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Enterochromaffin 5-HT cells e A major target for
GLP-1 and gut microbial metabolites
Mari L. Lund 1, Kristoffer L. Egerod 1, Maja S. Engelstoft 1, Oksana Dmytriyeva 2,3, Elvar Theodorsson 4,
Bhavik A. Patel 5, Thue W. Schwartz 1,6,*
ABSTRACT

Objectives: 5-HT storing enterochromaffin (EC) cells are believed to respond to nutrient and gut microbial components, and 5-HT receptor-
expressing afferent vagal neurons have been described to be the major sensors of nutrients in the GI-tract. However, the molecular mecha-
nism through which EC cells sense nutrients and gut microbiota is still unclear.
Methods and results: TPH1, the 5-HT generating enzyme, and chromogranin A, an acidic protein responsible for secretory granule storage of 5-
HT, were highly enriched in FACS-purified EC cells from both small intestine and colon using a 5-HT antibody-based method. Surprisingly, EC
cells from the small intestine did not express GPCR sensors for lipid and protein metabolites, such as FFAR1, GPR119, GPBAR1 (TGR5), CaSR, and
GPR142, in contrast to the neighboring GLP-1 storing enteroendocrine cell. However, the GLP-1 receptor was particularly highly expressed and
enriched in EC cells as judged both by qPCR and by immunohistochemistry using a receptor antibody. GLP-1 receptor agonists robustly stimulated
5-HT secretion from intestinal preparations using both HPLC and a specific amperometric method. Colonic EC cells expressed many different
types of known and potential GPCR sensors of microbial metabolites including three receptors for SCFAs, i.e. FFAR2, OLF78, and OLF558 and
receptors for aromatic acids, GPR35; secondary bile acids GPBAR1; and acyl-amides and lactate, GPR132.
Conclusion: Nutrient metabolites apparently do not stimulate EC cells of the small intestine directly but through a paracrine mechanism involving
GLP-1 secreted from neighboring enteroendocrine cells. In contrast, colonic EC cells are able to sense a multitude of different metabolites
generated by the gut microbiota as well as gut hormones, including GLP-1.

� 2018 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

The enterochromaffin (EC) cell is the most abundant cell type among
the enteroendocrine cells throughout the entire gastrointestinal tract.
The main secretory product of the EC cells is the biogenic amine se-
rotonin or 5-hydroxy tryptamine (5-HT), which otherwise generally is
known as a neurotransmitter in the CNS. However, the amount of
‘peripheral 5-HT’ produced by the EC cells in the GI tract is far larger
than 5-HT in the CNS [1,2]. As opposed to neurons, EC cells use the
enzyme tryptophan hydroxylase 1 (TPH1) and not TPH2 to synthesize
5-HT [3,4], and, instead of small neurosecretory vesicles, EC cells
store 5-HT in large dense core vesicles (LDCV) in complex with acidic
proteins such as chromogranin A (ChgA) and B [5]. Previously, we have
generated a ChgA reporter mouse, which expressed hrGFP in mono-
amine producing enteroendocrine cells throughout the GI tract [6].
Although the major secretory product of EC cells is 5-HT, they can also
store peptide hormones such as secretin in the villi of upper small
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intestine and tachykinins like substance P (SP) in the crypts throughout
both the small and large intestine [7,8].
In the intestinal capillaries, 5-HT from the EC cells is taken up, to a
large degree, by platelets and stored in their granules together with
ATP, ADP, and Ca2þ for eventual use in their blood clotting function [9].
However, approximately two percent of the 5-HT in the circulation is
supposedly found in the free form, and peripheral 5-HT originating
from the gut has recently been proposed to function as a major
endocrine regulator of metabolism affecting adipose tissue, liver,
muscles, pancreas and the immune system [1,10,11] although details
of this endocrine function of 5-HT remains to be further characterized.
Locally, in the lamina propria, 5-HT acts as a major paracrine signal
through G protein coupled 5-HT receptors on neighboring cells to
affect epithelial growth [12], enterocyte secretion, and intestinal
barrier function [13], for example, as well as to activate immune cells
[14] and enteric nerves [9]. 5-HT is known to have major effects on GI
tract motility, but it is still debated whether this is controlled by 5-HT
released from EC cells or from enteric nerves [15,16]. Stimulation of
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List of abbreviations

CCK Cholecystekinin
ChgA Chromogranin A
EC Enterochromaffin
FACS Fluorescence-activated cell sorting
GIP Gastric inhibitory polypeptide
GI-tract Gastrointestinal tract
GLP-1 Glucagon-like peptide 1
GPCR G protein-coupled receptor
HPLC High-performance liquid chromatography
hrGFP Humanized Renilla reniformis-derived green fluorescent

protein
LDCV Large dense core vesicle
NKA Neurokinin A
NPY Neuropeptide Y
NTS Neurotensin
PYY Peptide YY
qPCR Quantitative polymerase chain reaction
SCFAs Short chain fatty acids
SP Substance P
SST Somatostatin
TPH1 Tryptophan hydroxylase 1
afferent vagal neurons by gut-derived 5-HT [17,18] has been shown
to play a role in the control of for example gastric emptying and
pancreatic secretion [17,19]. Importantly, vagal nerves are known to
express the ionotropic 5-HT3a receptor, and it was recently
demonstrated that the main afferent vagal neurons which sense di-
etary nutrients in the villi of the small intestine surprisingly were
excited not by gut hormones such as GLP-1 but by 5-HT [20]. This
would suggest that the EC cells are sensing dietary nutrient metab-
olites as previously shown for the peptide hormone secreting enter-
oendocrine cells [21e23].
Regulation of EC cells and release of 5-HT have been studied since its
discovery in the 1950s, but, due to methodological problems in dili-
gently measuring 5-HT release and the fact that EC cells like other
enteroendocrine cell populations is a minor population of cells scat-
tered and outnumbered by other cell types, the secretory mechanisms
of the EC cells are still poorly understood. Nevertheless, various
classical neurotransmitters and neuropeptides have been reported to
affect 5-HT secretion and to modulate TPH1 expression [24,25], and
similar effects have been shown for dietary nutrients and, in particular,
microbial metabolites such as short chain fatty acids (SCFAs) [26,27].
Recently, by use of the ChgA reporter mouse [6] in combination with
cultured intestinal organoids and single cell measurements, Bellono
et al. could demonstrate that EC cells expressing chemosensory re-
ceptors such as receptors for short chain fatty acids, were electrically
excitable and could modulate 5-HT-sensitive afferent vagal neurons via
synaptic connections [28].
In the present study, we characterize the expression of receptors that
function as sensors of luminal stimuli in FACS-purified EC cells from
the small intestine and the colon focusing on nutrient and microbial
metabolites and find that, surprisingly, in contrast to peptide-producing
enteroendocrine cells of the small intestine [22,29,30], the EC cells do
not express GPCRs for nutrient metabolites. Instead, we find that the
receptor for the gut hormone GLP-1 is particularly highly expressed
and enriched in EC cells and that GLP-1 efficiently stimulates 5-HT
release. It thus appears that nutrients stimulate 5-HT secretion indi-
rectly through GLP-1. In contrast, the colonic EC cells directly senses
MOLECULAR METABOLISM 11 (2018) 70e83 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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chemical stimuli of the gut lumen as they express a large repertoire of
known and proposed sensors of microbial metabolites including
several receptors for short chain fatty acids besides receptors for GLP-
1 and other gut hormones.

