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a b s t r a c t 

The COVID-19 anthropause has impacted human activities and behaviour, resulting in substantial environmental 
and ecological changes. It has assisted in restoring the ecological systems by improving, for instance, air and water 
quality and decreasing the anthropogenic pressure on wildlife and natural environments. Notwithstanding, such 
improvements recessed back, even to a greater extent, when considering increased medical waste, hazardous 
disinfectants and other chemical compounds, and plastic waste disposal or mismanagement. 

This work critically reviews the short- and long-term implications of measures against COVID-19 spread- 
ing, namely on human activities and different environmental compartments. Furthermore, this paper highlights 
strategies towards environmental restoration, as the recovery of the lost environment during COVID-19 lockdown 
suggests that the environmental degradation caused by humans can be reversible. Thus, we can no longer de- 
lay concerted international actions to address biodiversity, sustainable development, and health emergencies to 
ensure environmental resilience and equitable recovery. 
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COVID-19 pandemic became more than a health crisis, as it has
een affecting all human societies and the environment. Since its out-
reak in late December 2019, and as an attempt to reduce virus trans-
ission, governments worldwide have imposed several restrictions on

ndustrial activities, commerce, outdoor activities, movement of vehi-
les, goods, and people; resulting in dramatic reductions in human ac-
ivity, production and distribution of goods and services, commonly
eferred as “anthropause ” ( Rutz et al., 2020 ). Alongside, COVID-19
riggered a significant change in public behaviour at different levels
e.g., health/environmental perception, use and consumption of goods)
 Drury et al., 2020 ; Li et al., 2020 a; Abbasi et al., 2020 ). Anthropause
nd changes in human behaviour have been providing an unprecedented
echanistic insight on how they can interfere with different aspects of

he environmental compartments ( Zambrano-Monserrate et al., 2020 ). 
Several studies have been addressing the effects of the COVID-19

andemic on the environment throughout the first year, although the
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ajority is focused on specific environmental compartments (e.g., air,
ater, soil, or biota) (see table 1 and references therein) or with a partic-
lar perspective (e.g., plastic pollution, chemical pollution, marine en-
ironment, virus epidemiology and persistence) (e.g., Ong et al., 2021 ;
oh et al., 2021 ; Facciolà et al., 2021 ). Therefore, this paper provides
n overview of the positive and negative effects of the COVID-19 pan-
emic measures and related human activities on the different environ-
ental compartments, along with an integrative discussion on the major
rivers and effects in the long term, with particular emphasis on plastic
ollution. Furthermore, it highlights strategies towards environmental
estoration and sustainability, as the recovery of the lost environment
uring COVID-19 lockdown suggests that the environmental degrada-
ion caused by humans can be reversible. 

ositive effects of COVID-19 pandemic on the environment – a 

hort-term reality 

The first evidence on the impact of COVID-19 on the environment
as, in fact, positive and mostly related to the global anthropause. With

ockdown measures and reduced human activities (particularly in the
ndustrial and transport sectors), the release of widely known air pol-
utants, such as sulphur dioxide (SO ), nitrogen dioxide (NO ), carbon
2 2 
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Table 1 

Summary of the positive and negative impacts of COVID-19 on environmental compartments. 

Positive Negative 

Air compartment 

Improved outdoor air quality in the first trimester ( Tobías et al., 2020 ; Bashir et al., 
2020 ) Decreased pollution noise in Europe ( ESA 2020 ) Decreased primary 
pollutants and volatile organic compounds ( L. Li et al., 2020 ) Decreased 
concentration of the most harmful ultrafine particles for health (PM 2.5)[10] 
Reduced fossil-fuel consumption in the first trimester ( Qarani, 2020 ) Decreased 
GHG emission ( Ficetola and Rubolini, 2020 ; Wang and Su, 2020 ) Decreased dust 
storms ( Qarani, 2020 ) 

Decreased indoor air quality ( Dutheil et al., 2020 ; Faridi et al., 2020 ) Back-to-normal 
air pollution from the second semester ( Tollefson, 2021 ; Liu et al., 2020 ) Increased 
acoustic footprint ( Ulloa et al., 2021 ) Increased emissions of GHG and hazardous 
chemical compounds in a long-term due to increased incineration activities 
worldwide (as reviewed by Hantoko et al. ( Hantoko et al., 2021 )) Delays on the 
26th COP on the UN frameworks Convention on Climate Change ( Ortiz et al., 2021 ) 

