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Abstract

Background: Cognitive performance declines with increasing age. Possible cellular mechanisms
underlying this age-related functional decline remain incompletely understood. Early studies
attributed this functional decline to age-related neuronal loss. Subsequent studies using unbiased
stereological techniques found little or no neuronal loss during aging. However, studies using
specific cellular markers found age-related loss of specific neuronal types. To test whether there is
age-related loss of specific neuronal populations in the hippocampus, and subsequently, whether
over-expression of the B-cell lymphoma protein-2 (Bcl-2) in these neurons could delay possible
age-related neuronal loss, we examined calretinin (CR) positive neurons in the mouse dentate
gyrus during aging.

Result: In normal mice, there was an age-related loss of CR positive cells in the dentate gyrus. At
the same region, there was no significant decrease of total numbers of neurons, which suggested
that age-related loss of CR positive cells was due to the decrease of CR expression in these cells
instead of cell death. In the transgenic mouse line over-expressing Bcl-2 in neurons, there was an
age-related loss of CR positive cells. Interestingly, there was also an age-related neuronal loss in
this transgenic mouse line.

Conclusion: These data suggest an age-related loss of CR positive neurons but not total neuronal
loss in normal mice and this age-related neuronal change is not prevented by Bcl-2 over-expression.

strated age-related deficits in the induction and mainte-
nance of long-term potentiation (LTP), and lower

Background

Decline of cognitive functions, such as learning and mem-

ory, is often associated with aging, which plays a crucial
determinant of the quality of life in elderly population [1-
4]. Normal age-related deficits in learning and memory
resemble those caused by damage to the hippocampus. In
the hippocampus, electrophysiological studies demon-

thresholds for potentiation and long-term depression [5-
7]. Despite such functional evidence for age-related dys-
function in the hippocampus, the cellular and molecular
bases of this decline are still unclear. Autopsy and mag-
netic resonance imaging-based volumetric measurements

Page 1 of 9

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16930456
http://www.molecularneurodegeneration.com/content/1/1/9
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Molecular Neurodegeneration 2006, 1:9

in normal elderly humans have shown hippocampal
shrinkage [8,9]. This atrophy could be theoretically
accounted for by age-related neuronal loss in the hippoc-
ampus. Early studies in many species did report neuronal
loss of hippocampal principal cells during aging [for
review, see [11]]. Subsequently, based on unbiased stere-
ological techniques to estimate neuron number, the over-
all results suggested that there was no widespread
hippocampal cell loss in both human and rodent models
during aging [12-18]. Despite maintenance of total neu-
ron number, there may be a loss of subpopulation of neu-
rons. The design-based stereological analysis may be
unable to detect changes in specific neuronal populations
because most of these studies focused on the total neuro-
nal population. Indeed, studies using specific molecular
markers clearly showed age-related decrease of specific
neuronal populations, which could contribute to age-
related functional decline of brain functions [19-22].
However, one detailed study found that age-related loss of
hippocampal interneurons positive for glutamate decar-
boxylase-67 (GAD-67, a key synthesizing enzyme for
GABA) was due to loss of GAD-67 expression rather than
neuronal loss [23]. Thus, it remained unclear whether
there was any age-related neuronal loss.

If there was age-related neuronal loss or age-related
changes of specific neuronal types, the next important
question is whether these age-related neuronal changes
could be prevented. One particular protein, the proto-
oncogene B-cell lymphoma protein-2 (Bcl-2), has been
shown to prevent both apoptotic and necrotic neuronal
death [24]. Bcl-2 gene is originally identified in B-cell lym-
phoma where its deregulated expression protects cells
from apoptosis [25-27]. In the nervous system, Bcl-2 is
detected and had been shown to protect neurons from
undergoing apoptosis during early development or neuro-
nal insults by a wide variety of stimuli, including growth
factor deprivation and oxidation stress [28-31]. However,
Bcl-2 over-expression does not prevent mutant neurofila-
ment-mediated motor neuron degeneration [32]. In the
cerebellum, over-expression of the human Bcl-2 transgene
with a neuron-specific enolase (NSE) promoter initially
increase the number of Purkinje cells by preventing neu-
ronal death during development, but subsequently can-
not prevent age-related loss of these neurons [33]. In the
hippocampus, Bcl-2 expression is decreased during aging
[34]. It is still unknown whether Bcl-2 over-expression can
prevent age-related loss of specific neuronal populations
in the hippocampus.

