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Abstract

Since synaptic plasticity is regarded as a potential mechanism for memory formation and learning, there is growing interest
in the study of its underlying mechanisms. Recently several evolutionary models of cellular development have been
presented, but none have been shown to be able to evolve a range of biological synaptic plasticity regimes. In this paper we
present a biologically plausible evolutionary cellular development model and test its ability to evolve different biological
synaptic plasticity regimes. The core of the model is a genomic and proteomic regulation network which controls cells and
their neurites in a 2D environment. The model has previously been shown to successfully evolve behaving organisms,
enable gene related phenomena, and produce biological neural mechanisms such as temporal representations. Several
experiments are described in which the model evolves different synaptic plasticity regimes using a direct fitness function.
Other experiments examine the ability of the model to evolve simple plasticity regimes in a task -based fitness function
environment. These results suggest that such evolutionary cellular development models have the potential to be used as a
research tool for investigating the evolutionary aspects of synaptic plasticity and at the same time can serve as the basis for
novel artificial computational systems.

Citation: Yerushalmi U, Teicher M (2008) Evolving Synaptic Plasticity with an Evolutionary Cellular Development Model. PLoS ONE 3(11): e3697. doi:10.1371/
journal.pone.0003697

Editor: Olaf Sporns, Indiana University, United States of America

Received April 26, 2008; Accepted October 17, 2008; Published November 11, 2008

Copyright: � 2008 Yerushalmi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a DIP grant for compositionality.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: uri.yerushalmi@gmail.com

Introduction

Much recent effort has been directed towards understanding the

mechanisms that underlie neural system development and

plasticity by simulating biological processes at a time- scale of

individual development. Intensive attempts are also under way to

develop models that evolve artificial neural networks. However,

most models evolving neural systems either lack the flexibility to

handle a wide range of biological phenomena or do not have the

requisite foundation to be considered biologically plausible.

The most common encoding used to evolve neural networks

from genotypes is known as ‘‘direct encoding’’ where the

phenotype information is directly encoded in the genome [1].

Other methods include parameterized encoding [2–4], which is

usually restricted to predefined architectures, and non- modularity

and grammar encoding [5–7], where the genome encodes a set of

grammar rules that are used to build the phenotype.

Recently, several artificial evolutionary systems that incorporate

a developmental phase have been presented. Various names have

been suggested for such systems, including Artificial Ontogeny [8],

Computational Embryogeny [9], Cellular Encoding [10,11],

Morphogenesis [12], and Artificial Embryogeny [13]. Some of

these computational models enable evolving neural networks by

simulating metabolic and cellular development processes [14–17].

In [18], an artificial genome entirely based on template

matching in a nucleotide-like sequence was presented and used

to study the dynamics of gene expression. In this model, as in the

model presented in this paper, genes activate or inhibit other genes

by producing products that bind to their regulatory sequences.

However, this model has not been used for examining phenomena

on a larger scale, such as at the tissue or neural level.

In [19], a simulation of complex biologically- inspired

development was shown to be possible by evolving an organism

through many cycles of cell division, differentiation and axonal

growth. However, hand- written genetic instructions were used to

control the organism’s development.

In [10], grammatical rules were used to build the phenotype,

but unlike grammar encoding [5–7], the grammatical rules were

applied to a neural cell rather than a matrix. Each cell had a copy

of the genome, which directly encoded a grammar tree. Each cell

reads the grammar tree at a different position. Depending on what

the cell reads, it can divide, change its internal parameters, and

take on its final form as a neuron.

A similar grammar-based model for generating a neural

phenotype was presented in [20]. The development starts with a

germ cell that is represented by the start symbol of the grammar.

However, these grammar based and cellular based encodings lack

the ability to deal with complex interactions among the different

developmental phenomena.

A model of neural network biological development based on a

regulatory genome was presented in [21]. The NN was evolved as

the controller of a virtual foraging organism.. In this model, an

organism’s NN development starts with a single cell that has 23

‘proteins’. Some of these are extra-cellular signaling receptors,

whereas others are responsible for the execution of developmental

events, and still others are regulatory elements for the modulation

of gene expression.
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In [19], organisms evolve through many cycles of cell division,

differentiation, and axonal growth. This study shows that a

simulation of complex biologically inspired development is possible

and can be successful. However, many of the genetic instructions

to control the organism’s development were hand-written.

A computational model of neurogenesis based on metabolitic

processes was tested in [17]. The model could evolve large neural

networks. Another system for evolving 3D organisms using gene

expression mechanisms was presented in [16].

However, the drawback of all the encodings presented above is

that they are either not based on biological processes, or lack the

multiple interactions among different developmental phenomena

that result in the emergence of biologically plausible models. Thus,

despite promising progress, none of these models has succeeded in

replicating a wide range of biological phenomena, including ones

that demonstrate synaptic plasticity.

It has been argued elsewhere [22], that success in finding an

efficient indirect biological encoding model should provide us with

simulation tools that can teach us a great deal about the

organization and functioning of biological systems.

Synaptic plasticity has long been regarded as a potential mechan-

ism for memory formation and learning. The most famous synaptic

plasticity principle is known as Hebbian learning [23], where modi-

fications in synaptic transmission efficacy are driven by correlations in

the firing activity of presynaptic and postsynaptic neurons.

Over the last 30 years, a large body of experimental results on

synaptic plasticity has been accumulated. The long- lasting

enhancement of synaptic transmission, Long Term Potentiation

(LTP) first reported in 1973 [24], along with its counterpart Long-

Term Depression (LTD), has been the focus of an enormous amount

of investigation. Several experiments on various neuronal systems

have found that synaptic plasticity may also depend on accurate

spike timing; Spike Timing Dependent Plasticity (STDP) [25–29].

The field of evolutionary robotics provides interesting ap-

proaches to evolving synaptic plasticity. In [30] a model that

genetically encodes rules of synaptic plasticity with rules of neural

morphogenesis was shown to be feasible.

In [31] an evolutionary model combines an integrate and fire

neuron with a correlation-based synaptic plasticity model and

developmental encoding. The results on a simple robot navigation

task indicate that such a system may allow for the efficient

evolution of large networks.

However, these models are usually not designed to be based on

biological specifics either at the gene to protein transcription

functionality level or at the level of neural mechanisms and are

usually restricted to correlation based plasticity regimes alone. To

this day no evolutionary biological model has been shown to have

the ability to evolve different biological synaptic plasticity rules.