2. MATERIALS AND METHODS

2.1. Intestinal cell preparation, intracellular antibody staining of
5-HT and FACS
Standard chow diet fed, non-fasted, wild type C57BL/6-J male mice,
8e12 weeks old, were euthanized by cervical dislocation. The first
10 cm of the small intestine including duodenum and most of jejunum
were excised and will here be termed “small intestine” as was the
entire large intestine without the rectum, which here will be termed
“colon.” We obtained a single cell suspension following a previously
developed method involving enzymatic digestion and physical shaking
of inverted mucosal preparations [31]. To enable intracellular antibody
labeling of 5-HT stored within the enterochromaffin cells, we fixed the
pools of single cells with 1% paraformaldehyde/PBS solution (Sigmae
Aldrich) for 20 min and subsequently permeabilized them with a so-
lution consisting of 0.1% Saponin in 2% bovine serum albumin and
0.2% RNaseOUT (Invitrogen) in PBS for 15 min. The primary antibody
against 5-HT (ab66047, Goat Anti 5-HT antibody, 1:3200, Abcam) was
added and incubated with the cells for 60 min. A fraction of cells was
not exposed to the primary antibody and used controls. After a brief
wash with PBS the Alexa488 labeled secondary antibody (Donkey Anti-
Goat 488, 1:400, Invitrogen) was added in cold PBS to the cell solution
and incubated for 30 min. Another wash in ice-cold PBS was per-
formed and the stained single cell suspension was re-suspended in
cold FACS buffer (2% fetal bovine serum and 0.2% RNaseOUT in PBS).
All the steps were performed at 4 �C while slowly rocking the tubes.
Cells were sorted into a 488 nm excitable fraction and a 488 nm non-
excitable fraction using MoFLo Astrios (Beckman Coulter). The cells
were sorted into tubes placed on dry ice.
Cells dissociated as described above from small intestine (n ¼ 8) from
GLU-Venus mice [32] were FACS isolated and used for the analysis of
nutrient receptor expression in GLP-1 positive cells as previously
described [33,34]. After FACS-purification the proglucagon gene (GCG)
was determined to be enriched approx. 500-fold in the Venus positive
sorted cell fraction as compared with the Venus negative and the
sample was used to determine the expression of nutrient metabolite
sensors.

2.2. RNA extraction and quantitative RT-PCT analysis
Total RNA was isolated from FACS cells using a special kit for
paraformaldehyde-fixated cells, RNeasy FFPE kit (Qiagen). Manufac-
turer’s protocol was followed except for a few modifications; the first
steps to remove xylene and subsequent ethanol precipitation were
omitted, and the incubation steps at 55 �C and 80 �C were shortened
to 12 min to minimize RNA degradation. RT-PCR was then performed
using the SuperScript III Reverse Transcriptase (Invitrogen, Carlsbad,
CA). Quantitative RT-PCR was performed to characterize isolated cells
with SYBR PrecisionPLUS (Primerdesign) and primers (Tph1, ChgA,
Ywhaz, GAPDH from Ref. [6]) in a LightCycler480 (Roche). Due to the
small sample size, cDNA was amplified with QuantiTect Whole Tran-
scriptome kit (Qiagen) and analyzed on custom-designed qPCR arrays
targeting 88 peptides and granins of interest. The relative expression
was calculated using the average of GAPDH, Ywhaz, and Tbp reference
genes. Additional custom-designed qPCR array for various 7TM GPCRs
(Qiagen) were used according to manufacturer’s instructions. To
calculate relative expression, we proceeded as in Ref. [34].
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2.3. Immunohistochemistry
Intestinal tissue from three C57BL/6-J male mice was excised, rinsed
and kept in 4% paraformaldehyde for 48 h at 4 �C afterwards stored
in 70% ethanol and then paraffin embedded in a Shandon Excelsior
(Thermo Fisher). Six mm sections were cut, put onto slides, and dried
at 60 �C for 1 h. Before use, the sections were deparaffinized and
rehydrated. To verify coexpression of 5-HT and various peptides,
intestinal sections were stained with antibodies against Substance P
(1:3200, “SSP 250-2” e generously provided by Prof. Steen Seier
Poulsen) or against NKA (1:2000, an in-house antibody generated by
E.T.) and counted as described in Ref. [6]. A minimum of 200
immunoreactive cells were counted per intestinal segment evaluated.
When staining the sections for GLP-1 receptor, a Biotin-labeled
Mouse anti-Mouse GLP-1r antibody was used (kind gift from Novo
Nordisk); the tissue sections were treated with 0.1% pronase (Roche)
in PBS for 10 min at 37 �C. The tissue sections were blocked with
Avidin (Dako) and Biotin (Dako), respectively, for 10 min and addi-
tionally blocked using TBS with 3% skim milk (BioRad) and 7%
Donkey serum (Jackson) for 30 min. Hereafter, the primary antibody
was added 1:300 in pre-incubation solution overnight at 4 �C. The
next day, the primary antibody was rinsed off with TBS, and Vec-
tastain ABComplex (Vectorlabs) was added for 30 min. To amplify the
primary antibody signal, Biotinyl Tyramide (Perkin Elmer) was applied
for 5 min, washed off, and StreptavidineFITC complex was added for
30 min to visualize binding sites of the primary antibody. To get an
overview of coexpression of the receptor and 5-HT and relevant gut
peptides, primary antibodies against 5-HT (same as above), so-
matostatin (sc-7819, 1:1600, Santa Cruz Biotechnology), and CCK
(8007, 1:6000, SSP see [6]) were added, respectively, and left to
incubate for 2 h at room temperature. After washing with TBS, a
secondary antibody with a 568 nm fluorophore (1:200, Alexa568,
Invitrogen) was added for 30 min. After the last washing, the slides
were mounted with Prolong Gold Antifade with DAPI (Invitrogen) and
analyzed using IX70 Olympus microscope with XM10 Olympus
camera. Pseudocolor application and picture merging were done
using Adobe Photoshop.
For coexpression studies, tissue from three mice was evaluated and a
minimum of 200 cells counted. Structured Illumination Microscopy
(SIM) was performed using the Zeiss Elyra PS.1 Super Resolution
Microscope and the images were analyzed using Zeiss Zen Black 2012
software.