In the dentate gyrus of mouse hippocampus, several high-
affinity cytosolic calcium binding proteins such as parval-
bumin, calbindin, and calretinin (CR) have been shown
to be excellent chemical markers for certain interneurons
(35-41). A majority of interneurons in the hilus are posi-
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tive for CR [35-38]. Based on detailed histological exami-
nations, these CR positive neurons in the hilus are mossy
neurons [39-41]. CRis also an early and specific marker of
newly generated adult-born neurons located near the edge
of the hilus at the subgranule zone (SGZ). Its expression
can be detected as early as one day after the neuron is born
and last less than six weeks [37]. Our preliminary studies
found over-expression of Bcl-2 transgene in this neuronal
population from mice expressing the human Bcl-2 gene
under the control of the neuron-specific enolase promoter
(the NSE73a line). Based on these previous detailed stud-
ies, we sought to focus on this population of CR positive
interneurons to test whether there was age-related loss of
interneurons in the mouse dentate gyrus, and whether
Bcl-2 over-expression could prevent age-related loss of
this neuronal population.

Results

Expression of human Bcl-2 in mouse hippocampus

To examine the expression of human Bcl-2 gene in the
hippocampus of the transgenic mice, we prepared lysates
from hippocampuses of 18 month-old transgenic and
wild type mice. These samples were analyzed by Western
blotting using a monoclonal antibody that does not cross-
react with mouse Bcl-2. Human Bcl-2 was detected in the
hippocampal lysates from transgenic mice (Fig. 1A).
Although immunohistochemistry from previous studies
indicated that expression of the human Bcl-2 was
restricted to neurons in this transgenic mouse line due to
the use of neuron-specific enolase promoter [33,42], the
expression pattern of human Bcl-2 in the dentate gyrus
was unknown. We found that the transgenic human Bcl-2
was expressed mostly in the hilus and co-localized with
CR positive interneurons (Fig. 1B). The expression of
human Bcl-2 was also found in CR positive cells at the
SGZ. In the granular cell layer, the transgene expression is
below the level to be detected (Fig. 1B).

Age-related decrease of CR positive neurons in the dentate
gyrus

Since almost all co-localization of CR and Bcl-2 over-
expression were found in the hilus and the SGZ, the
number of CR positive neurons in these areas was esti-
mated for both control (normal C57BL/6] mice) and Bcl-
2 transgenic mice under C57BL/6] genetic background
with an unbiased stereology approach. At five-month old,
in comparison with the normal C57BL/6] mice, the
number of CR positive neurons within the hilus and SGZ
exhibited over 56% increase in the transgenic mice, which
was consistent with previous reports that more neurons
were found in this transgenic mouse line with Bcl-2 over-
expression [33,42,43]. However, at 18 month-old, there
were no differences in the number of CR positive neurons
between the control and transgenic mice. In comparison
with mice at five-month old, there was a significant
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Over-expression of Human Bcl-2 in the mouse hip-
pocampus. A) Western-blots of the hippocampal lysates
from 18 month-old C57BL/6) (WT, two mice) and NSE73a
transgenic mice (Hu-Bcl-2, two mice). B) Co-localization of
the transgenic Bcl-2 and CR in the hippocampus. Four layers
of the mouse dentate gyrus are labeled on the overlay: M,
molecular layer; G, granule cell layer; SGZ, sub-granule cell
zone; and H, Hilus. The whole calibration length is 25 um.

decrease of CR positive neurons for both control and
transgenic mice at 18 months old (P = 0.003, F = 14.752,
DF = 1, two-way ANOVA). For the control mice, there was
about 29% reduction of CR positive neurons in the den-
tate gyrus from 5 to 18 month-old; and for the transgenic
mice, there was about 59% reduction (Fig. 2A). Based on
the two-way ANOVA testing, there was no difference
between two genotypes (P =0.144, F=2.474, DF = 1), and
also no significant interaction between genotype and age
(P=0.07, F=4.039, DF=1).