In our previous papers, we presented an indirect encoding

framework [32] capable of evolving behaving organisms with

regulated mitosis and differentiated cells. We showed that the model

is capable of evolving behaviors based on neural control [32,33]. The

same model has been shown to evolve gene- related phenomena

such as functional gene clustering [34], and produce biological

neural mechanisms such as temporal representations [33].

In this paper we examine the model’s ability to evolve simple

virtual organisms with different biological synaptic plasticity rules,

and show that the model can evolve various plasticity regimes

observed in nature.

Results

In the next sections we present an evolutionary simulation model.

The first section describes the chromosome model that is based on

DNA and protein-like sequences. Two such chromosomes can

reproduce an offspring chromosome, as detailed in the materials and

methods section. The translation model for chromosomes to gene-

protein networks and the gene-network dynamic system model is

detailed later, preceding sections describing the way the cellular

dynamics are translated into organism and cellular functionality. After

presenting the model we report the results of several experiments. The

first experiments use fitness functions that were directly designed to

develop various synaptic plasticity regimes. The final, more complex,

experiment uses a fitness function based on behavior.

More information about the framework, together with biolog-

ical rationale for the model, can be found in [32–34].

Chromosome
Each organism in the model expresses a phenotype derived

from a chromosome structured according to biological conven-

tions. Each chromosome includes a sequence of genes, in which

each gene starts with a promoter sequence followed by a

messenger RNA sequence.

Each promoter sequence has 1–3 cis-regulatory elements which

are used as binding sites that regulate the expression of the gene,

and a parameter block that includes the gene parameters. The

parameter block of a gene/protein represents the properties

derived specifically from its spatial structure. The use of gene and

protein parameters in building the network is detailed later.

Table 1 presents a list of all the parameters. Each mRNA sequence

starts with a cis-regulatory element which is used as binding site

that regulates the activation of the protein, followed by a

parameter sequence, which in turn is followed by a trans-acting

element which binds to other cis-regulatory elements to control

their expression and activation; all represent the translated protein.

All the cis-regulatory elements, trans-acting elements and

parameter sequences are represented as sequences of real

numbers, with the chromosome composed of a long sequence of

real numbers r1…rn. The chromosome is translated into a gene-

protein network as detailed in the following sections.

All experiments mentioned in this paper are based on simulations

of evolutionary processes using genetic algorithm manipulations of

such chromosomes. Mutation and crossover methods are discussed

in the Reproduction subsection in Materials and Methods.

The chromosome structure described above can also be

represented as a formal artificial chemistry grammar [35–37] in

which the derivation rules are as follows:

SchromosomeT?SgeneTn

SgeneT?SpromoterTSmRNAT

SpromoterT?SparametersTScisT3

SmRNAT?StransTSparametersTScisT3

StransT?T1 . . . T16

ScisT?C1 . . . C16

SparametersT?P1 . . . P12

V1ƒiƒ12 Pi[<

V1ƒiƒ16 T ,Cii[ 0,1½ �

The language L(Ægeneæ) created from the grammar based on the

derivation rules above and Ægeneæ as the start variable represents all

possible genes in the chemistry. The language L(ÆmRNAæ) is based

on the same grammar, but with ÆmRNAæ as a start variable and

represents all possible proteins in the chemistry.

Synaptic Plasticity Evolution
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A molecule in the chemistry can either be a protein or a gene.

Consequently, the set of possible molecules S can be written as:

S~L SgeneTð Þ|L SmRNATð Þ

The model assumes that the set of molecules in an organism or cell

is composed solely of the individual’s genes and transcripted proteins.

Gene-Protein network
The chromosome presented above is translated into a gene-

protein network as illustrated in Figure 1. The network connection

strengths wij are assigned according to the Hamming distance dij

between cis-regulatory elements and trans-acting elements. Each

gene and each transcribed protein has 12 parameters (P1…P12)

that are read from the chromosome and control its dynamics as

detailed in Table 1.

The gene-protein network controls three dynamic values for

each protein i:

vcin
i - Protein i’s concentration inside the cell. vout

i - Protein i’s

concentration outside the cell, and vact
i - the activity level of

protein i in the cell. This value represents the extent to which the

current spatial structure of the protein enables it to act on other

genes and proteins.

The dynamics of the system are based on the following reaction

rules:

ta
i

Lvact
i

Lt
~fha

i ,ba
i

X
j

ajwijv
g act,bið Þ
j vact

j

 !
{vact

i

t
p
i

Lvcin
i

Lt
~fh

p

i
,b

p

i

X
j

ajwijv
g cin,bið Þ
j vact

j

 !
{vcin

i

tp
i

Lvcout
i

Lt
~fh

p

i
,b

p

i

X
j

ajwijv
g cout,bið Þ
j vact

j

 !
zki+2vcout

i {vcout
i

Table 1. Molecule parameters used in the gene-protein network dynamics.

Symbol Description Value Origin

tp
i Production time constant for molecule i. P1

ta
i Activation time constant for molecule i. P2

hp
i Production threshold for molecule i. P3

ha
i Activation threshold for molecule i. P4

b
p
i Production slope for molecule i. P5

ba
i Activation slope for molecule i. P6

ki Diffusion coefficient of molecule i. P7

aj Intrinsic activity level of molecule i. P8

b A vector of 2 Boolean values indicating whether molecule j produces proteins inside the
cell or whether it is bound to the membrane and affects external concentrations and
whether molecule i is activated from the internal or external side of the membrane.

P9,P10

ktype A vector of Boolean parameters that governs the translated protein’s ability to diffuse
between soma-axon, soma-dendrite, synapsed dendrite-axon.

P11,P12

wij Connection strength between molecules i and j. Hamming distance between rounded off values of
the Ætransæ element of j and the Æcisæ element of i.