2.4. Measurements of 5-HT release
When verifying that activation of GLP-1R leads to 5-HT secretion, we
utilized two methods: amperometric and HPLC measurements of
secreted extracellular 5-HT from intestinal tissue segments as previ-
ously described [35,36]. Briefly, for HPLC measurements, mucosal
scrapings from small duodenum (sampled 1 cm from pyloric
sphincter), jejunum, and colon (sampled 2 cm from rectum) were
stimulated in oxygenated Krebs buffer with 10 nM Liraglutide (Novo
Nordisk) or PBS as vehicle for 60 min. After incubation, the supernatant
was removed, and 0.1 M HClO4 was added to preserve the 5-HT. The
samples were centrifuged at 13,000 g for 10 min at 4 �C, and the
supernatant was analyzed for 5-HT using HPLC with electrochemical
detection (for details see Ref. [37]). The protein content of the mucosa
was determined using a standard Bradford assay, and 5-HT concen-
trations were normalized to this.
To perform the continuous amperometric measurements, segments
from small intestine and colon (n ¼ 6) were pinned in a Sylgard�

(Dow Corning) lined Teflon recording chamber and perfused with
oxygenated Krebs buffer. The tissue was perfused for 10 min prior
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to the series of baseline measurements. For details on the
amperometric recordings, see Ref. [37]. In short, a boron-doped
diamond electrode with a potential of þ650 mV oxidizes released
5-HT. Using a micromanipulator, this microelectrode was placed
centimeters away from the tissue to measure background re-
cordings. When measuring 5-HT overflow, the microelectrode was
positioned 0.1 mm over the mucosa for 20s. This was repeated
three times before 10 nM Liraglutide was added in the Krebs buffer
and 10 min after three additional measurements were obtained. All
results were analyzed using a repeated measure, 2-way ANOVA
with post hoc Tukey test.
The tissue was harvested from 8 to 12 weeks-old C57BL/6-J mice and
these procedures were in accordance to U.K. Home Office regulations
and approved by the University of Brighton Ethics Committee.

3. RESULTS

3.1. FACS purification of intestinal EC cells
Although ChgA-GFP in many ways functions as a great reporter for
monoamine producing cells of the GI tract, the tph1 transcript, coding
for the key enzyme responsible for 5-HT synthesis in EC cells was only
enriched 48- and 186-fold in positive FACS-purified ChgA-positive
cells from the small intestine and colon, respectively [6]. By use of the
same ChgA reporter, we observed a markedly higher enrichment,
3800-fold, for histidine decarboxylase (hdc), the enzyme responsible
for histamine production in FACS-purified EC-like cells from the
stomach. Hence, we decided mainly to employ a 5-HT antibody-based
approach to purify EC cells from the intestine. Sorting cells using an
intracellular epitope has been done previously [38,39]. We used a 5-HT
goat antibody as the primary antibody; in immunohistochemistry, this
efficiently labels murine EC cells in both the small and large intestine
(Figure 1A) [6]. For FACS-purification, this antibody was applied to
preparations of saponin-permeabilized, fixed single cells, liberated by
collagenase treatment of intestinal mucosa from the first 10 cm of the
small intestine including duodenum and upper jejunum (henceforth
termed ‘small intestine’) and from the colon. Approx. 0.3% and 0.5%
of the total mucosal cells were sorted as 5-HT positive EC cells from
the small intestine and colon, respectively (Figure 1B,C). Tph1 was on
average enriched 1700-fold and ChgA 1400-fold in the small intestinal
5-HT positive cells and approx. 1000 times and 300 times in the
purified colonic 5-HT cells. Thus, in both cases, the FACS-purified EC
cells were very pure (Figure 1D).

3.2. Co-expression and storage of peptides and proteins with 5-HT
in EC cells
Based on immunohistochemical analysis, different peptide hormones
and granin proteins have been reported to be co-expressed with 5-HT
in EC cells [40]. We therefore probed the FACS-purified EC cells for
expression of an array of 88 different ‘enteroendocrine proteins’:
granins, peptide precursors, and precursor convertases. Concerning
granins, i.e. acidic proteins, which help store monoamines in secretory
granules, not only chromogranin A but also chromogranin B and the
VGF granin were all highly expressed and enriched in both small in-
testinal and colonic EC cells (Figure 2A and Suppl. Figure 1A). With
respect to prohormone convertases, only prohormone convertase 1/3
(PC1/3), and not prohormone convertase 2, was expressed in the EC
cells from both small and large intestine (Figure 2A and
Suppl. Figure 1A). Concerning peptide precursors, the transcripts for
the secretin precursor Sct, the tachykinin precursor Tac1, and, to some
degree, the CCK precursor Cc, were all expressed and enriched in EC
cells from the small intestine (Figure 2A). The colonic EC cells did not
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1: Antibody-mediated FACS purification of EC cells from the small intestine and colon of mice (A) Representative fluorescence microscopy showing 5-HT antibody
staining (green and cell nuclei in blue) in wild type mouse small intestine and colon. Scale bars represent 50 mm. (B) FACS diagram presenting the sorted population (black
boxes ¼ gating) which were positive for 5-HT antibody staining marked with Alexa Fluor 488 and also the sorted negative population. The negative control also depicted in (B) is a
control for unspecific binding by omitting the primary antibody. (C) Sorted 5-HT positive, single cells. (D) qPCR analysis of the expression of two EC marker genes; Tph1 and ChgA in
positive vs. negative fraction of sorted cells from small intestine (n ¼ 3) and colon (n ¼ 4). The results are presented as relative expression to reference genes (average of GAPDH
and Ywhaz).
express Sct and Cck but still expressed Tac1 (Suppl. Figure 1A).
Immunohistochemistry demonstrated that not only Substance P but
also Neurokinin A (NKA), i.e. the two major tachykinin peptides, are
expressed almost exclusively in EC cells in the intestinal mucosa, as
close to 100% of the SP and NKA positive cells also were positive for 5-
HT (Figure 2B, Suppl. Figure 1B). However, not all 5-HT storing cells
stained positive for SP and NKA possibly due to variable expression
level and detection limit of the peptide antibodies (Suppl. Figure 2C).
In EC cells as opposed to neurons, 5-HT is stored in large dense core
vesicles conceivably in complex with the large acidic chromogranin
proteins [5]. In enteroendocrine cells expressing more than one peptide
hormone, these peptides are in some cases stored in the same
secretory granules in other cases not [41]. In order to study to what
degree 5-HT was co-stored with the tachykinin peptides, we focused
on the long basolateral extensions which enteroendocrine cells use for
paracrine, targeted secretion [42]. These extensions are loaded with
secretory granules which are aligned like pearls on a string (Figure 2C).
By employing super-resolution fluorescence microscopy to such
MOLECULAR METABOLISM 11 (2018) 70e83 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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basolateral EC cell extensions, we could demonstrate that the NKA
peptide and 5-HT in fact are co-stored in the large dense core vesicles
(Figure 2D).