Because one detailed study clearly demonstrated that age-
related reduction in the number of GAD-67 positive
interneurons were due to age-related loss of GAD-67
expression rather that age-related neurons loss in the hip-
pocampus [23], we estimated the total neuronal numbers
in the same brain sections using the unbiased stereology
after the immunostaining of a neuronal marker, NeuN.
There was no age-related change in total neuronal num-
bers for normal C57BL/6J mice during aging (P = 0.43,
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Analysis of age-related neuronal loss in the mouse
dentate gyrus. Mean number of CR positive neurons or
total neurons were estimated in both wild-type (5 month-
old, n = 4; 18 month-old, n = 5) and NSE73a transgenic mice
(5 month-old, n = 3; 18 month-old, n = 3). A) Mean number
of CR positive neurons (+/- SD) estimated in the SGZ and
hilus of the mouse dentate gyrus. Based on two-way
ANOVA, There was a statistical difference between two age
groups (P = 0.003), but there was no difference between two
genotypes (P = 0.144), and there was not a statistically signif-
icant interaction between genotype and age (P = 0.07). B)
Mean number of NeuN positive neurons (+/- SD) estimated
in the same region as in (A). Based on two-way ANOVA,
There was not a statistical difference between two age
groups (P = 0.142), not a difference between two genotypes
(P = 0.076), and not a significant interaction between geno-
type and age (P = 0.266).

one-way ANOVA). Surprisingly, there was a significant
reduction (14%) of total neurons for the transgenic mice
during aging (P = 0.04, one-way ANOVA). Based on the
two-way ANOVA testing, there is no difference between
control and transgenic mice (P = 0.076, F=4.14, DF=1),
and there was no significant interaction between genotype
and age (P = 0.266, F = 1.431, DF = 1). These results sug-
gested that, in the control mice, age-related loss of CR pos-
itive neurons was due to a decrease of CR expression;
while in the transgenic mice; age-related loss of CR posi-
tive neurons was due to both an age-related decrease of
CR expression and age-related neuronal loss.
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Proliferation rate of adult neurogenesis in the dentate
gyrus during aging

However, there were several possible factors that could
influence the above findings. Since there is a consistent
adult neurogenesis in the SGZ, and one of these possibil-
ities was that Bcl-2 over-expression might change the pro-
liferation rate of adult neurogenesis during aging. For
example, an accelerated decrease of the proliferation rate
would mask a delay of age-related decrease of CR expres-
sion due to Bcl-2 over-expression. We examined the pro-
liferation rate of adult neurogenesis in both wild type and
transgenic mice with Ki-67 as a proliferate marker.
Although there was a dramatic decrease of the number of
Ki-67 positive cells from 2 month-old to 24 month-old
mice (P = 0.004, F = 16.604, DF = 1, two-way ANOVA), no
statistical difference was found between wild type and
transgenic mice (Fig. 3, P = 0.541, F = 0.407, DF = 1, two-
way ANOVA). There was also no significant interaction
between genotype and age (P = 0.410, F = 0.754, DF = 1,
two-way ANOVA). Thus, over-expression of human Bcl-2
did not affect the rate of adult neurogenesis during aging.