Terrestrial compartment 

Decreased household food waste in the first trimester ( Jribi et al., 2020 ) Reduced 
touristic reassure on natural environments ( Qarani, 2020 ) Decreased coal 
consumption in China ( Rume and Islam, 2020 ) Decreased oil extraction, mining, 
quarry ( Qarani, 2020 ) Cleaner beaches ( Zambrano-Monserrate et al., 2020 ) 
Decreased on human-made fires ( Poulter et al., 2021 ; Paudel, 2021 ; 
Rodrigues et al., 2020 ) 

Increased landfilling ( Zand and Heir, 2020 ) with potential long-term 

geomorphological implications and increased release of toxic leachates ( Silva et al., 
2021 ) Increased disinfection routines with hazardous chemical substances in 
outdoor environments (e.g., beaches) ( Silva et al., 2021 a) Potential delay on crop 
planting due to limited imports on fertilizers ( Hanyabui et al., 2021 ) Prevalence of 
SARS-CoV-2 in soils ( Anand et al., 2021 ) and sludge ( Carrillo-Reyes et al., 2021 ) 
Potential increase on intensive cultivation of vulnerable areas due to the emphasis 
of local food production (lockdown pressure) ( Poch et al., 2020 ) Increased plastic 
pollution related to the healthcare and packaging sector ( Silva et al., 2021 ; 
Gorrasi et al., 2020 ) 

Aquatic compartment 

Decreased Industrial and Commercial wastewater effluent release ( Qarani, 2020 ) 
Improved surface water quality in the first trimester ( Dutta et al., 2020 ) Cleaner 
waterways ( Zambrano-Monserrate et al., 2020 ; Soto et al., 2021 ) Reduced ocean 
acidification was expected due to a decrease in CO 2 ( Ong et al., 2021 ) Reduced 
acoustic pollution ( Thomson and Barclay, 2020 ; Barclay and Thomson, 2021 ) 

Increased residential wastewater effluents release ( Qarani, 2020 ) Increased floods 
( Qarani, 2020 ) Increased water demand ( Kim et al., 2021 ) Increased plastic 
pollution (particularly PPE) ( Silva et al., 2021 b, 2021 c) Detection of important 
viral loads of SARS-CoV-2 from urban streams ( Guerrero-Latorre et al., 2020 ) 
Increased concentrations of pharmaceuticals and personal care products against 
COVID-19 in lakes, and WWTP-river-estuary system in China ( Chen et al., 2021 ) 
Potential excess of chlorine disinfectants on aquatic systems ( García-Ávila et al., 
2020 ) Increased plastic pollution (particularly PPE) ( Silva et al., 2021 b; 
Gorrasi et al., 2020 ; De-la-Torre and Aragaw, 2020 ) Contribution of microfibres 
and hazardous chemical compounds released from disposable facemasks 
( Sullivan et al., 2021 ; Saliu et al., 2021 ) 

Biological compartment 

Decrease deforestation ( Chakraborty and Maity, 2020 ) Decreased wildlife trade 
( Chakraborty and Maity, 2020 ) Decreased wildlife-vehicle collision ( Shilling et al., 
2021 ) Decreased wildlife observation in South Africa ( Rose et al., 2020 ) Decreased 
pressure on fish and other aquatic lives ( Loh et al., 2021 ; Qarani, 2020 ) Decreased 
fire occurrence, with vegetation recovery ( Qarani, 2020 ) Increased animal 
movements ( Qarani, 2020 ; Lombrana, 2020 ; Child, 2020 ) Resurgence of 
endangered species (e.g., leatherback sea turtles, reef-fish) ( Edward et al., 2021 ; 
Geggel, 2020 ) 