3.3. Expression of nutrient metabolite GPCRs in EC cells
EC cells are classical enteroendocrine cells, which are located in the
lumen and morphologically equipped to respond to luminal stimuli.
Table S1 lists the main receptors known to sense nutrient metabolites
in the small intestine when they are absorbed [23] and those which.
according to the present literature. conceivably sense metabolites
generated by the gut microbiota (Table SI). Receptors such as GPR119
and GPBAR1 (TGR5) can probably serve both functions.
As shown in Figure 3A, the main receptors for lipid and protein me-
tabolites, i.e. FFAR1 sensing free fatty acids, GPR119 sensing 2-acyl
glycerol, GPBAR1 sensing bile acids from the lipid micelles, CaSR
sensing amino acids and oligopeptides, and GPR142 sensing aromatic
amino acids all are highly expressed and enriched in FACS-purified
GLP-1 cells from the small intestine as also previously reported
cess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 73
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[22,30]. Surprisingly, however, none of these nutrient sensors
including the sweet taste receptors TAS1R1 and TAS1R3 was enriched
in 5-HT storing EC cells from the small intestine (Figure 3B). In fact,
most of the nutrient metabolite receptors were negatively enriched
and expressed below noise level in small intestinal EC cells. This was
particularly puzzling since 5-HT has been shown to be a major
stimulus for afferent vagal fibers sensing nutrients in the small
intestine [20].
In the colonic EC cells, GPBAR1 was highly expressed but not enriched,
and the expression of GPR119 and CaSR was just above noise level
(Figure 3C). However, it is likely that in the colonic EC cells, these three
74 MOLECULAR METABOLISM 11 (2018) 70e83 � 2018 The Authors. Published by Elsevier GmbH. T
receptors are not sensing nutrient metabolites but instead microbial
metabolites such as N-acyl amides and secondary bile acids,
respectively (Table SI). Bile acids have previously been reported to
stimulate 5-HT release from EC cells in [43]. The colonic EC cells also
expressed TAS1R1 at a high level, but, like the other receptors in this
group, they are expressed at the same level in the non-5-HT neigh-
boring colonic mucosa cells (Figure 3C).

3.4. Expression of microbial metabolite receptors in EC cells
As shown in Figure 4, most of the receptors for microbial metabolites
were highly expressed, several of which were also highly enriched,
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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particularly in colonic EC cells, which is in agreement with the notion
that these cells should be sensing the gut microbiota (Figure 4A). In
particular, the transcripts for the SCFA receptors FFAR2 and OLFR78
and the transcript for GPR35, which is a sensor of aromatic amino
acids, were all very highly expressed in colonic EC cells, which
concerning SCFAs is in agreement with their reported stimulatory
effects on Tph1 expression and 5-HT synthesis [26,27,37]. Of these
microbial metabolite sensors, Olfr78 stood out in being approx. 400-
fold enriched in the colonic EC cells in contrast to Ffar2 and Gpr35,
which were equally expressed in EC cells and in the neighboring
mucosal cells (Figure 4A). Another member of the olfactory receptor
superfamily, OLFR558 was recently shown to be a receptor for
branched SCFAs such as isovalerate and was found to be expressed
in EC cells [28]. We could confirm that Olfr558 is expressed and
highly enriched in colonic EC cells (640-fold), although at a consid-
erably lower actual expression level than, for example Olfr78
(Figure 4A)
MOLECULAR METABOLISM 11 (2018) 70e83 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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A number of other receptors for microbial metabolites were like FFAR2
relatively highly expressed but not enriched in the colonic EC cells as
described for GPBAR1 above, meaning that they likely are expressed
by the colonic mucosal cells in general. In order of decreasing relative
expression these are: Hca2 (Niacr1), sensing SCFAs and nicotinic acid;
GPBAR1, sensing secondary bile acids; GPR132, sensing acyl amides
and lactate; GPR119, sensing acyl amides, and HCAR1, sensing
lactate, were both expressed just above noise level (Figure 4A).
In EC cells from the small intestine, the microbial metabolite sensors
were expressed at a lower level than in the colonic EC cells, although
GPBAR1 was relatively highly expressed, but still not enriched
(Figure 4B). FFAR2 and HCAR1 were both relatively enriched, i.e. 78-
and 50-fold, respectively, but only expressed at a relatively low level
(Figure 4B). GPR119, a potential sensor of microbial produced acyl
amides, was in fact negatively enriched and below noise level in the
small intestinal EC cells, as discussed above in relation to the nutrient
metabolite 2-acyl-glycerol.
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http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