Each parameter value is derived from the chromosome, either directly through the parameter element, as most of the table entries, or using a Hamming distance
function, as in wij. The parameters above are encoded for each gene/protein in the chromosome as a ‘‘parameter block’’ and govern the gene and its derived protein
dynamics in the gene-protein network. The model separates the activation dynamics, controlling the ability of the gene-protein to affect other gene-proteins, and the
production dynamics that control the protein’s concentration, by having different slopes bN, thresholds hN, and time constants tN : ba, ha, ta for each gene/protein to
control the dynamics of the activation and hp, bp, tp to control the dynamics of the protein production.
doi:10.1371/journal.pone.0003697.t001

Figure 1. Example of a schematic simple-regulation network
derived from a 6-gene chromosome. gA–gF are genes and A–F are
their corresponding transcripted proteins. Proteins B, D & F act as
productive proteins of C, B & E respectively. The white arrows represent
production connections whereas the black arrows represent activation
connections. Protein E can be produced inside the cell by its gene gE,
and out of the cell by protein F, generating a cascading information
system where E plays the role of a ligand, D is its receptor, and B and C
are the internal messengers that eventually activate gene gC.
doi:10.1371/journal.pone.0003697.g001
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where fh,b hð Þ~ 1

2
1ztanh b h{hð Þð Þð Þ,

The equations above are based on a threshold logic paradigm

commonly used in simulations of genetic regulatory circuits

[38,39], and neural networks [40,41], where the basic differential

equation is of the form:

t
dxi

dt
~f

X
wijxj

� �
{xi

In such an equation the dynamics of a node value x are

controlled by a time constant t, and an activation function f

that processes the cumulative field induced by the other

nodes.

In the model, the field induced by a node j on node i is the

product its dynamic activity level vact
j , its concentration v

g x,bð Þ
j , its

static activity factor aj, and the connection between the nodes wij.

To enable the model to separate the activation dynamics and

the production dynamics, for example to affect a protein’s

concentration without affecting its spatial structure and vice versa,

each gene/protein possesses different slopes bN, thresholds hN, and

time constants tN: ba, ha, ta to control the dynamics of activation

and hp, bp, tp to control the dynamics of protein production.

The model enables the external concentration vcout
j of each

protein to play a role in the network dynamics by incorporating

the expression v
g x,bð Þ
j in the equations above. v

g x,bð Þ
j is either the

internal vcin
j or external concentration vcout

j , according to the values

of x and b, which makes the model capable of evolving receptor-

ligand relationships, based on the Boolean parameter b.

In order to permit tissue related dynamics, the external

concentration equation contains a diffusion expression. ki is the

diffusion coefficient of i, and +2~
P

u[ x,yf g

L2

Lu2
, so that the

expression ki+2vx
i represents the contribution of diffusion to the

change in external concentration, according to the diffusion

equation
Lu

Lt
~k+2u.

An example of a schematic simple-regulation network derived

from a small chromosome is shown in Figure 1.

Cell functionality
In order to enable the gene-protein network presented above to

model processes at the tissue level, output nodes were added to the

gene-protein network. A similar component was introduced in

[39] as a grammar of rules which describe inter- cell interactions

and changes in number, type and state of cells. In our model, there

is an output node m representing (i) a cellular- related event that

can be triggered by the network (such as apoptosis, mitosis, cellular

migration), or (ii) values that need to be derived from the network

(e.g. Na conductivity, synaptic weight regulation), including

modeling directional receptors for axon guidance, or (iii) values

that need to be derived from the genome (such as translocation

probability). The full list is shown in Table 2.

Each such output node m is represented by a random-generated

bit string sm. The protein nodes j in the gene-protein network that

are close enough to string sm (djsm
ƒ0:25) are connected to output

node m. According to the threshold logic paradigm, an internal

value um is calculated for each output node:

um~fhm ,bm

X
j

ajwijv
cin
j vact

j

 !
hm~0:5,bm~1ð Þ

For nodes that trigger an event (e.g., occurrence of mitosis, cell

death, migration, differentiation event), the event is triggered when

the value um exceeds a predefined threshold (0.5). When managing

scalar values such as a translocation probability, the internal value

um may be multiplied by another pre-defined factor to obtain the

actual scalar value as detailed in Table 2.

In cases where a receptor-ligand relationship was needed to

obtain directional quantification (the ability to choose a direction,

as in axon guidance or cell migration), a two dimensional version

of the above value was used, where the effect of internal factors

was replaced by the effect of external gradient factors:

Table 2. List of all functions used in the direct fitness function
experiments.

Description Symbol
Output
Type

Predefined
Range

Mitosis messenger B {T,F}

Apoptosis messenger B {T,F}

Migration speed soma A (0,0.1)

Migration speed neurite A (0,0.1)

Sprout axon messenger B {T,F}

Sprout dendrite messenger B {T,F}

Translocation Probability A (0,1)

Soma Migration Directional Marker C (0,2p)

Axon Migration Directional Marker C (0,2p)

Dendrite Migration Directional Marker C (0,2p)

Crossover Probability A (0,1)

Axon Target Select Marker B {T,F}

Synapse Weight Axon vaxon A (0,1)

Synapse Weight Dendrite vdendrite A (0,1)

Inhibitory Neuron Marker A (0,1)

Threshold potential h0 A (-60E-3,-70E-3)

Threshold adaptivity factor a A (0.005, 0.05)

Threshold time constant th A (15E-3,50E-3)

gNa in open channel state A (4.0,4.4)

gNa in closed channel state A (20E-3,50E-3)

Action Potential Refractory Time tref A (2E-3,5E-3)

k Refractory Time tk
ref

A (4E-3,6E-3)

gk in open channel state A (200E-3, 500E-3)

gk in closed channel state A (2.3,2.6)

Synaptic current rise time ts1 A (0.5E-3,2E-3)

Synaptic current decay time ts2 A (3E-3,7E-3)

Membrane time constant at rest: C/Sg A (0.005, 0.02)

Neural noise time constant A (0, 1E-2)

The function values were limited to be in the ranges above. Type ‘A’ functions
transform um linearly to be in a predefined (min,max) range. Type ‘B’ functions
are Boolean functions based on a um.0 test. Output Type ‘C’ functions are
directional functions and are based on ux

m , uy
m & umy detailed earlier and

produce an angle. All predefined ranges were chosen to cover reasonable
biological values. Migration speed values are given in cell diameters per epoch.
Neural electric properties are given in OASM (Ohm, Ampere, Second, Meter) like
units, in the simulations each epoch represented half a millisecond. Only
symbols of values that are referred to by symbol in the text are presented.
doi:10.1371/journal.pone.0003697.t002
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ud
m~fhm ,bm

X
j

ajwij

Lvcout
j

Ld
vact

j

 !
hm~0:5,bm~1,d[ x,yf gð Þ

A list of all functions used in this paper is detailed in Tables 2

and 3. As seen in all tables, all parameters were allowed to evolve

within a biologically reasonable range, and no parameter was

pinned to a specific value.