Increase in aggressive, synanthropic predators (e.g., crows) in natural coastlines, 
altering animal assemblage structure (e.g., small mammals, reptiles, crustaceans) 
( Gilby et al., 2021 ) Wildlife interaction with PPE (ingestion, entanglement, amongst 
others) ( Hiemstra et al., 2021 ) Increased in opportunistic species such as rodents 
( Bedoya-Pérez et al., 2020 ), with modulation of their behaviour ( Manda, 2020 ) 
Increased susceptibility of wildlife (e.g., mammals) to virus (including 
SARS-CoV-2) infection ( Barbosa et al., 2021 ), and COVID-19 pneumonia ( Nabi and 
Khan, 2020 ) Higher ecotoxicological risk associated with antiviral drugs (e.g., 
favipiravir, lopinavir, umifenovir and ritonavir) and disinfectants ( Kuroda et al., 
2021 ; Zhang et al., 2020 ; da Luz et al., 2021 ; Mendonça-Gomes et al., 2021 ) 
Foodborne transmission of SARS-CoV-2 through animal products ( Hu et al., 2021 ) 
Microfibres released from facemasks induced ecotoxicity on soil invertebrates 
(springtails and earthworms) ( Kwak and An, 2021 ) Increased insecurity on food 
provisioning (e.g., travel limitations decreased assess to essential raw materials for 
farming activities) in the first semester ( Senten et al., 2020 ; Swinnen and 
McDermott, 2020 ; Adelodun et al., 2021 ) Delays on the 15th conference of the 
parties (COP) of the UN Convention on Biological Diversity ( Ortiz et al., 2021 ) 
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xide (CO), ammonia (NH 3 ) and fine particulate matter (PM2.5, PM10),
educed substantially (30–60%) in highly populated cities ( Li et al.,
020 b; Rodríguez-Urrego and Rodríguez-Urrego, 2020 ; Barceló, 2020 ).
or example, Delhi (India) reported a reduction in PM10, PM 2.5, SO 2 ,
O 2 , CO, and NH 3 concentrations by 52, 53, 18, 53, 30, and 12%, re-

pectively, in March 2020 comparatively to the same months in 2019
 Bhat et al., 2021 ). 

A similar trend was also observed in carbon dioxide (CO 2 ) emissions.
or example, China dropped their CO 2 emission by 18.7% (182 Mt) com-
ared to the first 2019 ′ s quarter, with a significant share (61.9%) related
o the transport sector. A sudden drop in CO 2 emission (up to 40%) was
lso observed in several regions of Italy ( Fattorini and Regoli, 2020 ),
ão Paulo (Brazil) ( Freitas et al., 2020 ), Barcelona (Spain) ( Tobías et al.,
020 ), and Kuala Lumpur (Malaysia) ( Suhaimi et al., 2020 ). According
o UK based climate science and policy website Carbon Brief, COVID-
2 
9 anthropause could have cut 1600 t of CO 2 , equivalent to 4% of the
lobal total in 2019 ( Evans 2020 ). 

Another change is related to ozone recovery. During the lockdown
eriod (March and April 2020), unprecedented healing of the ozone hole
as observed, which is reported by Copernicus Atmosphere Monitoring
ervice (CAMS) ( Lopez, 2021 ) 

Watercourses also showed signs of recovery in the first stage of
he pandemic. For example, 29 waterways in Malaysia ( Goi, 2020 ),
anga River (India) ( Dutta et al., 2020 ), and Venice lagoon (Italy)
 Braga et al., 2020 ) revealed a generalised improvement in their wa-
er quality indexes (i.e., turbidity). Such water quality improvement
ould be related to a decrease in water acidification due to the decline
n atmospheric NO 2 and CO 2, which often ends up in the water com-
artments, through acid rain or surface absorption ( Ong et al., 2021 ;
ükewille and Alewell, 2008 ); or through the decrease in hazardous
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hemicals release, via industrial activities, tourism, and water-traffic
 Dutta et al., 2020 ; Yunus et al., 2020 ). The reduction in water-traffic,
sheries, and tourism, also resulted in a decrease in water acoustic noise
 Thomson and Barclay, 2020 ), allowing aquatic species that rely on
co-localization (e.g., cetaceans) to reclaim habitats (as reviewed by
ng et al., 2021 ; Loh et al., 2021 ). 

