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A B S T R A C T

In the veterinary field, the utility of disease-identification models that use comprehensive circulating microRNA 
(miRNA) profiles produced through measurements based on next-generation sequencing (NGS) remains un-
proven. To integrate NGS technology with automated machine learning (autoML) to create a comprehensive 
circulating miRNA profile and to assess the clinical utility of a disease-screening model derived from this profile. 
The study involved dogs diagnosed with or being treated for various diseases, including tumors, across multiple 
veterinary clinics (n = 254), and healthy dogs without apparent diseases (n = 91). miRNA was extracted from 
EDTA-treated plasma, and a comprehensive analysis was conducted of one million reads per sample using NGS. 
Then autoML technology was applied to develop a diagnostic model based on miRNA. Among these models, the 
one with the highest performance was chosen for evaluation. The diagnostic model, based on the comprehensive 
circulating miRNA profile developed in this study, achieved an AUC score of 0.89, with a sensitivity of 85 % and 
a specificity of 88 % for the disease samples. The miRNA-based diagnostic model demonstrated high sensitivity 
for disease groups and has the potential to be an effective screening test. This study indicates that a compre-
hensive miRNA profile in dog plasma could serve as a highly sensitive blood biomarker.

1. Introduction

Some diseases in dogs progress slowly and exhibit minimal or elusive 
signs in their early stages (Flory et al., 2023). Determining the presence 
of such diseases requires extensive testing and specialized knowledge. 
However, only a limited number of facilities are capable of performing 
such advanced testing, which may delay diagnosis. Furthermore, even 
with sophisticated equipment, early detection of the disease is often not 

possible.
MicroRNAs (miRNAs) are small RNAs that regulate the expression of 

complementary messenger RNAs (Ambros, 2004), playing crucial roles 
in various cellular processes, such as cell differentiation and apoptosis, 
by regulating gene expression (O’Brien et al., 2018). They have garnered 
attention in veterinary medicine, suggesting their potential as bio-
markers in companion and industrial animal medicine (Chen et al., 
2022; Bai et al., 2019).
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Recently, the clinical utility of a lung cancer discrimination model, 
based on a comprehensive circulating miRNA profile constructed 
through the integration of next-generation sequencing (NGS) and 
automated machine learning (autoML), has been reported in human 
medicine (Inagaki et al., 2023). Conversely, in the veterinary field, 
previous studies have not yet demonstrated the clinical utility of 
disease-identification models constructed using comprehensive miRNA 
profiles.

Therefore, we evaluated whether a diagnostic model based on canine 
plasma miRNA profiles, developed through the combination of NGS 
technology and AutoML, could serve as a testing method capable of 
detecting physical abnormalities at an early stage.

2. Materials and Methods

2.1. Sample collection

Blood sample residues were collected for clinical testing from dogs at 
seven veterinary hospitals, including the University of Tokyo Animal 
Medical Center, Kagoshima University Veterinary Teaching Hospital, 
Tokyo University of Agriculture and Technology Animal Medical Center, 
and Nippon Veterinary and Life Science University Veterinary Medical 
Teaching Hospital, from January 2022 to January 2023. The majority of 
these dogs were undergoing veterinary treatment. Written consent for 
the use of these specimens for research purposes was obtained from the 
owners. The study included 345 dogs of various ages and health statuses. 
Through physical examinations, blood tests, histological examinations, 
cytology, and chest X-rays, these dogs were categorized into two groups: 
a disease group (254 animals) and a healthy group (91 animals) dis-
playing no apparent abnormalities.

2.2. Blood sample collection and miRNA extraction from plasma

Blood samples were immediately anticoagulated using EDTA blood- 
collection tubes (MiniCollect® II EDTA-2K, Sekisui Medical Co., Ltd., 
Tokyo, Japan) following collection with a syringe, after which plasma 
was separated and aliquoted into cryotubes. Then the plasma samples 
were stored at –80 ◦C until miRNA extraction. RNA samples, containing 
miRNA, were extracted from the plasma using an RNA extraction kit 
(Maxwell® RSC miRNA from Tissue or Plasma and Serum Kits, Promega 
Corporation, WI, USA). Total miRNA concentrations in the RNA samples 
were measured using an miRNA quantification kit (QubitTM microRNA 
Assay Kits, Thermo Fisher Scientific Inc., MA, USA). These samples were 
preserved at –80◦C until ready for NGS library preparation.