In this paper the term ‘organism’ refers to the group of all cells

that are repeated-mitosis results of the same zygote cell. Since

during mitosis the gene-protein network is copied from the parent

cell, all organism cells are controlled by the same network

structure, but since each cell is situated in a different location, it

may possess different internal and external protein concentrations.

To control dendrites and axons separately from their soma, we

needed a mechanism to separate the dynamic values of the cell’s

soma from those of a neurite. Therefore, another basic parameter

(P11) was added to control the protein’s ability to diffuse between a

cell’s soma and neurite. Based on this diffusion parameter, the

system decides whether a given protein in a neurite will have the

same dynamic properties as the soma’s and be presented by the

same node in the regulatory network, or whether it will have

separate properties based on a different node connected to the

same regulatory network. A simple example of synapsogenesis is

illustrated in Figure 2. In the experiments, the weight value of a

synapse connecting axon A to dendrite B is the sum of the axon’s

and dendrite’s synapse weight functions vaxon and vdendrite as

indicated in Table 2:

wAB~vA
axonzvB

dendrite

Organism development
Each organism is initially made up of a single cell that has no

initial external or internal concentrations. The initial cell’s genes

can produce proteins that change its internal and external

concentrations and may cause some functional events such as

mitosis or cell migration. The cells can repeat mitosis events, so

eventually the organism can consist of several cells, where each cell

is controlled by the same chromosome and has the same

controlling regulatory network, but may have different internal

and external concentrations. The internal and external concen-

trations are changed dynamically by the regulation network and

diffusion rules presented above. The cells are represented as circles

on a two- dimensional grid and can move to continuous position

values. In a cell division event, the daughter cell is adjacently

located on an axis according to the ‘‘Soma Migration Directional

Table 3. List of additional functions used in the behavior
based fitness function experiments.

Description Symbol Output Type Predefined Range

Cell differentiation messenger B {T,F}

Sensory neuron marker A (0,1)

Motor neuron marker A (0,1)

Hidden neuron marker A (0,1)

Odor A Sensor Marker A (0,1)

Odor B Sensor Marker A (0,1)

Sight Sensor Marker A (0,1)

Photoreceptor sight angle apr A (0, p/2)

These functions were added to the ones detailed in Table 2 in the behavior-
based experiments. The function values were limited to be in the ranges above.
Type ‘A’ functions transform um linearly to be in a predefined (min,max) range.
Type ‘B’ functions are Boolean functions based on a um.0 test. All predefined
ranges were chosen to cover reasonable biological values. Only symbols of
values that are referred to by symbol in the text are presented.
doi:10.1371/journal.pone.0003697.t003

Figure 2. Synapsogenesis scheme example. A) The basic building
plan for the cellular tissue is the chromosome. B) The chromosome is
translated into a zygote controlled by a regulatory network. C) A mitosis
event splits the zygote into two separate cells, where each cell has its
own instance of the same regulatory network template. D) Neurite
sprouting events occur in both cells. An axon is branched from the left
cell, and a dendrite – from the right cell. Proteins a and b are marked in
P11 as ones that cannot diffuse from neurite to soma. Therefore, their
instances are separated into neurites with the same connectivity. E)
After the axon is guided by external protein concentrations towards the
right cell’s dendrite, a ‘synapsogenesis’ event occurs. A synapse is
formed, allowing proteins marked as synapse-diffusible (in their ktype
parameter) to move from one cell to another.
doi:10.1371/journal.pone.0003697.g002
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Marker’’ (see Table 2) of the mother cell. When a ‘‘Sprout axon/

dendrite Messenger’’ is triggered, a neurite is sprouted from the

soma. All cell elements (soma, axon and dendrite) can migrate on

the grid according to their migration speed and directional marker

(see Table 2). When an ‘‘Axon Target Select Marker’’ event is

triggered in an axon, and the axon has a dendrite at a distance of

less than one cell radius, the axon synapses to the nearby dendrites

that have the same flag are turned on.

The organism has a certain period of time in which it has to stop

mitosis; only then will the organism be an adult that may reproduce.

If the organism does not stop mitosis during the predefined period, it

is regarded as a cancerous tissue and removed from the environment

without reproduction. Figure 3 illustrates an organism developed in

the direct fitness function experiments presented in this paper. An

example of an organism that can develop in the behavior- based

experiments is illustrated in Figure 4.

Direct Fitness Function Experiments
In these experiments, the ability of the model to evolve different

synaptic plasticity regimes was tested on a two- dimensional

10610 cellular grid. The physical environment included action

molecules m as detailed in Table 2. All guidance actions were

based on chemical attraction in the extra-cellular environment.

Forty-five evolutionary sessions were run, with a fixed

population size of 100 and simple roulette wheel selection [42],

where the probability pi of an organism i to be selected is

associated to its fitness fi according to:

pi~
fiP

j[population

fj

A two- period fitness function was defined:

Figure 3. Outcome of the first period in the direct fitness
function experiments. The outcome of the first period in the direct
fitness function experiments is a dual cell organism in which a synapse
was formed between an axon of one cell and the dendrite of the other.
The grey circles represent the somas of two cells. The smaller white
circles represent axons and dendrites. The internal networks represent
the gene-protein networks in each soma, axon or dendrite that all have
the same connections, but may have different states.
doi:10.1371/journal.pone.0003697.g003

Figure 4. An example of a simple organism developed in the behavior- based experiment. A simple organism developed in the behavior-
based experiment. This specific organism has two (bottom) motor cells, which synapse to a hidden cell (middle), which synapse to a sensor cell (top).
The large circles represent somas of cells, the smaller white circles represent axons and dendrites. The internal networks represent the gene-protein
networks in each soma, axon or dendrite that all have the same connections, but may have different states.
doi:10.1371/journal.pone.0003697.g004

Synaptic Plasticity Evolution
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a) First period, evolving organisms with only two neurons and a

single synapse between them:

f ~
s{1zn{1 sw0,nw1ð Þ

0 sƒ0,nƒ1ð Þ

(

where f is the fitness value, s is the number of synapses

between two different cells, and n is number of neurons. The

optimal organism structure in this fitness landscape is an

organism with two neurons connected by a single synapse.

This period was run until the entire population reached

maximal fitness. A sample fitness curve for a first period

session is presented in Figure 5.

b) Second period, evolving the first period organisms to achieve

target synaptic plasticity properties.