The decrease in human activities related to strong environmen-
al interference resulted in decreased wildlife-human interactions (col-
ision, trade/predation, observation) ( Chakraborty and Maity, 2020 ;
hilling et al., 2021 ; Rose et al., 2020 ). Some species increased
heir movements ( Qarani, 2020 ), while others (endangered) seemed
o resurge ( Edward et al., 2021 ). Numerous wildlife animals ventured
nto the cities during the lockdown (e.g., deer’s, wild pigs, amongst
thers) as reported by several media (e.g., ( BBC, 2020 ). In addition,
egetation recovery was also observed, primarily due to ceasing de-
orestation activities and a decline of fire outbreaks ( Chakraborty and
aity, 2020 ; Qarani, 2020 ). The number of human-induced active fires

ndeed declined during COVID-19 lockdown, as observed, for instance,
n some U.S. states ( Poulter et al., 2021 ), Nepal ( Paudel, 2021 ), and
ome Southern-European countries ( Rodrigues et al., 2020 ). 

egative effects of COVID-19 pandemic on the environment – an 

ntimidating journey 

As the economy is slowly re-established, the mode “business-as-
sual ” became a reality, revoking the positive environmental effects ev-
denced in the early stages of the pandemic. For example, despite the
harp drops early in the first semester (by June 2020), global emissions
f CO 2 seemed to bounce back to average (pre-COVID-19) values in the
econd semester (by October 2020) ( Tollefson, 2021 ; Liu et al., 2020 ).
his is also predictable for air pollutants, such as SO 2 , NO 2 , and fine
articulate matter (PM), with an aggravated scenario as such pollutants
ave the potential to threaten human and animal health by contributing
o pathogen spreading and consequent higher infections (as reviewed by
acciolà et al., 2021 ). 

With the COVID-19 pandemic persistence, wastewater effluents
nded up increasing substantially ( Qarani, 2020 ), containing mas-
ive loads of disinfectants ( Silva et al., 2021 a), soaps, and detergents
 Chirani et al., 2021 ) to reduce virus transmission, along with antimi-
robials ( Kumar et al., 2021 ) and antiviral drugs ( Kuroda et al., 2021 )
o deal with the disease symptoms. For example, from the outbreak un-
il 2020 March, the city of Wuhan (China) dispensed at least 2000 tons
f disinfectants ( Zhang et al., 2020 ). It is estimated that from the be-
inning of the pandemic, around 50% more soaps and detergents is re-
eased every day in wastewater from households, commercial activities,
nd medical institutions, comparing the pre-pandemic period ( SanJuan-
eyes et al., 2021 ). Once in the aquatic environment, surfactants and
isinfection by-products are persistent, bioaccumulative, and toxic to
quatic species [41]. 

Wastewater samples collected from the wastewater treatment plant
WWTP) of Athens (Greece), before (2019) and during the COVID-19
andemic (2020), revealed a remarkable increase in antiviral drugs
170%), antibiotics (57%), and hydroxychloroquine (387%), which are
ost pharmaceutical drugs applied to treat COVID-19, along with parac-

tamol (198%) ( Galani et al., 2021 ). In addition to the pharmaceuticals
otential ecotoxicity ( Galani et al., 2021 ), it can increase microorgan-
sm’s antidrug resistance (ADR) ( Kumar et al., 2021 ), thus imposing a
evere threat to human and animal health. 

Concomitantly, there is also a possibility of coronavirus transmis-
ion through urban water cycles (in bioaerosols or sludges) to natural
nvironments (e.g., waterways and soils) ( Kumar et al., 2020 ; Ji et al.,
021 ). For example, the SARS-CoV-2 virus can remain stable for up to
5 days, and highly contaminated freshwater systems can provide infec-
ious doses (e.g., > 100 viral copies per 100 ml of water) ( Shutler et al.,
020 ). SARS-CoV-2 can also be found in soil (i.e., up to 550 copies/g),
hich persistence is highly dependant on soil parameters (e.g., mois-
3 
ure) ( Anand et al., 2021 ). The possible contamination routes on both
oil and water systems remain, however, poorly covered, although be-
ng expected a potential infection of organisms on such contaminated
ites. 