2.3. NGS library preparation and NGS

The miRNA library was assembled using an automatic pipetting 
machine (Agilent Bravo NGS, Agilent Technologies Inc., CA, USA). The 
distribution of library sizes was assessed through automated electro-
phoresis (TapeStation system High Sensitivity D1000, Agilent Technol-
ogies Inc., CA, USA). The pooled samples were sequenced on an NGS 
system (Ion S5 system, Thermo Fisher Scientific Inc., MA, USA). The 
sequencing data were aligned to miRBase v21, an miRNA database 
curated by researchers at The University of Manchester.

2.4. miRNA data normalization and production

To adjust for variation in library size, the read counts of each sample 
were tallied and normalized to reads per million (RPM), followed by 
log2 transformation (Campbell et al., 2015). miRNAs not detected in the 
training dataset were removed, filtering to include only those miRNAs 
with at least one read in each profiled sample.

2.5. Screening of a disease-differentiation model using autoML

The AutoML platform DataRobot (DataRobot, Inc., MA, USA) was 
used for the construction and screening of diagnostic models. From the 
miRNAs with quantifiable values in all samples, 70 types with signifi-
cant quantities were selected as features for model construction. Using 
DataRobot’s autopilot function, which enables fully automatic model 
construction, we systematically developed a model tailored for predic-
tion. Among the models generated, the one demonstrating superior 
performance through five-fold cross-validation was chosen. The area 
under the curve (AUC) served as the metric for evaluation. The perfor-
mance of the optimal model was subsequently assessed on the validation 
dataset.

2.6. Statistical analysis

The AUC was calculated using the statistical software R (version 
4.0.3). Subject characteristics and diagnostic performance were 
analyzed using Welch’s t-test for continuous variables and Fisher’s exact 
test for categorical variables. Model performance, including sensitivity 
and specificity, was evaluated with 95 % confidence intervals (CIs) 
determined using the Wilson score method. Receiver operating charac-
teristic (ROC) analysis was conducted to calculate AUC values.

3. Results

3.1. Subject characteristics

Table 1 displays the detailed characteristics of the subjects in this 
study, which included a total of 345 dogs. The sex distribution included 
51 males, 115 castrated males, 38 females, and 141 spayed females. The 
study included 48 mixed breeds, 46 toy poodles, 46 miniature dachs-
hunds, 22 chihuahuas, and 44 other breeds. The cohort was divided into 
254 dogs in the disease group and 91 in the healthy group. Compre-
hensive NGS analysis was performed on both groups to generate miRNA 
expression profiles, further divided into training and validation datasets. 
The training dataset included 180 samples from the disease group and 
64 from the healthy group, with the diseases listed in Table 2. The 
validation dataset contained 74 samples from the disease group and 27 
from the healthy group, including the diseases in Table 3. In the vali-
dation dataset, the disease group was significantly older than the 
healthy group (Welch’s t test, p < 0.05), with no significant differences 
observed between sex and disease status (Fisher’s exact test, p > 0.05).

3.2. Diagnostic model screening using miRNA

AutoML facilitates the creation of machine learning (ML) models 

Table 1 
Clinical characteristics of disease and healthy subjects in the training and vali-
dation datasets.