As will be detailed later, the fitness function in the second period

was changed every 8 evolutionary sessions and included a

regression calculation (see regression calculation section in

Materials and Methods) of samples based on:

N Dwt - Synaptic change at time t compared to the next system

epoch. Dwt = wt+1-wt.

N s
pre
t - Time interval from last pre-synaptic cell spike up to time t.

N s
post
t - Time interval between last post-synaptic cell spike up to

time t.

N Dst~s
post
t {s

pre
t . The interval from the last pre- and post -

synaptic cell spikes at time t.

Organisms that did not have exactly two connected neurons

were not allowed to reproduce in this period.

Evolving Hebbiann LTP and Anti-Hebbiann LTD Synapses
The Hebbian postulate assumes an increase in synaptic strength

when the pre-synaptic cell ‘‘takes part’’ in the firing of the post-

synaptic cell [23]. Assuming that times t with small values of Dst

are characterized by spikes of the post-synaptic cell affected by the

pre-synaptic cell, we examined the model’s ability to evolve

synapses when the synaptic change Dwt is dependent on the

interval between the pre- and post- synaptic spikes. We defined the

following fitness function to evolve Hebbian LTP synapses:

f ~{b Dwt,Dstð Þ
Dstw0

where b :,:ð Þ
x

is the regression coefficient of samples that meet

condition x. An example of such a synapse is presented in Figure 6.

We also assumed that the opposite function may generate Anti-

Hebbian LTD synapses:

f ~b Dwt,Dstð Þ
Dstw0

Figure 5. The first evolution period in the direct fitness function experiments. The process of evolving organisms in the first period in the
direct fitness function experiments. Twenty eight generations were randomly selected through evolution. Blue line indicates the average fitness in
each generation; purple lines indicate error range of one standard deviation.
doi:10.1371/journal.pone.0003697.g005
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An example of such a synapse is presented in Figure 7. Eight

sessions were run in each evolutionary session. The fitness curves

are presented in Figures 8 and 9. Statistical tests of all populations

at the 100th generation showed that in all sessions the proportion

of organisms where the regression was significantly (P,0.05)

negative (LTP) or positive (LTD) was above 81%. In the above

sessions we ignored samples in which Dst#0.

Evolving Non-Hebbian LTP Synapses
After the model successfully evolved synaptic plasticity based on

pre-to-post synaptic correlations, we examined the ability of the

model to evolve synaptic plasticity that was not connected to such

a correlation by defining a fitness function that prefers a

dependence of synaptic change on the interval since last pre- or

post- synaptic spike.

The following fitness functions were set to evolve synapses that

strengthen upon single neural activity of the pre-synaptic cell:

f ~{b Dwt,s
pre
tð Þ

s
pre
t w0

or the post-synaptic cell:

f ~{b Dwt,s
post
t

� �
s

post
t w0

In these experiments the fitness function was based on the

regression coefficient of the synaptic change vs. the time interval

since the last spike. To control that the synaptic change was not

connected to a pre- or post- synaptic correlation, the measure-

ments to test synaptic plasticity were made after stopping the

supplementary cell’s activity. Examples of evolved Non-Hebbian

pre- and post- synaptic LTP synapses are shown in Figures 10 and

11 respectively. The fitness curves are presented in Figures 12 and

13. Statistical tests of all populations in the 70th generation showed

that in all sessions the proportion of organisms where the

regression was significantly (P,0.05) negative was above 93%.

Evolving Time Dependent Synaptic Plasticity
Finally, eight sessions were run in an attempt to evolve a more

complicated form of synaptic plasticity which was time-dependent

(STDP). By contrast to the previous plasticity regimes which

evolved in fewer than 100 generations, we did not obtain such a

clear plasticity rule in the STDP case using the following fitness

function:

f ~{b2 Dwt,Dstð Þ
Dstƒt1

{b Dwt,Dstð Þ
t1vDstv0

{b Dwt,Dstð Þ
0vDstvt2

{b2 Dwt,Dstð Þ
Dst§t2

As seen in Figure 14, after 881 generations, seven out of eight

evolutionary sessions produced a satisfactory plasticity regime.

Statistical tests on seven out of the eight populations at the 881th

generation showed that in these sessions the proportion of

organisms where the synaptic change was significantly (P,0.05)

positive or negative when the interval between the pre-synaptic

Figure 6. Average synaptic change plotted against spike time measures in Hebbian- like LTP fitness sessions. Hebbian- like LTP
plasticity; synaptic change plotted against Dst (defined as the interval between the pre-synaptic spike and the post-synaptic spike), taken from a 30th
generation virtual organism evolved in a session with fitness function f ~{b Dwt,Dstð Þ

Dstw0

. Spike time measures are given in system epochs, synaptic

change Dwt is given in absolute synaptic weight values. Each plot presents the average synaptic change values from 24 sessions of 1000 epochs. The
error bars are set at one standard deviation.
doi:10.1371/journal.pone.0003697.g006
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and post- synaptic spikes was small and positive or negative

respectively and where the regression was only significantly

(P,0.05) negative in small intervals was above 83%. The STDP

of one of the evolved synapses is shown in Figure 15, and is

comparable to previous biological findings [29].

ktype as an essential model component
The ktype parameter (see Table 1) that regulates the protein’s

ability to diffuse between axon-soma-dendrite is a relatively new

element in our model. Since the previous fitness curves implied

that the Non-Hebbian LTP synapses were relatively easy to evolve

we examined whether this parameter was essential for evolving

these synapses. We ran four evolutionary sessions of 100

generations each, where ktype was not used in the model and all

proteins were allowed to diffuse freely between soma-axon and

soma-dendrite. In all four sessions, the population could not evolve

a clear positive fitness value.

Behavior Based Experiments
We next examined whether any of the plasticity regimes could

evolve in an environment where the evolutionary pressure was

based on the organism’s behavior.

In this experiment, each virtual organism was randomly set to

be a male or a female, and could move in the environment by

using its sensor neurons (that cannot have dendrites), motor

neurons (that cannot have axons) and hidden neurons (that can

have both dendrites and neurons) as detailed later. In order to

encourage the virtual organisms to develop neural networks, they

were given a life span proportional to the different cellular types

they developed: a sensory neuron, a motor neuron, a hidden

neuron, a dendrite, an axon, and a synapse. Hence, a maximal

time span was assigned to every virtual organism that possessed a

‘‘basic’’ neural network, which was defined as having at least one

instance of each of the six elements mentioned above. Since the

system was defined as having only dendrite-to-axon synapses, the

‘‘basic’’ network can also be seen as a network that included at

least a motor, a hidden, and a sensory neuron and one synapse.