Molecular characterization of CR positive neurons in the
dentate gyrus over-expressing Bcl-2

Another possibility that could complicate our conclusions
was that Bcl-2 over-expression disrupted CR expression
patterns in the dentate gyrus. In the normal mouse den-
tate gyrus, there are two populations of CR-positive neu-
rons in this region, CR positive neurons in the hilus are
mature hilar mossy neurons [40,41], while CR positive
cells at the SGL are early postmitotic neurons character-
ized by the transient CR expression, which starts one day
after cell division and ends around six weeks after [37].
Doublecortin (DCX) is a marker for progenitor and early
newborn neurons [44]. Thus, it should not be detected in
CR positive neurons in the hilus but should be present in
CR positive neurons in the SGZ. A similar pattern was pre-
served in the transgenic mice (Fig. 4A). Furthermore, at
the SGZ, there are two types of DCX and CR double-posi-
tive progenitor cells: early progenitor neurons without
any apical processes (less than 7 days old, the short arrow
in the Overlay) and late progenitor neurons with proc-
esses projected into the granule cell layer (7 days and
older, the long arrow in the Overlay) [44]. These two types
of progenitor cells were also found in the transgenic mice
(Fig. 4A). Using B-tubulin, a mature neuronal maker, we
found CR and B-tubulin double-positive neurons in the
hilus, consistent with CR positive cells in the hilus as
mature mossy neurons (Fig. 4B). Only very few CR posi-
tive cells were co-localized with B-tubulin at the SGZ.
These expression patterns were the same as reported in the
normal mice [39-41]. We did not find any difference in
these co-localization patterns between transgenic and
normal mice. Thus, Bcl-2 over-expression did not lead to
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Figure 3

Proliferation rate of adult neurogenesis using Ki-67
as a marker. A) One example of GFP (green) and Ki-67
(red) in a 2 month-old mouse dentate gyrus. The whole cali-
bration bar is 25 pm. B)Semi-quantification of Ki-67 positive
cells in both wild-type (2 month-old, n = 3; 24-month-old, n
= 3) and NSE73a transgenic mice (2 month-old, n = 3; 24-
month-old, n = 3) (+/- SE). Based on two-way ANOVA,
There was a statistical difference between two age groups (P
= 0.004), but there was no difference between two geno-
types (P = 0.541), and also no a statistically significant interac-
tion between genotype and age (P = 0.410).

obvious abnormal CR expression patterns in the dentate
gyrus.

Distribution of CR positive neurons in dentate gyrus during
aging

Since the dentate gyrus is a 3-D structure, it was possible
that Bcl-2 over-expression could disrupt the distribution
of CR neurons in this 3-D structure. Although it should
not affect the final conclusions because we used the unbi-
ased stereological counting method, it could introduce
large errors and reduce the sensitivity of our approach. We
thus examined age-related changes of CR neurons in the
dentate gyrus from septal (dorsal) to temporal (ventral)
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Characterization of CR positive cells in the dentate
gyrus. A) Co-localization of CR with DCX at the SGZ. No
co-localization was observed in the hilus. At the overlay
panel, the long arrow points an example of late progenitor
cells with processes and the short arrow an early progenitor
cell without any apical processes. B) Co-localization of CR
with B-tubulin in the dentate gyrus. B-tubulin is a neuronal
specific molecular marker for mature neurons. Almost all CR
positive cells were co-localized with B-tubulin in the hilus.
The whole calibration bar is 25 um.

regions in the transgenic mice. The distribution of CR pos-
itive neurons was very similar if not the same as the nor-
mal mice. At the septal region, one obvious difference
between young (2 month-old) and old (24 months-old)
mice was a dramatic decrease of CR positive neurons at
the SGZ in the dentate gyrus (Fig. 5). At the temporal
region, similar to previous findings [35], more CR positive
neurons were found in the hilus, compared to the septal
region (Fig. 5).