The presence of SARS-CoV-2 in organisms raises concerns regard-
ng cross-species transmission. In fact, coronaviruses such as SARS-CoV
nd MERS-CoV, have a long history of cross-species transmission (e.g.,
hou et al., 2018 ; Li et al., 2005 ); and the SARS-CoV-2 virus was already
etected in a wide vertebrate host range ( Barbosa et al., 2021 ), including
ets and wild carnivores ( Sharun et al., 2021 ). Reports of SARS-CoV-2
nfection in domestic and wild animal species is getting increased at-
ention to determine if SARS-CoV-2 (or related coronaviruses) can get
stablished in animal populations, which may eventually act as viral
eservoirs ( Nabi and Khan, 2020 ). 

The pandemic has also created new challenges for species that have
ecome reliant on food discarded or provided by humans. For example,
uring the lockdowns, various urban-dwelling animals, like rats, gulls,
nd monkeys, were forced to find food outside urban areas ( Rutz et al.,
020 ). In fact, an increase in aggressive synanthropic predators (e.g.,
rows) was observed in natural coastlines, which altered local ani-
al assemblage structure (e.g., small mammals, reptiles, crustaceans)

 Gilby et al., 2021 ). Concomitantly, reduced human presence in more
emote areas may potentially expose endangered species (e.g., rhinos,
r top-demanded species in illegal trade) to increased risk of poaching
as reviewed by Rutz et al., 2020 ). 

Lockdowns and consequent disruption of food production and trans-
ortation chains have also affected animal farming and threatened food
rovision to populations from developing countries. It is predicted that
he disruption of food production and transportation chains is resulting
n higher human casualties from hunger and starvation than from the
isease itself (FSIN, 2020), with a similar prediction extended to animal
arming (e.g., aquaculture, aquaponics ( Senten et al., 2020 )). Besides,
ivestock that could not be transported to slaughterhouses for human
ood processing due to a combined lack of transportation and workers
t the slaughterhouses resulted in crowded farms and, to some extent,
o animal sacrifice and incorrect disposal of their carcasses (e.g., buried
r incinerated), increasing potential biosecurity risks and detrimental
ffects on the environment ( Marchant-Forde and Boyle, 2020 ). 

Despite the improvement in air and water quality in the first pan-
emic trimester (with the potential to improve the quality of crops),
he shortages on production products (e.g., seeds, fertilizers, pesticides),
imited agricultural activities that required human involvement (e.g.,
lanting, collecting), restrictions in transportation and movements of
oods and workers, are all contributing to shortcomings in food avail-
bility and provisioning ( Poch et al., 2020 ). In the longer run, higher
mphasis might be given to local food production to reduce imports and,
onsequently, the transport of products. Such transition would reduce
O 2 , but it can also lead to intensive cultivation of vulnerable areas and
oil degradation if not properly managed. 

nvironmental implication of single-use plastics-is plastic pollution a major 

ssue? 

When considering the negative effect of the COVID-19 pandemic
n the environment in the longer run, a significant share of the lit-
rature highlights “plastic pollution ” as a major issue. Indeed, the
OVID-19 pandemic has exacerbated the dependence on single-use plas-
ics, particularly in the packaging, food safety, and healthcare sectors
 Parashar and Hait, 2021 ). Although the general production of single-
se plastics (SUP), mainly packaging, decreased drastically from April to
une, it followed an increase when its production returned to “business-
s-usual ” (from July to October 2020) ( EEA, 2021 ). E-commerce expe-
ienced an increase in revenue of 16% above “business-as-usual ” levels
etween March and September 2020, which might have led to an in-
rease in the volume of plastics used for packaging (an estimated ad-
ition of 11,400–17,600 tonnes of plastic packaging in the same pe-
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iod) that was supposed to be targeted by the reduction plastic policies
 EEA, 2021 ). 