The virtual organisms were removed from the environment after

completing their life span period.

The population size was restricted to a predefined range by

removing the eldest virtual organisms from the environment when

the number of virtual organisms reached the upper bound (due to

crowding), and by randomly choosing two parents from the

environment and producing their offspring as a new individual in

the environment when the number of virtual organisms reached

the lower bound.

Each virtual organism in the behavioral based experiments was

developed on a two-dimensional 20620 cellular grid. The physical

environment included action molecules m as detailed in Tables 2

and 3.

The lower and upper bounds of the population size were set to

90 and 110. Unlike previous evolutionary sessions, in this session a

specific fitness function was not set and therefore a roulette wheel

selection [42] was not used. The evolutionary pressure was set only

by including the life-span period in the environment as a function

of the neural network structure, and introducing a ‘‘mating rule’’

(see below). Unlike the previous experiments, in this experiment

successive generations could overlap.

Figure 7. Average synaptic change plotted against spike time measures in the Anti-Hebbian-like LTD fitness sessions. Anti-Hebbian-
like LTD plasticity; synaptic change plotted against Dst, taken from a 30th generation virtual organism evolved in a session with fitness function
f ~b Dwt,Dstð Þ

Dstw0

. Spike time measures are given in system epochs; synaptic change Dwt is given in absolute synaptic weight values. Each plot presents

the average synaptic change values from 24 sessions of 1000 epochs. The error bars are set at one standard deviation.
doi:10.1371/journal.pone.0003697.g007
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Figure 8. Fitness curve of evolving Hebbian LTP synapses using the direct fitness function. Average fitness values in every generation for
the eight sessions running the Hebbian- like LTP fitness function. The first generation is the outcome of an evolutionary session designed to evolve
organisms with only two neurons and a single synapse between them as detailed in the text.
doi:10.1371/journal.pone.0003697.g008

Figure 9. Fitness curve of evolving Anti-Hebbian LTD synapses using the direct fitness function. Average fitness values in every
generation for the 8 sessions running the Hebbian- like LTD fitness function. The first generation is the outcome of an evolutionary session designed
to evolve organisms with only two neurons and a single synapse between them as detailed in the text.
doi:10.1371/journal.pone.0003697.g009
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Cell Differentiation
In order to incorporate behavior into the model, we needed to

include the possibility for cell differentiation so that the organism

could include sensor and motor cells in addition to its hidden neural

cells. Briefly, when a cell differentiation messenger is triggered, the

cell differentiates into one of three cell types according to its

differentiation marker with the highest level (as detailed in Table 3):

N A motor cell. Upon firing, motor cells cause the virtual

organism to move in the lm-lc direction, where lm is the motor

cell location, and lc is the virtual organism’s centroid.

N A sensor cell. Sensor cells are either sensitive to an odorant

(A or B), or act as a photoreceptor. Odor A is emitted into the

environment by potential mate organisms, odor B is emitted by

non mate organisms; the secreted current I from an odor

sensitive cell is proportional to the distance between the

odorant origin and the cell. Photoreceptor cells secrete a

constant current if any virtual organism is placed in a region

subsumed by apr radians.

N A hidden cell – that will embed a neural model as detailed in

previous sections.

The Evolutionary Session
In order to evolve neural based behavior, a ‘‘mating rule’’ was

introduced in the environment, where two virtual organisms that

contacted each other produced offspring according to the

reproduction equation presented in the Materials and Methods

section. Hence we expected the virtual organisms to develop

neural mechanisms that would maximize their contacts with

virtual organisms of the opposite sex.

As a first step, we tested for changes in the virtual organisms’

behavior along generations. As shown in Figure 16, the percentage of

reproduction resulting from virtual organism contact rose over

generations, which cannot be ascribed to a change in the population

size (which, as detailed earlier, was always between 90 and 110).

In order to examine whether any of the synaptic plasticity

regimes evolved in the behavioral experiment, every 0.5

generations (where the population generation was calculated as

the average generation of the individuals in the population) an

organism was randomly chosen from the population and tested to

see whether it included (1) synapses, where the value of

b Dwt,Dstð Þ
Dstw0

was negative at P,0.05. These synapses are termed

Hebbian LTP synapses; (2) synapses where the value of

b Dwt,Dstð Þ
Dstw0

was positive at P,0.05, and are referred to as Anti-

Hebbian LTD synapses, (3) synapses where the value of

b Dwt,s
pre
tð Þ

s
pre
t w0

was negative at P,0.05, termed Hebbian pre-

synaptic LTP synapses, (4) synapses where the value of

b Dwt,s
post
t

� �
s

pre
t w0

was negative at P,0.05, termed Non-Hebbian pre-

synaptic LTP synapses. We did not control for STDP synapses in

this experiment.

Figure 10. Average synaptic change plotted against spike time measures in Non-Hebbian LTP pre-synaptic plasticity fitness
sessions. Non-Hebbian LTP pre-synaptic plasticity; synaptic change plotted against s

pre
t (defined as the time interval since the last pre-synaptic

spike), taken from a 20th generation virtual organism evolved in a session with fitness function f ~{b Dwt,s
pre
tð Þ

s
pre
t w0

. The post-synaptic cell was set as

non-active during measurements. Spike time measures are given in system epochs; synaptic change Dwt is given in absolute synaptic weight values.
Each plot presents the average synaptic change values from 24 sessions of 1000 epochs. The error bars are of one standard deviation.
doi:10.1371/journal.pone.0003697.g010

Synaptic Plasticity Evolution

PLoS ONE | www.plosone.org 11 November 2008 | Volume 3 | Issue 11 | e3697



For each of the four synapse types above we examined whether

there was an increase in the proportion of virtual organisms with the

specific synapse type in the first 1000 generations compared to the

second 1000 generation. There was an increase in the proportion of

virtual organisms that had at least one Non-Hebbian pre-synaptic

LTP synapse (P,9610210, T-test). No such findings were observed

for the other synaptic plasticity types (P.0.1, T-test).

Non-Hebbian pre-synaptic LTP synapse as a memory
mechanism

This finding could be explained by (1) the tendency of the

evolution to use Non-Hebbian pre-synaptic LTP synapses in this

early stage for mating functionality or (2) some unrelated

mechanism preferring such organisms in the latter period, such

as a tendency of the organisms to include more synapses, which

would increase their likelihood of including at least one instance of

a specific synapse type.

