosorbent assay was used (45). Briefly,
an aliquot of hydrolysate was added to a well of a desmosine-ovalbumin–
coated 96-well plate (Elastin Products Company). Rabbit anti-desmosine
antibody (1:4000) (ElastinProductsCompany)was added to eachwell and
incubated at room temperature for 1 hour. After unbound antibodies
were washed off, a goat anti-rabbit secondary antibody conjugated to
horseradishperoxidase (HRP) (NA934V,GEHealth Sciences)was added.
After 1hour of incubation, SureBlueTMBperoxidase substratewas added
to determine peroxidase activity bymeasuring the absorbance at 650 nm.
Desmosine content was determined by extrapolation from a desmosine
standard curve (Elastin Products Company) run on the same plate.

RNA isolation and quantitative real-time reverse
transcription polymerase chain reaction
After euthanasia with CO2, the chest cavity was exposed, and 5ml of 1×
PBS was flushed through the apex of the left ventricle after snipping the
right atrium. Ascending aorta (from the root up to, but before, the first
branch of the aortic arch) for adult mice and all thoracic aorta for P7
mice, left lung, and mesenteric arteries (all branches for each mouse)
were isolated and stored inRNAlater at−80°C untilmRNAwas isolated
usingTRIzol following themanufacturer’s protocol (Life Technologies).
Total RNA (1 mg) was reverse-transcribed usingHigh-Capacity RNA-to-
cDNAKit per themanufacturer’s protocol (Life Technologies). Real-time
polymerase chain reaction (PCR) was done using 1 ml of complementary
DNA template, TaqMan Fast Universal PCRMaster Mix, and TaqMan
assays (primers/probes) obtained fromLife Technologies. Reactionswere
run in duplicate on the ViiA real-time PCR system, and experimental
gene expression was normalized to that ofGapdh. TaqMan assays used
in this study are Mm00514670_m1 (Eln), Mm00445429_m1 (Efemp2),
Mm00488601_m1 (Fbln5),Mm00495386_m1 (Lox),Mm00514908_m1
(Fbn1),Mm99999915_g1 (Gapdh),Mm02342430_g1 (Ppiaor cyclophilin),
and Mm00484266_m1 (Fbln2).

Mouse tissue protein extraction
Ascending aorta and most branches of mesenteric arteries were
dissected after flushing the vasculature with 1× PBS through the apex
of the left ventricle. Tissues were stored at −80°C until protein extrac-
tion was performed. Tissues were homogenized using TissueLyser II
(Qiagen) at 30Hz for 5min in an 8Murea solution in 16mMNa2HPO4

(pH7) containing protease inhibitors, and homogenateswere incubated
at 4°C overnight. After centrifugation, the supernatant was diluted to
2 M urea using 16 mMNa2HPO4, and bicinchoninic acid (BCA) as-
say (Bio-Rad) was performed tomeasure protein concentration. Pro-
tein was then precipitated using 10% trichloroacetic acid at 4°C for
1 hour. After centrifugation, the pellet was washed three times with ice-
cold acetone and resuspended in Laemmli buffer containing dithio-
threitol (DTT). The suspension was boiled for 5 min and used for
SDS–polyacrylamide gel electrophoresis (SDS-PAGE).

Primary mouse dermal fibroblast preparation and
protein isolation
A 1 cm × 1 cm piece of skin from the back of P1 mice was cut into
1 mm × 1 mm fragments and incubated in 1× Dulbecco’s modified
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Eagle’s medium containing 15% fetal bovine serum, 1% nonessential
amino acids, 1% glutamate, and 1× penicillin-streptomycin solution
in a 10-cm tissue culture dish.

Once confluent in a 10-cm dish (passage #2 or #3), cells were
placed in serum-free culture media for 24 hours. Supernatant was
removed and concentrated using Ultracel-30K centrifugal filters
(EMD Millipore). Radioimmunoprecipitation assay buffer (1 ml)
(Cell Signaling Technology) containing protease inhibitors was
added to the cells and incubated at 4°C for 10 min. Cells were then
scraped off and incubated at 4°C overnight. After centrifugation, the
protein concentration of the supernatant was determined using the
Bio-Rad BCA assay. DTT-containing Laemmli buffer was added to
11 mg of protein, and the sample was boiled for 5 min and used for
SDS-PAGE.