Changes of CR positive neurons at the SGZ during aging

Based on the above findings, we focused on the CR posi-
tive neurons at the SGZ of the septal area among three age
groups (2, 5, and 24 month-old). In both wild type and
transgenic mice over-expressing human Bcl-2, there was a
dramatic decrease of CR positive neurons at the SGZ, and
this could be observed as early as in the 5 month-old mice
(Fig. 6A). Semi-quantitatively, there was a dramatic
decrease of CR positive neurons at the SGZ during aging
(P =0.001, F =102.341, DF = 2, two-way ANOVA), and
there was a statistical difference between wild type and
transgenic mice (P = 0.002, F = 15.379, DF = 1, two-way
ANOVA). Compared to the wild type mice, there were
fewer CR positive neurons at the SGZ from 2 and 5
month-old transgenic mice (Fig. 6B). Thus, an increase of
CR positive neurons in the dentate gyrus of the Bcl-2
transgenic mice at five months of age (Fig. 2A) could be
only due to an increase of mossy neurons in the hilus, and
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2 MONTH-OLD

Figure 5

Spatial distribution of CR positive cells in the dentate
gyrus of NSE73a transgenic mice. In the dentate gyrus
of 2 month-old mice, the number of CR positive cells distrib-
uted at the SGZ was much higher in the septal region (A)
that in the temporal region (B) of the dentate gyrus, and the
number of the hilular CR positive cells was much higher in
the temporal region than in the septal region. The same dis-
tribution pattern held in the dentate gyrus of 24 month-old
mice although the number of CR positive cells at both hilus
and SGZ was less that the number in 2 month-old mice. The
whole calibration bar is 25 um.

over-expressing of human Bcl-2 gene could not delay age-
related decrease of CR expression in mossy neurons at
later stages (over 18 month-old).

Discussion

The results presented here reveal a consistent age-related
loss of CR positive neurons in the mouse dentate gyrus.
However, in normal mice, this age-related loss is due to a
decrease of CR expression without significant neuronal
loss. Over-expressing Bcl-2 does not prevent this age-
related loss of CR positive neurons. Unexpectedly, Bcl-2
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Figure 6

Age-related decease of CR positive cells at the SGZ.
A)Dramatic decrease of CR positive cells at the SGZ during
aging. The whole calibration bar is 25 um. B) Semi-quantifica-
tion of CR positive cells at the SGZ in both wild-type (total 9
mice, 3 for each age group) and NSE73a transgenic mice
(total 9 mice, 3 for each age group) (+/- SE). Based on two-
way ANOVA, There was a statistical difference between two
age groups (P = 0.001), between two genotypes (P = 0.002),
and a significant interaction between genotype and age (P =
0.049).

over-expression leads to age-related neuronal loss in the
dentate gyrus.

CR positive neurons in the mouse dentate gyrus are well
characterized [37,39-41]. At the SGZ, CR is transiently
expressed in newly generated postmitotic neurons. Thus,
CR is a useful marker to measure adult neurogenesis [45].
Consistent with the previous studies showing an age-
related decrease of neurogenesis in the dentate gyrus [46],
we found a clear age-related loss of CR-positive cells at the
SGZ. Interestingly, over-expression of Bcl-2 decreases this
population of CR positive cells around two to five month-
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old. This finding seems to contradict the previous finding
made using DCX as a molecular maker in the same trans-
genic mice [47], which found a significant increase of
DCX positive cells in the region including the granule cell
layer and SGZ around two-month old. There are two obvi-
ous differences between our study and their study. First of
all, different molecular markers were used (DCX vs. CR),
and DCX is expressed in both proliferating progenitor
cells and newly generated postmitotic neurons. Second,
different areas were investigated: both SGZ and granular
cell layer in their study and the SGZ only in our study.
However, we found a high level of co-localization for
these two markers in the SGZ and only a few cells positive
for both markers at the granular cell layer. Therefore, there
may be other factors contributing to the difference, for
example, we found that it was hard to precisely count
DCX positive cells because not only cell bodies but also
extensive processes were labeled. With CR as a molecular
marker, we were able not only to easily count the positive
cells but also to observe a similar trend between control
and transgenic mice at three different age groups (2, 5 and
24 month-old). Based on these data, and other control
experiments we did, we have concluded that Bcl-2 over-
expression could not delay age-related decrease of adult
neurogenesis.