10-2 10-1 100 101 102 103 104
10-2

10-1

100

101

102

103

104

Cckar

Cckbr

Glp1r

Glp2r
Npy2r

Npy5r Ntsr1

Ntsr2
Sstr2

Sstr4

Sstr5

Tacr2
Tacr3

10-2 10-1 100 101 102 103 104
10-2

10-1

100

101

102

103

104

Cckar
Cckbr

Glp2r

Ppyr1Npy5rNpy6r

Ntsr1

Ntsr2
Sctr

Sstr2

Sstr4

Sstr5
Tacr1

Tacr2

Tacr3

100x1000x100x 10x10x 1x1x

2r
cc
rrrrr22222rrrrr
ccccccccc

a
yy
aaaaaaaaa
yyyyyy

R
el

at
iv

e 
ge

ne
 e

xp
re

ss
io

n
5-

H
T 

po
si

tiv
e 

ce
lls

R
el

at
iv

e 
ge

ne
 e

xp
re

ss
io

n
5-

H
T 

po
si

tiv
e 

ce
lls

Relative gene expression
5-HT negative cells

Relative gene expression
5-HT negative cells

Glp1r Gipr

A B

Sstr1

Sstr3
Npy6r Tacr1

Gipr
Npy1r

Ppyr1 Sctr

Npy1r

Sstr1

Sstr3

Npy2r

Small intestine Colon
5-HT cells 5-HT cells

Figure 5: qPCR analysis of peptide hormone receptors on 5-HT positive EC cells. (A and B) qPCR analysis expression data for relevant peptide hormone 7TM GPCRs in 5-HT
positive (y-axis) and 5-HT negative (x-axis) cells from small intestine (A) and colon (B). The genes are depicted as green squares. The 45�-angled gray dotted lines display the fold
change enrichment in 5-HT positive cells versus 5-HT negative cells and the gray-shaded square is marking what is considered noise.

1 It is generally known in the field that most commercially available antibodies
against GPCRs do not work despite reports in the literature. Accordingly, we are not
able to check the expression of the other receptors dealt with in the present paper
by immunohistochemistry.
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3.5. Expression of peptide hormone receptors in EC cells
Surprisingly and in contrast to other enteroendocrine cells of the small
intestine, 5- HT storing EC cells did not express receptors for nutrient
metabolites (Figure 3A). We reasoned that perhaps nutrient metabo-
lites could affect EC cells indirectly through one or more of the gut
hormones. Therefore, we tested whether EC cells express receptors for
these peptide hormones.
As shown in Figure 5A, the somatostatin receptors 1 and 3 and the
GLP-1 receptor were the most highly expressed peptide hormone
receptors in EC cells from the small intestine followed by the PYY/NPY
receptor Y6, the tachykinin receptor NK1, and the GIP receptor.
Importantly the GLP-1 receptor was the most highly enriched receptor
(220-fold), which was surprising as no effect of GLP-1 on EC cells has
previously been reported. GLP-1 is usually expressed, released and
functions together with PYY and neurotensin [41]. PYY could affect EC
cells through the Y6 receptor, which however is a pseudogene in man
[44]. The NTSR1 receptor, which neurotensin normally acts through in
the periphery, is not expressed at all in the EC cells and the normally
centrally expressed NTSR2 receptor is only expressed at a low level in
the EC cells. Somatostatin has long been known to markedly inhibit 5-
HT release [24,25] but exactly which receptors are present on EC cells
has not been described before.
In colonic EC cells, the somatostatin receptors (SSTR1, 2 and 3), the
PYY Y1 receptor, the GIP receptor, and the GLP-1 receptor were all
relatively highly expressed, again with the GLP-1 receptor being the
most highly enriched, i.e. 760-fold (Figure 5B). The GIP receptor was
also highly enriched in the colonic EC cells, 105-fold. The more
classical PYY receptors Y1 and Y2 were clearly expressed, with the Y1
receptor being highly expressed but not enriched, which fits with its
function as an important regulator of enterocyte function [45,46], while
the Y2 receptor was expressed at a lower level but enriched approx.
10-fold (Figure 5B). A similar pattern of expression levels of gut hor-
mone peptide receptors was seen in FACS isolated ChgA-hrGFP pos-
itive cells (Suppl. Figure 2B).

3.6. Expression of the GLP-1 receptor in EC cells
All analysis of expression presented above has been performed at the
RNA level by qPCR. In principle the transcriptional expression does not
76 MOLECULAR METABOLISM 11 (2018) 70e83 � 2018 The Authors. Published by Elsevier GmbH. T
necessarily correspond linearly to expression at the protein level.
Previously, we have noticed that receptors that are not truly highly
expressed or in particular highly enriched at the RNA level in enter-
oendocrine cells may not be functionally important at least in respect of
control of hormone secretion [33], probably because they are not
expressed at the protein level.
To verify the presence of the GLP-1 receptor in EC cells at the protein
level, we performed immunohistochemistry using a novel monoclonal
GLP-1 receptor antibody with a specificity which has been verified in
GLP-1R deficient mice [47].1 Two distinct populations of GLP-1R
positive cells were observed throughout the intestine. A population
of round cells exhibiting rather strong immunoreactivity was observed
in the lamina propria (Suppl. Figure 3). These are likely intestinal
intraepithelial lymphocytes that known to express the GLP-1 receptor
[48] and will not be further characterized here. The other population of
GLP-1 receptor immunoreactive cells was flask shaped, enter-
oendocrine like cells located in the intestinal epithelium, the vast
majority of which co-stained with the 5-HT antibody (Figure 6C). GLP-1
receptor immunoreactive 5-HT positive enteroendocrine cells were
observed throughout the intestine, except in the ileum. Not all 5-HT
positive cells stained positively for GLP-1 receptor, i.e. 42% of EC
cells in the small intestine and 54% in the colon, which as discussed
above for NKA and SP could be due to differences in expression level
and due to the detection limits for in this case the GLP-1 receptor
antibody; but, it could also be due to true differences in populations of
EC cells. Few GLP-1R positive enteroendocrine cells were not positive
for 5-HT, but instead staining positively for the peptide hormone so-
matostatin (Suppl. Figure 3). Somatostatin cells of the stomach have
previously been shown to express the GLP-1 receptor [34].

3.7. Proximity of GLP-1 and 5-HT enteroendocrine cells
Although in many cases we could demonstrate GLP-1 and 5-HT cells in
close proximity to each other (Figure 7A), we did not attempt to
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 6: Expression of the GLP-1 receptor in EC cells. (A and B) qPCR expression data of GLP-1R in 5-HT positive cells (green bar) versus 5-HT negative cells (black bar) from
small intestine (n ¼ 3) (A) and colon (n ¼ 4) (B). (C) Representative fluorescent microscopy picture with monoclonal GLP-1R antibody (green) in combination with 5-HT antibody
(red) in duodenum, jejunum, and colon. Cell nuclei are depicted in blue and scale bars represent 20 mm.
quantify this, which would require a major stereological effort and
would not resolve how close the cells need to be in the intestinal villus
to function in a paracrine manner. Importantly, enteroendocrine cells
including GLP-1 cells are often equipped with relatively long baso-
lateral extensions, enabling targeted paracrine signaling even at a
distance [42,49] (Figure 7A, right panel).