Characteristics Training set Validation set

Disease Healthy Disease Healthy

Age, months 7–205 8–205 6–266 28–180
Mean(median) 130.2(137) 99.6(96.5) 138.7(143.5) 104.6(98)
Sex, n (%) 180 64 74 27
IM 22(12.2) 15(23.4) 10(13.5) 4(14.8)
CM 66(36.7) 20(31.3) 18(24.3) 11(40.7)
IF 17(9.4) 11(17.2) 6(8.1) 4(14.8)
SF 75(41.7) 18(28.1) 40(54.1) 8(29.6)

IM = intact male; CM = castrated male; IF = intact female; SF = spayed female. 
The study involved 345 dogs, divided into training and validation datasets. The 
training dataset included 180 diseased and 64 healthy dogs, while the validation 
dataset included 74 diseased and 27 healthy dogs. A significant age difference 
was observed between diseased and healthy dogs in both datasets (Welch’s t- 
test, p < 0.01).
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without the need for extensive coding or manual adjustment of hyper-
parameters (Papoutsoglou et al., 2021). A miRNA-based diagnostic 
model was developed to determine the presence or absence of disease 
within the training dataset, which included 180 samples from the dis-
ease group and 64 samples from the healthy group, using AutoML 
technology. Seventy miRNAs were utilized to construct this diagnostic 
model.

To identify the most effective miRNA-based diagnostic model for 
accurately differentiating between healthy and disease groups, we chose 
the model with the highest AUC score from 5-fold cross-validation for 
further analysis. This selected miRNA-based diagnostic model achieved 
an AUC score of 0.95, with a sensitivity of 85 % and a specificity of 88 % 
(Fig. 1).

3.3. Performance evaluation of selected miRNA diagnostic models

The chosen miRNA-based diagnostic model was tested on a valida-
tion dataset (74 samples from disease groups and 27 samples from 
healthy subjects). In this validation dataset, the model achieved an AUC 
score of 0.89, with a sensitivity of 84 % and a specificity of 89 % (Fig. 2). 
Among the 35 dogs in the disease group of the validation dataset, 22 
were being treated with medications such as prednisolone; however, the 
accuracy of the miRNA-based diagnostic model was not influenced by 
the presence or absence of medication (Fisher’s exact test, p > 0.05). For 
conditions not represented in the training dataset, such as liposarcoma, 

soft tissue sarcoma, parathyroid adenoma, dilated cardiomyopathy, 
granulomatous lymphangitis, and adrenal adenoma (one case each), the 
model identified liposarcoma, soft tissue sarcoma, and adrenal adenoma 
as positive.

Of the 254 dogs in the disease group, 130 were undergoing drug 
treatment. The allocation of subjects to groups was conducted without 
regard to medication status. According to the miRNA-based diagnostic 

Table 2 
Disease types in the training dataset (n = 180).

Malignant tumor 110 Diseases other than tumors 70
Urinary tract malignant 
tumor

42 Chronic enteropathy 7

Lymphoma 28 Immune-mediated hemolytic 
anemia

5

Adenocarcinoma 8 Acute Gastroenteritis 4
Leukemia 5 Immune-mediated arthritis 4
Nasal and paranasal tumors 5 Immune-mediated 

thrombocytopenia
4

Gastrointestinal stromal 
tumor

3 Rectal polyp 3

Melanoma 3 Diabetes 3
Primary lung cancer 3 Pancreatitis 3
Angiosarcoma 2 Hyperlipidemia 2
Histiocytic sarcoma 2 Mitral regurgitation 2
Others 1 

each
Others 1 

each

Urinary tract malignant tumors, including bladder, urothelial, and prostate 
cancers; adenocarcinomas, including cancers of the small intestine, thyroid, 
apocrine glands, salivary gland, and lung; other malignant neoplastic diseases 
(nine types) including brain tumors, mast cell tumors, and liver cancer; other 
non-malignant neoplastic diseases (33 types) including cystitis and cholecystitis.

Table 3 
Disease type in the validation dataset (n = 74).

Malignant tumor 43 Diseases other than tumors 31
Urinary tract malignant 
tumor

15 Chronic enteropathy 5

Lymphoma 9 Acute gastroenteritis 3
Adenocarcinoma 5 Epileptic seizure 2
Nasal and paranasal tumors 3 Immune-mediated hemolytic 

anemia
2

Melanoma 2 Others 1 
each

Others 1 
each

 

Urinary tract malignant tumors, including bladder, urothelial, and prostate 
cancers; adenocarcinomas, including cancers of the small intestine, thyroid, 
apocrine glands, salivary gland, and lung; other malignant neoplastic diseases 
(nine types) including brain tumors, mast cell tumors, and liver cancer; other 
non-malignant neoplastic diseases (19 types) including cystitis and cholecystitis.