In the hilus, CR positive neurons located at the ventral
part of the hilus are mossy cells, which receive innerva-
tions from mossy fibers of granule cells in the dentate
gyrus [48]. Mossy neurons in turn project to the ipsi- and
contra-lateral inner molecular layer and make excitatory
synapses on proximal dendrites of granule cells [49].
Adult neurogenesis does not contribute to this population
of neurons [37]. With the unbiased stereological
approach to estimate total CR positive cells in the region
including both the SGZ and hilus, we found more CR pos-
itive neurons at 5 month-old transgenic mice compared to
the control mice. Because the number of CR positive cells
was less at the SGZ in the transgenic mice, it is reasonable
to assume that there were more CR positive cells (or
mossy cells) in the hilus of the transgenic mice. Because
the total number of neurons in the hilus was similar
between the transgenic and control mice, Bcl-2 over-
expression may either selectively increase CR positive neu-
rons or up-regulate CR expressions in the hilus, which was
hard to distinguish in the present study. Another caveat
was that the immunoreactive intensity for NeuN was not
as strong as CR; therefore, there was a tendency to under-
estimate the total neuronal number by using NeuN as a
marker. However, using the same transgenic line, one pre-
vious study found an early increase of the Purkinje cells
and a return to near the normal level during aging [33].
Similar to their findings in the cerebellum, we found no
difference in the number of CR positive cells between the
control and transgenic mice at 18-month old, which sug-
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gests that Bcl-2 over-expression can not prevent age-
related loss of CR positive cells. Furthermore, Bcl-2 over-
expression leads to age-related neuronal loss while there is
no significant neuronal loss in the control animals during
aging. Since this transgenic line shows a deficit of allocen-
tric navigation in the water maze and a decrease of LTP
amplitude [50], one possible reason for this observation
is that Bcl-2 over-expression at early development stages
could result in abnormal neuronal connections, which
leads to abnormal neuronal activities, and subsequently
accelerated neuronal loss during aging.

In conclusion, we present strong evidence for age-related
loss of CR positive cells in the mouse dentate gyrus and
this loss is not prevented by Bcl-2 over-expression. The
age-related decrease of CR is likely to contribute to age-
related functional decline of nervous system. The absence
or reduction of CR in mossy neurons has been associated
with a complete blockade of dentate LTP induction in
mice [51,52]. The cause of this blockade may due to
decreased calcium buffering capacity in hillar mossy cells,
which leads to abnormal changes in synaptic transmis-
sion. A similar change in the mouse dentate gyrus may
happen during aging, which could be one of the cellular
mechanisms underlying age-related decrease of the den-
tate LTP. Furthermore, age-related decrease of CR expres-
sion could also deprive these neurons of the capacity to
buffer intracellular calcium and thus leave them vulnera-
ble to calcium excitoxicity during aging.

Materials and methods

Animals

C57BL/6] mice and mice expressing the human Bcl-2 gene
under the control of the neuron-specific enolase promoter
(the NSE73a line) were bred in the CID animal care facil-
ity at Washington University in St. Louis. All experimental
protocols were approved by the Institutional Animal Care
and Use Committee (Washington University/CID). In
order to reduce the possibility of effects of other genes co-
segregating with the bcl-2 transgene, the Bcl-2 over-
expressing transgenic mice were backcrossed to C57BL/6]
for at least 8 generations prior to the onset of our studies.
The genotype of each mouse was determined by tail-clip
DNA analysis using PCR. A total of 24 C57BL/6J and 21
transgenic mice were used for the data analysis. The detail
usage of animals for each experiment group was listed
(Table 1).