FBLN4 antibody generation and Western blotting
Protein sequences for all mouse fibulin family members (fibulin-1 to
fibulin-7) were aligned using the online software Clustal Omega. A
unique sequence in the N terminus of FBLN4 was identified as poten-
tially antigenic (TDGYEWDADSQHC). Peptide synthesis and key-
hole limpet hemocyanin conjugation, rabbit immunization, bleeding,
and antigen affinity purification of the antibody were performed by
GenScript. The resulting polyclonal rabbit anti-mouse FBLN4 antibody
was used as the primary antibody for Western blotting. Protein from
tissues (ascending aorta or mesenteric arteries), cell lysates (primary
mouse dermal fibroblasts), or supernatantswas subjected to SDS-PAGE
on a 10% gel. Protein was transferred to a polyvinylidene difluoride
membrane, which was then blocked in 5% milk/0.1% Tween 20 in 1×
PBS at room temperature (RT) for 1 hour. Rabbit anti-mouse FBLN4
antibody in blocking solution (1:800) was then added and incubated
overnight at 4°C. The membrane was washed three times with 0.1%
Tween 20/1× PBS and incubated with a secondary antibody [1:4000
donkey anti-rabbit immunoglobulin G (IgG)–HRP, GE Healthcare]
in blocking solution for 1 hour at RT. Immobilon Western HRP Sub-
strate (EMDMillipore) was used for protein detection via the ChemiDoc
MP imaging system (Bio-Rad). After blocking for 1 hour at RT, themem-
branewas then incubated in 1:4000mouse anti–b-actin antibody (Sigma-
Aldrich), followed by 1:10,000 goat anti-mouse IgG-HRP (KPL) to assess
protein loading.

Immunofluorescence
After euthanasia withCO2, the chest cavity was exposed, the right atri-
um was clipped, and 5 ml of 1× PBS was flushed through the apex of
the left ventricle. Ascending aorta and carotid arteries were dissected
and frozen in OCT medium (Tissue-Tek, Sakura Finetek) at −80°C.
With a cryostat, 3-mm sections were placed on slides, fixed in ice-cold
acetone for 10 min, and washed with 1× PBS. To minimize autofluo-
rescence of elastic fibers in the green channel, sections were then treat-
ed with Chicago Sky Blue (Sigma, 0.5% solution in 1× PBS) for 5 min
at RT. Sections were washed with 1× PBS, blocked in a solution
containing 1% BSA + 1% fish gelatin + 0.05% Triton X-100 for 1 hour
at RT, and incubated in 1:500 rabbit anti-mouse FBLN4 antibody in
blocking solution overnight at 4°C. The sections were then washed
with 1× PBS and incubated in 1:2000 goat anti-rabbit–Alexa Fluor
488 antibody (Life Technologies) and 1:10,000 DAPI in blocking so-
lution at RT for 1 hour. Slides were washedwith 1× PBS,mountedwith
ProLong Gold Antifade Mountant (Thermo Fisher Scientific), and
coverslipped. Images were obtained using a Zeiss Axioskop 50 micro-
scope and QCapture Pro software (Media Cybernetics Inc.).
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Statistical analysis
One-way or two-way ANOVA with Tukey’s multiple comparisons
test was used to determine differences between genotypes, as indicated
in each figure legend. Statistical analyses were run using Prism 6 for
Mac OS X (GraphPad Software Inc.). Data are presented as means ±
SD. Differences were considered statistically significant when P was
equal to or less than 0.05.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/5/e1602532/DC1
table S1. Echocardiographic data of Fbln4E57K/E57K and littermate WT mice.
fig. S1. Fbln4E57K/E57K mice are similar in size to their littermates.
fig. S2. Fbln4E57K/E57K ascending aortae have increased medial wall thickness.
fig. S3. Fbln4E57K/E57K ascending aortae do not develop calcification.
fig. S4. Fbln4E57K/E57K mice have similar heart rates to their heterozygous and WT littermates.
fig. S5. Internal elastic lamina is unaffected in Fbln4E57K/E57K saphenous arteries.
fig. S6. Homozygous E57K mutation in Fbln4 does not alter arterial elastin or collagen content.
fig. S7. Homozygous E57K mutation in Fbln4 does not alter ECM gene expression in lungs.
fig. S8. FBLN4(E57K) protein level is reduced in P7 ascending aorta, but not in mesenteric arteries.
fig. S9. FBLN4(E57K) protein secretion is impaired compared to WT FBLN4.
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