A manual examination of the virtual organisms that included a

Non-Hebbian pre-synaptic LTP synapse gave us a clue to the use

of these synapses. As illustrated in Figure 17, in some of the cases

the Non-Hebbian pre-synaptic LTP synapse was in a path

connecting asensors sensitive to a ‘‘mate’’ odor to a motor neuron.

This caused the organism to turn around, resulting in a behavior

where the synapse ‘‘remembered’’ that there had just been a

potential mate nearby, causing the organism to remain in its

vicinity and hence increasing the probability of encountering the

previously sensed mate.

We tested the mutual information between synapse potentiation

and the existence of a mate nearby. If the synapses function as a

memory mechanism for ‘‘remembering’’ whether there are mates

the virtual organism just sensed, we should observe higher mutual

information values in cases of synapses recognized as Non-Hebbian

pre-synaptic LTP synapses compared to randomly chosen synapses.

We compared 250 virtual organisms with a Non-Hebbian pre-

synaptic LTP synapse (group B) to 250 randomly chosen virtual

organisms (group A). Each virtual organism was placed in an

environment and we sampled 1000 instances of:

dt: the distance of the nearest mate at time t.

wt: the value of the Non-Hebbian pre-synaptic LTP synapse

weight value at time t. For Group A organisms, a synapse was

chosen that had some variance in the wt values (Var(wt).0).

For each organism the dt, wt values were converted to Boolean

values D = {d1,d2} and W = {w1, w2}:

Dt~

d1 dtw median
i

dið Þ

d2 dtv median
i

dið Þ

8<
:

Wt~

w1 wtw median
i

wið Þ

w2 wtv median
i

wið Þ

8<
:

As shown in Figure 18, there was a significant difference in

mutual information I(D;W) between Group A and Group B.(T-test

Figure 11. Average synaptic change plotted against spike time measures in Non-Hebbian LTP post synaptic plasticity fitness
sessions. Non-Hebbian LTP post-synaptic plasticity; synaptic change plotted against s

post
t (defined as the time interval since the last post-synaptic

spike), taken from a 20th generation virtual organism evolved in a session with fitness function f ~{b Dwt,s
post
t

� �
s

post
t w0

. The pre-synaptic cell was set as

non -active during measurements. Spike time measures are given in system epochs; synaptic change Dwt is given in absolute synaptic weight values.
Each plot presents the average synaptic change values from 24 sessions of 1000 epochs. The error bars are set atone standard deviation.
doi:10.1371/journal.pone.0003697.g011
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P,10216). This suggests that the Non-Hebbian pre-synaptic LTP

synapses tend to contain more information about the existence of

potential mates in the immediate vicinity.

Discussion

The experiments presented in this paper were designed to

examine the ability of an evolutionary cellular development model

to evolve various synaptic plasticity regimes. The approach

described in this paper is based on a model that is both feasible

in terms of running relatively complex evolutionary simulations

and includes a biologically plausible gene-protein regulation

functionality with an integrate-and-fire neural mechanism.

By applying different fitness functions to the model in separate

evolutionary sessions, different synaptic plasticity rules could be

evolved by the system: Hebbian- like LTP plasticity, Anti-

Hebbian-like LTD plasticity, Non-Hebbian LTP pre- and post-

synaptic plasticity and Hebbian- like STDP. We also showed how

Non-Hebbian LTP pre- synaptic plasticity can evolve in an

evolutionary system that has no direct fitness function, but is based

on behavior selection, and how this plasticity can serve as a simple

memory mechanism.

According to the fitness curves in the direct fitness function

experiments, anti-Hebbian like plasticity regimes converge for

most runs quite well, especially compared to the fitness curves of

the other plasticity types, and therefore might have a selectional

advantage in the last experiment.

Although in this paper we focused on the model’s ability to

evolve various synaptic plasticity regimes, we also examined the

model as a whole and did not derive the specific features in the

model that enable evolving synaptic plasticity. For example, even

though the diffusion functionality does not seem to be related to

the abilities of the model as presented in this paper, our attempts

to evolve the simplest plasticity regime without diffusion did not

succeed, suggesting that the ability to regulate protein diffusion

between neurites and soma is essential. We believe that future

studies should examine the ability of simplified models to evolve

various synaptic plasticity regimes to discover new essential

components of complex mechanisms.

The ability of the model to evolve various biological plasticity

regimes, together with its ability to present genomic and neuronal

phenomena suggest that this simulation approach can serve as a

tool for investigating evolutionary aspects of synaptic plasticity.

One example for such future examination is related to the

connection between the time when STDP emerges on the

biological phylogenetic tree and the number of generations needed

to evolve it in the model. The fact that some synaptic plasticity

rules such as time dependent plasticity evolved much more slowly

than others as seen in the results presented here can be ascribed to

unsuitable fitness functions.

A different conclusion relates to synaptic plasticity as a

mechanism for memory formation and learning. The fact that

the model is capable of evolving a biological synaptic plasticity rule

as a pre- synaptic LTP synapse in an environment where selection

is based on behavior and not directly designed to evolve this

specific plasticity should encourage the computational applications

of such an approach. We believe that future experiments using this

and similar models can shed more light on other synaptic plasticity

Figure 12. Fitness curve of evolving Non-Hebbian LTP pre- synaptic synapses using the direct fitness function. Average fitness values
in every generation for the eight sessions running the Non-Hebbian pre-synaptic LTP fitness function. The first generation is the outcome of an
evolutionary session designed to evolve organisms with only two neurons and a single synapse between them as detailed in the text.
doi:10.1371/journal.pone.0003697.g012
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Figure 13. Fitness curve of evolving Non-Hebbian LTP pre synaptic synapses using the direct fitness function. Average fitness values in
every generation for the eight sessions running the Non-Hebbian post-synaptic LTP fitness function. The first generation is the outcome of an
evolutionary session designed to evolve organisms with only two neurons and a single synapse between them as detailed in the text.
doi:10.1371/journal.pone.0003697.g013

Figure 14. Fitness curve of evolving STDP synapses. Average fitness values in every generation for the eight sessions running the STDP fitness
function. The first generation is the outcome of an evolutionary session designed to evolve organisms with only two neurons and a single synapse
between them as detailed in the text.
doi:10.1371/journal.pone.0003697.g014
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rules and their relationship to memory and learning, both for

future artificial intelligence systems, and as a research tool to

account for existing neural systems. Nevertheless, the fact that

some synaptic plasticity rules, such as time dependent plasticity,

evolved in the direct fitness experiments much more slowly than

others, implies possible computation power difficulties in larger

and more complex models. We believe that statistical examination

of the artificial mechanisms that lead to the creation of more

complex synaptic regimes in an evolutionary environment with

behavior based selection has the potential to better understand

synaptic plasticity both as a biological and computational research

tool.