3.8. Functional studies of the GLP-1 receptor in EC cells
Determination of 5-HT secretion is far from simple and accordingly we
used two different ex vivo experimental approaches to test whether
activation of the GLP-1 receptors on EC cells stimulates 5-HT
secretion.
Firstly, pieces of murine intestine, specifically duodenum, jejunum, and
colon, were excised and stimulated with liraglutide, a selective and
potent GLP-1 receptor agonist, or control vehicle. Released 5-HT was
quantified in the buffer by HPLC and electrochemical detection [36]
(Figure 7B). Overall, stimulation with a GLP-1 receptor agonist resul-
ted in an increase of released 5-HT compared with vehicle (Figure 7C).
More specifically, in duodenum, we observed a statistically significant
increase in 5-HT concentrations, i.e. an increase in seven out of nine
samples, with a two-fold response in two of the tissue samples. In the
samples from jejunum, the 5-HT responses were not statistically
significant although a numerical increase was observed in three mice
(Figure 7C). A very robust and statistically significant increase of 5-HT
release was detected in the colon, where samples from all mice were
releasing 5-HT in response to the 10 nM liraglutide (n¼ 9) (Figure 7C).
5-HT release can be measured by continuous amperometric detection
in samples of excised intestinal mucosa [35]. 5-HT is detected using a
boron doped diamond electrode, which was set to a specific voltage
MOLECULAR METABOLISM 11 (2018) 70e83 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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known to specifically detect and quantify 5-HT. When the tissue
sample is approached with the electrode, overflow of 5-HT can be
quantified in high resolution every second. The excised mucosa (du-
odenum or colon) is submerged in a perfusion dish, and control
measurements were performed with vehicle, Krebs buffer overflowing
the tissue (Figure 7D). Hereafter, the agonist was added into the buffer,
and new measurements were performed. A clear increase in amper-
ometric signal, corresponding to 5-HT release, was observed in
particular when the mucosa from the colon was exposed to 10 nM
liraglutide (Figure 7D,E). As shown in Figure 7E, the spontaneous
release of 5-HT was higher in the duodenum than in the colonic
preparations; nevertheless, a significant increase in 5-HT release was
observed in response to the GLP-1 receptor agonist both in the colon
and in the duodenum, although the relative response was smaller in
the duodenum due to the higher level of spontaneous release of 5-HT
(Figure 7E).