Fig. 1. ROC curve analysis of the optimal diagnostic model for disease detec-
tion using a comprehensive miRNA profile with 5-fold cross validation. 
combined ROC: solid line; ROC folds 1-5: dashed lines. 
AUC score: 0.95; sensitivity: 85%; specificity: 88%.

Fig. 2. Performance evaluation of the optimal miRNA-based diagnostic model 
in a validation dataset. 
AUC score: 0.89; sensitivity: 84% (95% CI: 0.74–0.92); specificity: 89% (95% 
CI: 0.78–1.00).
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model, 120 dogs receiving medication were identified as having the 
disease, whereas 99 dogs not on medication were also recognized as 
diseased (Table 4).

4. Discussion

Numerous studies have demonstrated that miRNAs directly or indi-
rectly regulate the expression of a wide array of genes in dogs, with 
miRNA-mediated gene regulation in various diseases proving to be 
complex (Colombe et al., 2022). Consequently, we focused on analyzing 
miRNA information without pre-selecting specific data. NGS represents 
a transformative technology capable of simultaneously and accurately 
quantifying miRNAs, thereby enabling the comprehensive analysis of 
miRNA expression. In addition, the integration of NGS with autoML 
facilitates the development of miRNA-based diagnostic models without 
the burden of programming and technical bias (Inagaki et al., 2023). In 
this study, we collected a broad range of dog cases, without regard to 
disease type, lesion location, or severity, and generated a comprehensive 
circulating miRNA profile using NGS technology and autoML, from 
which a screening model was constructed. This diagnostic model 
showed a sensitivity of 84 % and a specificity of 89 % in the validation 
dataset (Fig. 2). The results suggested that this diagnostic model has the 
potential to detect diseases beyond those it was trained to identify. As 
shown in Table 4, our findings indicate that the performance of the 
diagnostic model is not influenced by drug therapy, suggesting its use as 
a screening test.

Animals were categorized into disease and healthy groups based on 
veterinary diagnoses, highlighting the need to assess whether the diag-
nostic model can maintain its performance when applied to pre- 
diagnosis cases. Furthermore, while the system successfully identified 
certain diseases it had not been trained to detect, it failed to recognize 
others, highlighting the importance of future performance evaluations 
for untrained diseases. Given its current capabilities, the model struggles 
to identify individual diseases, suggesting that traditional imaging di-
agnostics remain indispensable. A future goal is to develop models 
capable of detecting specific diseases.

This study was not without limitations. First, an imbalance in case 
numbers between the healthy and disease groups was observed 
(Table 1). Second, the study sample included both healthy young dogs 
and diseased older dogs, resulting in an age bias between the groups; 
significant age differences can affect the results (Welch’s t-test, p < 0.01) 
(Table 1). Third, the presence of multiple diseases in some cases might 
have influenced the results due to varying reactivity by disease type. 
Fourth, the lack of a follow-up survey means that if cases initially 
deemed healthy had existing abnormalities at the time of blood sam-
pling, their inclusion in the healthy group could impact the performance 
of the diagnostic model. Finally, without considering the severity of each 
case, it is challenging to ascertain the detectable level of abnormality.

5. Conclusion

The miRNA-based diagnostic model developed using NGS and 
autoML technology, which accurately determines the presence or 
absence of disease, highlights the clinical value of comprehensive 
miRNA profiles and their suitability for clinical application. The diag-
nostic model, relying on miRNA profiles, opens the prospect of whole- 
body screening through minimally invasive means such as blood sam-
pling. Unlike imaging techniques such as CT and MRI, this approach 
does not require general anesthesia, thereby lessening the physical 
strain on pets and the financial burden on owners, and it shows promise 
for disease monitoring. Subsequent research following this pilot study 
should aim to identify the location of the disease or lesion, examine the 
relationship between disease severity and treatment progression, and 
further explore this promising direction.
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