Materials and Methods

Reproduction
Reproduction of a child chromosome from its parent chromo-

somes is based on a self adaptive method [43], avoiding linkage of

the experimental results to specific crossover and mutation values.

Each real value ri (Pi, Ti, Ci in the grammar above) of the

chromosome is surrounded by three other values: a crossover

probability value ci, and two mutability values sr
i , sc

i that control

the extent to which parameters ri and ci respectively are likely to

change (for more information see [43]). The values of ri, ci, sr
i , sc

i

are mutated self-adaptively:

~ssx
i ~sx

i exp t’N 0,1ð ÞztNi 0,1ð Þð Þ
~xxi~xiz~ssx

i Ni 0,1ð Þ

t~

ffiffiffiffiffiffiffiffiffi
2
ffiffiffi
n
pq� �{1

,t’~
ffiffiffiffiffi
2n
p� �{1

where n is the number of genes, xM{r, c}, iM{1..n}, N(0, 1) is a

standard normal random number, Ni(0, 1) represents a new

random number generated for each component, and ~ssx
i , ~xxi are the

new values for sx
i , xi.

Before mutation takes place, the parent chromosomes are

aligned using a dynamic programming algorithm [44] and

recombined, where the probability for a crossover point to occur

on the aligned chromosomes at location i & j of the parents is ci+cj.

Neural activity
All cells in the experiments detailed in this paper were

embedded with an integrate and fire [45] neural model, where

the membrane potential of the cell body behaved according to:

C
dv

dt
~gk v{Vkð ÞzgNa v{VNað ÞzI

Figure 15. Hebbian- like STDP. Synaptic change plotted against Dst, taken from a 400th generation virtual organism evolved in a session with
fitness function:

f ~{b2 Dwt,Dstð Þ
Dstƒt1

{b Dwt,Dstð Þ
t1vDstv0

{b Dwt,Dstð Þ
0vDstvt2

{b2 Dwt,Dstð Þ
Dst§t2

:

Spike time measures are given in system epochs; synaptic change Dwt is given in absolute synaptic weight values. Each plot presents the average
synaptic change values from 24 sessions of 1000 epochs. The error bars are set at one standard deviation.
doi:10.1371/journal.pone.0003697.g015
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where C is the membrane capacitance, I is the total current

injected into the cell, and g and V values are the ion channel

conductivity and reversal potential.

When the membrane potential reaches threshold h, and the cell

is not refractory, it fires an action potential, gNa. It is then raised for

one system epoch, and immediately switches to a refractory state

for tref seconds, where it cannot fire and gk is raised and later

decayed back with a tk
ref time constant. In the simulations each

epoch represented half a millisecond.

Current I injected into the cell consists of a noise current Inoise,

and incoming synapse current Iexc, where Inoise is a Gaussian noise

causing a cell without external input to fire randomly. The noise of

the various cells is uncorrelated.

I~Inoisez
X

Iexc

Excitatory Iexc current injected by a pre-synaptic cell i into a

postsynaptic cell j has a rise and decay time as follows:

Iexc tð Þ~
wji

e

ts1
te

{ t
ts1 tƒts1

wjie
{

t{ts1
ts2 ts1ƒt

8<
:

where t is the time elapsed from the last action potential in the pre-

synaptic cell, and t1 & t2 are the rise and decay time constants.

The threshold level depends on the membrane potential level,

according to:

th~
dh

dt
~{ h{h0ð Þzav

Figure 16. Evolution in behavioral experiment. Green: Proportion of reproduction triggered by virtual organisms contacting each other (as
opposed to reproductions initiated by the system when the number of virtual organisms hit the lower bound). Blue: Proportion of virtual organisms
that developed a basic network as defined in the text. Red: Proportion of virtual organism death events triggered by the system because of crowding
(as opposed to deaths due to completing the life span period). The values are average proportions measured every 10 generations.
doi:10.1371/journal.pone.0003697.g016

Figure 17. An organism with a simple memory mechanism of
sensed potential mates. One of the developed organisms included a
sensory neuron A that was sensitive to mate odors, synapsing a hidden
neuron B, synapsing using a Non-Hebbian pre-synaptic LTP synapse S, a
hidden neuron C, synapsing a motor neuron D. Neuron B firing at a high
rate as a result of a proximal mate potentiates synapse S and
immediately raises the firing rate of D , causing the organism to turn
around and stay in the same area.
doi:10.1371/journal.pone.0003697.g017
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Chromosome model
We used cis- and trans- elements as sequences of 16 real numbers.

Since the connection strength between molecules i and j, wij is

calculated by the Hamming distance between rounded off values of

the trans element of j and the cis element of i, the length of cis and

trans elements controls the resolution in which wij can be calculated.

Two evolutionary simulations were conducted to evolve Non-

Hebbian pre-synaptic LTP synapses using 8 and 32 cis- and trans-

lengths, and in both cases the sessions succeeded in evolving the

synapses.

Generating output nodes
Bitstrings sm representing the output nodes are set randomly

during initialization of each evolutionary session.

Calculating Regression
All regression coefficients and regression significance values

presented in this paper were values derived from tests where the

organism was placed in its environment and there were at least

2000 pre-synaptic and 2000 post-synaptic spikes from both sides of

the synapse while sampling. No external current was injected into

the neurons so as to collect spike related data. Synapses that did

not have any pre-synaptic or post-synaptic spikes during the

experiment were not included in the regression calculations.

Mutual information
The mutual information I(W;D) was calculated according to:

I W ; Dð Þ~
X
d[D

X
w[W

p d,wð Þlog
p d,wð Þ

p dð Þp wð Þ

� �

where p(w,d) is the number of samples of the joint w,d divided by

the total number of joint samples. p(d) and p(w) are the number of

samples of d and w respectively, divided by the total number of

samples. The number of samples used was 1000. By letting the

simulation progress between each two samples, two consecutive

samples were not allowed to have the same closest ‘‘mate’’ to the

examined organism.
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