Another influence of the COVID-19 pandemic has been related
o the increased use and consumption of personal protective equip-
ent (PPE), such as face masks, goggles, and gloves, in medical set-

ings and by common citizens. The use of specific PPE (namely face
asks) became recommended or mandatory to avoid the spread of the

irus (SARS-CoV-2) ( Parashar and Hait, 2021 ). The worldwide high de-
and and consumption patterns for these items (which increased by
ore than 300%) resulted in considerable challenges to plastic waste
anagement ( Silva et al., 2020 ) and aggravated environmental plas-

ic pollution ( Silva et al., 2021 ). With a significant load of poten-
ially infected medical plastic waste produced in a household environ-
ent, the international and statewide guidelines prioritised incinera-

ion and landfilling of ashes to ramp-up waste processing (as reviewed
y Parashar and Hait, 2021 ). This fact has even raised illegal plastic
aste disposal (e.g., open dumps or unregulated landfills) by 280%
orldwide ( Reportlinker 2021 ) which inherently alters adjacent habi-

ats and promotes plastic leakage. COVID-19 plastic waste, particularly
PE items, is already piling up in natural environments due to plas-
ic leakage from waste facilities or intentional littering ( Silva et al.,
021 c). In addition, the number of volunteers doing clean-ups de-
reased substantially (near 91% in the U.S. ( Hart, 2021 )). Therefore,
n amount of 0.15 to 0.39 million tons of PPE waste has been fore-
asted as entering the ocean during the first year of the pandemic
 Chowdhury et al., 2021 ). 

Several monitoring studies on COVID-19 plastic waste, particularly
PE, have been conducted in several urban and natural areas ( Table 1 ),
here densities can vary from 0.001 items/m 

2 up to 0.1 items/m 

2 in
each transects. PPE densities and distribution are often related to pop-
lation density frequenting the area, points of convergence of anthro-
ogenic activity, and implemented interventions to deal with COVID-
9. For example, in Peru, recreational beaches presented the high-
st number of PPE items (73%), followed by surfing (24.6%), fishing
nd inaccessible beaches ( < 1%) ( De-la-Torre et al., 2021 ). Toronto,
anada, presented a higher number of PPE items in parking lots of large
rocery stores and hospitals than residential trails (ca 5 and 2 times
igher, respectively) ( Ammendolia et al., 2021 ). In the UK, PPE pro-
ortion accounted for up to 5% of plastic litter, whereas in the Nether-
ands and Sweden, the proportion of PPE did not generally exceed 1%
 Roberts et al., 2021 ). Sweden even recorded no COVID-related litter
n multiple months, which is not surprising as Sweden did not imple-
ent the usage of face masks or mandatory closures throughout the
andemic, opposite to what happened in, for instance, the UK (as re-
iewed by Roberts et al., 2021 ). 

A schematic representation of sources, fate, and effects of PPE on
atural biota can be depicted in Fig. 1 . Briefly, PPE can directly affect
rganisms via, for instance, ingestion, entanglement, and nest materials
n the case of birds; or can indirectly affect organisms through the re-
ease of hazardous contaminants (e.g., metals, plasticizers, surfactants
s reviewed by Patrício Silva et al. ( Silva et al., 2021 c). Several species
uch as seagulls (Larus sp.), peregrine falcons (Falco peregrinus), crows
Corvus corone), white storks (Ciconia ciconia), foxes (Vulpes vulpes),
ats (Felis catus), and dogs (Canis lupus familiaris) seemed to interact
ith PPE macro-litter (as reviewed by Hiemstra et al., ( Hiemstra et al.,
021 ) and data available at https://www.covidlitter.com ). Some inter-
ctions result in chronic effects, such as restricting feeding to the point of
tarvation, facilitating predation, exhausting the animal, causing suffo-
ation, infections, severe wounds, and amputations ( Silva et al., 2021 c).
n aggravated cases, it can even result in organism’s death. PPE waste in
he bird’s nest structure can also alter thermal and drainage properties,
nfluencing reproductive success ( Thompson et al., 2020 ). In addition, as
olymeric and lipophilic materials, PPE litter can adsorb environmen-
al contaminants ( Anastopoulos and Pashalidis, 2021 ) and pathogens
 Luksamijarulkul et al., 2014 ), including SARS-type ( Kasloff et al.,
020 ). Thus, frequent ingestion of PPE litter can decrease organisms
4 
ealth due to physical effects and potential chemical body-burdens, as
bserved in Seagulls ( Seif et al., 2018 ). Although the fraction of haz-
rdous chemicals (e.g., hydrophobic organics) sorbed by plastic debris
eems to be low compared to natural particles, particularly in aquatic
nvironments (see Koelmans et al., 2016 ); their role as vectors increases
hen its higher mobility is considered, contributing to long-range envi-