4. DISCUSSION

5-HT storing EC cells constitute the largest population of enter-
oendocrine cells, which, with respect to anatomical localization and
cell morphology, are clearly specialized to sense the content of the gut
lumen and believed to respond to nutrients in the small intestine and to
gut microbiota metabolites in the colon. Surprisingly, we find in the
present study that the EC cells themselves are devoid of nutrient
metabolite sensing receptors in the small intestine; instead, they are
highly enriched in GLP-1 receptors. Given that neighboring GLP-1-
storing enteroendocrine cells massively express nutrient metabolite
receptors, which stimulate GLP-1 secretion, and that we here
cess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 77
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demonstrate that GLP-1 stimulates 5-HT secretion, we propose that
the EC cells sense nutrient metabolites indirectly through the GLP-1
cell and thereby convey the signal of food components to 5HT3
receptor-expressing afferent vagal neurons, which constitute the major
populations of food-sensing neurons in the GI-tract [20] (Figure 8A). In
contrast, the EC cells of the colon apparently do sense the chemical
content of the lumen directly, as we find multiple different GPCR
sensors of microbial metabolites to be highly expressed and enriched
in colonic EC cells, which also express receptors for GLP-1 and other
gut hormones (Figure 8B).
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4.1. EC cells sense nutrients indirectly through GLP-1 cells
EC cells are classical open-type flask-shaped enteroendocrine cells
with apical microvilli-decorated extensions reaching the gut lumen.
Accordingly, they would be expected to sense the luminal content both
in respect of mechano- and chemical sensing, although it is becoming
more and more clear that a major part of at least the sensing of nutrient
and microbial metabolites occurs after or during their absorption
through receptors expressed on the basolateral membrane of the
enteroendocrine cells [23,50,51]. Recently, it was shown through the
application of a number of elegant techniques including in vivo re-
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd
www.molecularmetabolism
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cordings of afferent vagal neurons in the nodose ganglion and
genetically guided anatomical mapping that the population of neurons
which densely innervates the intestinal villi and which detects nutrients
express the 5-HT HTR3 ionotropic receptor and not as otherwise ex-
pected, for example receptors for GLP-1 or CCK. It was proposed by
Williams et al. that these neurons, named ‘GPR65 neurons’ due to their
high expression of an orphan GPCR, would communicate directly with
EC cells and that the EC cells would function as the main primary
sensors of nutrients [20]. Therefore it was highly surprising to find that
the GPCRs, which sense dietary lipid metabolites and bile acids
associated with the lipid micelles, were basically absent from EC cells
s, i.e. FFAR1 (LCFAs), GPR119 (2-acyl glycerol) and GPBAR1 (TGR5)
(bile acids) as well as the GPCRs sensing amino acid and oligopeptide
protein metabolites; i.e. CaSR and GPR142 [23]. Several of these re-
ceptors were even ‘negatively enriched’ in the FACS-purified EC cells,
meaning that they are more highly expressed and enriched in the
neighboring cells (Figure 3B). Recently it was reported that FFAR1 and
GPR119 were indeed expressed in a preparation of EC cells; however,
purification was by a density gradient centrifugation method [52,53]
and not a selective, antibody-guided FACS purification method as in
MOLECULAR METABOLISM 11 (2018) 70e83 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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the present study. Thus, perhaps the contradictory receptor expression
patterns can be due to differences and purity of the enteroendocrine
cell type populations obtained through these two very different
methods.
In contrast to EC cells, peptide producing enteroendocrine cells such
as GLP-1 cells express all of the nutrient metabolite receptors and in
large amounts (Figure 3A), and agonists for the nutrient metabolite
receptors are known to be efficient secretagogues for hormones
including GLP-1 [21,22,29,30], which potentially could target neigh-
boring EC cells. Accordingly, we specifically looked for expression of
receptors for gut hormone peptides. Among the potentially stimulating
receptors, the receptor for GLP-1, Glp1r stood out as the most highly
enriched and also highly expressed receptor in EC cells from both the
small intestine and the colon, which, to our knowledge, has not
previously been reported. Importantly, expression of the GLP-1 re-
ceptor could be demonstrated also at the protein level through
staining of 5-HT cells with a selective monoclonal receptor antibody
(Figure 6C) [47].
Although a few pure GLP-1 cells do exist, GLP-1 in most enter-
oendocrine cells is expressed, stored, and released together with PYY
cess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 79
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and neurotensin [41]. However, with respect to receptors for these
other gut hormones, only the PYY/NPY Y6 receptor was expressed at a
reasonable mRNA level in the small intestinal EC cells; however, in
humans this is a pseudogene. The expected receptor targets for PYY
and neurotensin, i.e. the Y2 and NTS-R1 receptors, respectively, were
both expressed below noise level in EC cells from the small intestine.
Thus, with respect to potential mediators of the signal of incoming
nutrients to EC cells, which themselves lack nutrient metabolite re-
ceptors, GLP-1 was the prime candidate.
5-HT release from intestinal EC cells is, in contrast to peptide hormone
secretion, far from trivial to quantify; this is due both to issues related
to rapid uptake of the monoamine by various cells including the EC
cells themselves and to assay technological problems associated with,
for example 5-HT ELISAs [54]. Nevertheless, both by employing HPLC
analysis with electrochemical detection and by amperometric tech-
nology, we were able to demonstrate that a GLP-1 receptor agonist
robustly releases 5-HT in both the small intestine and in the colon
(Figure 7).
Thus, we propose that GLP-1 released in response to nutrient me-
tabolites functions as a paracrine regulator of 5-HT secretion from the
neighboring EC cells, which conceivably convey the nutrient signals
from the gut to the CNS by activating 5HT3 receptors expressed on the
afferent vagal GPR65-neurones, which strongly innervates the small
intestinal villi [20] and which have been shown to directly interact with
EC cells [28]. As indicated schematically in Figure 8A and as shown by
immunohistochemistry in Figure 7A, the GLP-1 cells are often equip-
ped with long basolateral extensions, which were described originally
for somatostatin cells as means of obtaining targeted, paracrine
regulation of neighboring cells in the stomach [42]. Thus, a paracrine
effect of GLP-1 on EC cells may occur either through bulk diffusion or
through more specific targeting of EC cells by the basolateral cellular
extensions (Figure 7A). It should be noted that similar basolateral
extensions have been proposed to function as connectors to nerves
[49].
Although the EC cells of the small intestine apparently are not sensing
food through GPCR sensors of nutrient metabolites, they are likely still
sensing the presence of food through mechano-sensing. Since 1959, it
has been known that small intestinal EC cells are able to sense me-
chanical stimuli and react with 5-HT secretion [55,56]. Mechanical
forces in the form of stretching and poking or stroking of the mucosa
have been reported to stimulate 5-HT release and recently a mecha-
nosensitive ion channel (Piezo2) was proposed to be involved in this
process [57]. Consequently, during food intake, the sensing of the
physical passage of food through the duodenum will stimulate EC cells,
possibly through their apical extensions, which reach the lumen. Very
likely, the mechanical stimulus will act in synergy with the chemically
induced GLP-1 stimulus of the EC cells.
It should be noted that the nutrient sensing mechanisms and in-
teractions between GLP-1 and EC cells described above may be
particularly important in the duodenum and proximal small intestine,
which is particularly rich in EC cells and which we have focused on in
the present study. In the ileum, which is rich in GLP-1 cells, we could
not detect immunohistochemical staining of GLP-1 receptor in the EC
cells. In this respect, it is also important to emphasize that Williams
et al. in their study of the afferent vagal mechanisms in the small
intestine also focused on the duodenum [20]. In fact endogenous in-
testinal GLP-1 may exert some of its effects such as effects on gastric
emptying directly through GLP-1 receptor-expressing afferent vagal
neurons as demonstrated by viral mediated knock-down of the GLP-1
receptor in nodose ganglia in rats [58]. Thus, there appear to be major
regional differences even within the small intestine, and it could be
80 MOLECULAR METABOLISM 11 (2018) 70e83 � 2018 The Authors. Published by Elsevier GmbH. T
hypothesized that GLP-1 in the proximal small intestine mainly acts
through paracrine activation of neighboring EC cells and in the distal
small intestine mainly acts through paracrine direct activation of
afferent vagal nerves and through endocrine mechanisms.