onmental transport and affect remote locations ( Gouin, 2021 ). 
Littered PPE, along with other single-use plastic-based items such as

et wipes, can also be transported by weather conditions into drains and
ewerage systems, resulting in potential blockages while entangled with
ther solids (e.g., leaf litter) ( Silva et al., 2021 b) and will also negatively
ffect water percolation and normal agricultural soils aeration, with po-
ential repercussions on land productivity. Considering that landfilling
ncreased significantly to deal with COVID-19 plastic waste (e.g., as in
ehran (Iran), by 35% Zand and Heir, 2020 ), it can result in significant
eomorphological changes and, in the long-term, aggravate the release
f hazardous contaminants through biogas and leachates, to the atmo-
phere or adjacent aquatic and/or terrestrial environments, respectively
 Silva et al., 2021 b). The high use and consumption patterns of plastics
nd the prioritization of unsustainable plastic waste options (i.e., incin-
ration) are likely contributing to the increment of CO 2 ( Kleme š et al.,
020 ). 

There is scarce data about the potential degradation and toxicolog-
cal effect of PPE. Buried (e.g., landfilled) or in water compartments,
ittered PPE will undergo fragmentation and biodegradation due to
hysicochemical and biochemical processes while releasing a myriad
f micro(nano)plastics and leachable hazardous chemicals such as plas-
icizers, metals, organophosphate esters, as recently reported in labo-
atory conditions ( Saliu et al., 2019 ; Sullivan et al., 2021 ; Wang et al.,
021 ; Fernández-Arribas et al., 2021 ). The only available data suggests
hat disposable face masks (as individual layers or as a blend) can eas-
ly decompose in natural topsoils (75% of the water holding capacity,
5 °C), with a mean residence time of 2 to 3 days, releasing approxi-
ately 3 to 5% of the total masque carbon as CO 2 ( Knicker and Velasco-
olina, 2021 ). In addition, the release of polypropylene microfibres

esultant from the mechanical fragmentation of disposable face masks
1 g/kg soil) decreased reproduction and growth of springtails (Folsomia
andida) by 48% and 92%, respectively ( Kwak and An, 2021 ). In earth-
orms (Eisenia andrei), acute exposure to such microfibres decreased

sterases activity by 62% (enzymes actively involved in the resistance
f several contaminants such as insecticides ( Montella et al., 2012 )
nd spermatogenesis (vital for earthworms reproduction) ( Kwak and
n, 2021 ). The effects observed could result from the physical damage
aused by microfibres, as ingestion was observed for both macroinver-
ebrates; and/or due to the chemical toxicity induced by PPE leachates.
lthough the ecotoxicological effect of microfibres was studied in con-
entrations higher than the values reported in the environment, it does
ot rule out cumulative/generational adverse effects. An alteration of
oil community structure and composition, in the long run, would im-
air essential soil ecosystem services and functions, resulting in signifi-
ant ecological and economical damages. 

Besides the above-mentioned effects, there is also an increase in
he environmental footprint related to the massive production, distri-
ution, and waste (mis)management of COVID-19 single-use-plastics
PPE). For example, the estimated carbon footprint of PPE distributed
or use by health and social care services in England during 2020 first
emester was approximately 106 thousand tonnes CO 2 eq, representing
.8% of the entire carbon footprint of health and social care in England
uring six months of normal activity (estimated at 27 million tonnes
O 2 eq/year in 2018) ( Rizan et al., 2021 ). Nevertheless, such estimations
id not account for the “end-of-life ” options of these items. Therefore,
OVID-19 related single-use PPE plastics (SUP-PPE) and their ramifi-
ations (from production to waste management, persistence in the en-
ironment, adverse effects to different biological systems) are the ma-
or threats to environmental compartments on a short- and long-term
asis. 

https://www.covidlitter.com
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Fig. 1. Source, fate, and effects of personal protective equipment in aquatic and terrestrial environments. 