4.2. Physiological versus pharmacological effects of GLP-1
potentially mediated through EC cells and 5-HT
Over the years, the notion that endogenous, intestinal GLP-1, which is
rapidly inactivated by DPP-IV, could mediate part of its physiological
effects through paracrine activation of GLP-1 receptor expressing
afferent vagal nerves has gained general acceptance despite not being
firmly proven [59]. As mentioned above, one recent argument against
this notion is that the afferent vagal neurons expressing GLP-1 re-
ceptors apparently do not directly innervate the intestinal mucosa;
surprisingly, they originate in the muscle layers of the stomach and
small intestine [20]. Importantly, the present study demonstrates that
intestinal GLP-1 probably activates another population of afferent vagal
neurons indirectly by stimulating 5-HT release from neighboring EC
cells (Figure 8A). As reviewed by Krieger et al., it is very difficult to
ascertain to what degree endogenous intestinal GLP-1 in fact exerts
physiological functions through afferent vagal nerves. One problem is
that the key experiments are performed with exogenously adminis-
tered GLP-1 or GLP-1 mimetics, which will stimulate GLP-1 receptors
expressed throughout the body [59]. A possible activation of a physi-
ological afferent vagal mechanism may be overshadowed by other
pharmacological effects. In this context, it should be emphasized that
several such studies indicate that the beneficial pharmacological ef-
fects of GLP-1 mimetics on appetite, food intake, and, consequently,
body weight appear to be mediated through GLP-1 receptors
expressed in the hypothalamus, including the arcuate nucleus [60,61].
The GLP-1 receptor system, however, is very complex, as selective
deletion of the GLP-1 receptor in specific populations of hypothalamic
neurons, which previously had been shown to be targeted by GLP-1
mimetics [61], demonstrated that although these GLP-1 receptors
are sufficient, they are in fact surprisingly not necessary for the
pharmacological regulation of energy balance and glucose homeo-
stasis by GLP-1 mimetics in mice [62].
In relation to our observation that GLP-1 stimulates 5-HT secretion
from EC cells, it is interesting that antagonism of 5HT3 receptors has
been shown to abolish glucose- and flavor-induced suppression of
gastric emptying [17,63], indicating that 5-HT secretion from the EC
cells and subsequent stimulation of 5HT3 receptors on vagal afferents
possibly could be involved in this physiological mechanism. Thus, 5-HT
secretion from EC cells could either add to or act in synergy with the
suppression of gastric emptying by endogenous GLP-1 or it could be
the mechanism through which endogenous, intestinal GLP-1 and
perhaps also some GLP-1 mimetics affect gastric emptying. It should
be emphasized that effects of exogenously administered GLP-1 mi-
metics on gastric emptying varies dependent upon the compound and
the duration of treatment [64].
In addition, both 5-HT and GLP-1 have been implicated as regulators of
the intestinal immune system. Pharmacological inhibition of TPH1 or
serotonin receptor antagonism reduces inflammation and necrosis in
several intestinal inflammation models [14,65] suggesting a pro-
inflammatory role for 5-HT. However, under normal conditions 5-HT
appears to stabilize the intestinal barrier and promote secretion of
protective mucus [1]. Intestinal immune cells express GLP-1 receptors,
which we also observed in the present study (Figure S3B). In particular,
focus has been on GLP-1 expressing intraepithelial lymphocytes and
GLP-1 has been shown to suppress the production of inflammatory
cytokines thus decreasing severity of intestinal injury [48]. The fact that
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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GLP-1 receptor knockout mice display reduced expression of genes
responsible for endothelial protection and repair compared with wild
type mice [48] makes it potentially interesting to investigate the
interplay between gut GLP-1 and 5-HT in relation to the paracrine
modulation of intestinal immunity.
In principle, it should be possible to test whether a given physiological
effect of GLP-1 is mediated through 5-HT release from EC cells by use
of TPH1 deficient animals, which should not be able to synthesize 5-HT
selectively in EC cells [11]. However, at least in the global TPH1 knock-
out animals, we obtained a large number of EC cells in both the small
intestine and the colon that are still 5-HT immunoreactive, and,
although the amounts of 5-HT in both the small intestine and the colon
are decreased, these tissues still contain considerable amounts of
extractable 5-HT (Suppl. Figure 4). This is likely, due to the fact that the
catalytic domain of TPH1 is not removed in the knock-out construct
[11,66]. Thus, although this model apparently works well for studying
peripheral endocrine effects of 5-HT, due to the fact that the circulating
plasma levels of 5-HT are strongly reduced, the model is not suitable to
study intestinal paracrine mechanisms, as the EC cells still contain 5-
HT. Currently available pharmacological tools are also inadequate due
to the fact that 5HT3 receptor antagonists readily cross the blood brain
barrier making it impossible to investigate the selective peripheral
contribution to the physiological effects.

4.3. Colonic EC cells express multiple different known and
potential receptors for microbial metabolites
The gut microbiota affects host metabolism to a large degree through
generation or modifications of metabolites which are being sensed by
host metabolite GPCRs [23]. Gut microbiota derived products have
previously been shown to directly modulate EC cell function and
regulate production of 5-HT [26,27,37]. Thus, 5-HT is produced in
larger amounts in the colon from conventionally raised/microbiota
re-colonized mice than in germ free mice, and SCFAs such as acetate
and butyrate have been reported to increase TPH1 expression in the
colon [26].
In the present study, we find a large number of GPCR sensors of
microbial metabolites to be highly expressed and enriched in colonic
EC cells. In relation to sensing of SCFAs, it is interesting that the EC
cells not only express FFAR2, which is well-known to function as a
SCFA receptor in adipose tissue and leukocytes, but also OLF78,
which recently has been described to be a SCFA receptor [67] and
which we find is very highly expressed and in fact the most highly
enriched GPCR in the colonic EC cells, in contrast to FFAR2, which is
not enriched (Figure 5). We also find that another ‘olfactory’ GPCR,
Olf558, which is a sensor of isovalerate and similar branched SCFAs,
is highly expressed and enriched in the colonic EC cells in agreement
with a recent report by Bellono et al. [28]. Moreover, GPR35 sensing
aromatic acidic metabolites, GPBAR1 (TGR5) sensing secondary bile
acids, HCAR2 sensing nicotinic acid and butyrate, and GPR132 sensing
lactate and aryl-amides are all highly expressed but not enriched in EC
cells of the colon, meaning that they are equally highly expressed in the
neighboring cells of the colonic mucosa (Figure 5). Thus, colonic EC
cells are able to directly sense a large variety of microbial metabolites
and express several different types of receptors for SCFAs. In contrast,
in the small intestine, the expression of receptors for microbial me-
tabolites in the EC cells is at a much lower level. Although the small
intestinal EC cells do express a number of microbial metabolite sensors
above detection, the expression of, for example FFAR2 and Olf78 is
100-fold lower than in colonic EC cells (Figure 4B).
Concluding remarks e The first key finding of the present study, that
EC cells of the small intestine do not sense nutrient metabolites directly
MOLECULAR METABOLISM 11 (2018) 70e83 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
www.molecularmetabolism.com
through GPCRs but instead via a paracrine GLP-1 mediated mecha-
nism, could very likely have major implications on our concept of how
endogenous intestinal GLP-1 exerts its physiological functions in
general and potentially how GLP-1 mimetic drugs exerts some of their
many effects, although central GLP-1 receptors currently are domi-
nating the picture. These issues will have to be characterized through
application of various novel genetic and pharmacological tools,
conceivably in combination. Nevertheless, the identification of
expression of a large repertoire of receptors for gut microbial me-
tabolites, including novel ones, in colonic EC cells opens the door for
studies of how the gut microbiota controls our physiology and our
metabolism through specific metabolites and intestinal 5-HT. An
important issue which we have not addressed in the present study is
the presumed sensing of toxins by the EC cells. These cells are
believed to act as detectors of emetogenic agents and the released 5-
HT is believed to function as the key mediator of nausea and vomiting,
which is reflected in the fact that antagonists of the 5HT3 receptor
such as ondansetron are effective antiemetic agents. It will be inter-
esting to determine the expression pattern of the many different Tas2R
bitter taste receptors in the EC cells.
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