Table 2 

Occurrence and density of personal protective equipment in urbanized areas and natural environments during the COVID-19 pandemic. 

Location Sampling sites Number of items Refs. 

Lima; Peru 11 beaches 7.44 × 10 − 4 items/m 

2 De-la-Torre et al. (2021) 
Jacarta bay; Indonesia Cilincing and Marunda river mouths ∼254.7 - 246 items/day Cordova et al. (2021) 
Kwale, Kilifi, Mombasa; Kenya Beaches (sediments and water), and streets Streets: 0.01 item/m 

2 Beaches: 0.1 
items/m 

2 
Okuku et al. (2021) 

Soko island; Japan 100 m beach 7 × 10 − 3 items/m 

2 Stokes (2020) 
Cox’s Bazar; Bangladesh One beach (13 sampling sites; 12 weeks) 6.29 × 10 − 4 items /m 

2 Rakib et al. (2021) 
Bushehr; Iran Sandy beaches (S1, S4, S7-S9) Rocky beaches (S3, S5, S6) ∼54 items/m 

2 for 40 days Akhbarizadeh et al. (2021) 
Toronto; Canada Parking lots, hospitals, residential areas 0.001 items/m 

2 /day or 6.5 items/day. 
Parking lots and hospitals 
(1.60–1.33 × 10 − 3 items/m 

2 ) 
Residential areas (2.9–2.7 × 10 − 4 /m 

2 ) 

Ammendolia et al. (2021) 

Chile 12 tourist beaches from northern and central Chile 0.006 ± 0.002 items/m 

2 Thiel et al. (2021) 
Cape Town and Durban; South Africa Urban environments 2271 (11.4 ± 4.4 items/100 m/ ∙day) to 

3741 items (18.7 ± 9.6 
items/100 m/ ∙day) but < 1% comprised 
PPE. 

Ryan et al. (2020) 
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inal remarks and future perspectives 

COVID-19 pandemic is affecting the environment and human lives at
 pace without precedents. The anthropause induced positive but short-
erm impacts at an early stage, such as reduced GHG emissions and de-
reased pressure on natural resources. However, those improvements
ell short of the current sustainable goals, and soon as the human ac-
ivities went back to “business-as-usual ”, such environmental improve-
ents receded, returning to their pre-COVID levels or, in some cases,

ggravating, as observed for plastic waste mismanagement. 
The recovery of the lost environment during COVID-19 lock-

own indicates that the environmental degradation caused by hu-
ans is reversible, and mitigation strategies should be prioritised

nd implemented to recreate such “accidentally positive ” scenar-
os. A good example is the concept of “smart city ” (such as Sin-
apore, Seul, Helsinki and Zurich; https://www.imd.org/smart-city-
bservatory/home/ ). Such smart cities are implementing smart mobility
connected and free of GHG emissions) for their citizens, along with the
onstruction of energetically efficient homes and buildings, integrated
5 
echnology to monitor wildlife and natural environments, to improve
ir and water quality, and for the implementation of efficient waste col-
ection and treatment to reduce litter, waste of energy and resources,
nd costs. 

Another step is to replace conventional plastics with greener alterna-
ives (as reviewed by Iroegbu et al., 2021 ), as already prioritized by sev-
ral international initiatives such as the European Strategy for Plastics in
 Circular Economy (as reviewed by Silva et al., 2020 ). Considering PPE
articularly, the use of reusable or biodegradable alternatives (e.g., cot-
on masks and gluten-based masks, respectively) have been incentivised,
long with their proper disinfection (e.g., via steam) and discard on ded-
cated waste-bins collectors. Effective public health programs through a
One Health Approach ” are also important in addressing and managing
andemic scenarios ( Legido-Quigley et al., 2020 ). Governmental agen-
ies have already adopted one Health framework in the ASEAN Mem-
er States (e.g., the Philippines and Vietnam), where early warning sys-
ems, wildlife surveillance, education and public awareness campaigns,
nd inter-agency coordination are being implemented with positive eco-
omic and social outcomes (e.g., Agency, 2020 ) Table 2 . 

https://www.imd.org/smart-city-observatory/home/
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