Tissue preparation and immunohistochemistry

Mice were transcardially perfused with 2% paraformalde-
hyde and 2% glutaraldehyde in 0.1 M sodium phosphate,
PH 7.6. The brains were removed and kept in the fixative
overnight and then transferred into 30% sucrose. Tissue
samples were immersed in OCT compound (Sakura Fine-
tek USA, Torrance, CA) and frozen on dry ice. Cryostat
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sections were cut. The sections were stored at - 20 C in cry-
oprotectant with 25% ethylene glycol, 25% glycerin, and
0.05 M phosphate buffer. Free-floating immunohisto-
chemistry was used for all sections. Two different immu-
nostaining methods were applied: the peroxidase method
(ABC system, Vectastain, Vector Laboratories) for anti-CR
immunostaining (rabbit anti-CR, 1:1000, Chemicon) on
20 pum sections; and immunoflurescent labeling for CR,
human Bcl-2 (1:1000, PharMingen, San Diego, CA), neu-
ron-specific nuclear antigen (NeuN) (1:500, Chemicon),
doublecortinin (1:1000, Santa Cruz Lab.), Ki67 (1:500,
BD Biosciences Pharmingen), and B-tubulin (1:500, Cov-
ance) on 40 um sections. Fluorescent sections were
mounted with DAP (to label the nuclei) in polyvinyl alco-
hol with diazbicyclo-octans as antifading agent.

Stereology

To precisely examine possible age-related neuronal loss in
the hilus during aging, we estimated the number of CR or
NeuN positive neurons in the hilus by using the optical
volume fractionator procedure. This method employs a
design-based, systematically random, multilevel sampling
protocol that combines the optical dissector and fraction-
ator methods to estimate subregion volume and cell
number. The area and distribution of the dissector count-
ing frames employed were dependent upon the region
and cell type under examination. For counting CR or
NeuN positive cells, the sampling grid area was 120 x 120
um, the dissector size for each area was 50 x 50 pm using
the 100 x oil immersion objective lens, and the dissector
height was 4 um. The volume was estimated by the prod-
uct of the summed volume of a systematic sub-sample
(every 4th section) throughout the entire structure. The
average section thickness was calculated from the section
thickness at each position over the sections where a dissec-
tor was systematically placed. Since counting efficiency
(the number of cells to be counted in each subsection) is
dependent on the counting error and biological variabil-
ity, a random mix of five young and old animals was used
to determine the counting efficiency (CE) by calculating
the observed coefficient of error and the observed coeffi-
cient of variation on relatively thick (40 um) sections. The
average CE for this study was 0.012. The most difficult
obstacle with this approach was outlining the hilus based
on the polymorphism nuclear regions between the blades
of the hilus and the granular cell layer. We failed to con-
sistently outline the hilus (theoretically two nuclei layers
away from the granular cell layer) after numerous prelim-
inary experiments. However, we were able to consistently
outline the hilus and SGZ together based on the staining
pattern of nuclei and CR immunostaining. Thus, we first
estimated the total cell numbers of CR and NeuN positive
neurons in the region including both the hilus and SGZ
with the optical volume fractionator procedure. We then
semi-quantitatively estimated the number of CR positive
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Table I: Animal numbers in each experiment group.

http://www.molecularneurodegeneration.com/content/1/1/9

Groups Age (months)  Number of C57BL/6) mice  Number of NSE73a mice  Subtotal
Stereological estimation of CR and NeuN positive neurons 5 4 3 7

18 5 3 6
Semi-quantitation of CR neurons 2 3 3 6

5 3 3 6

24 3 3 6
Semi-quantitation of Ki67 cells 2 3 3 6

24 3 3 6
Total 24 21 45

neurons in the SGZ since the optical fractionator cannot
be used at the SGZ due to its thickness (only one- to two-
cell thick). For this semi-quantification, images of all
brain sections from the whole brain were taken under a
dissection scope after CR immunostaining. Ten sections
with similar dorsoventral level from each were selected
among different age groups. For a given section, all CR
positive neurons in the SGZ at the dorsal dentate gyrus
were counted by an observer blind to the experimental
conditions. Cell counts were then summed across the ten
sections and divided by ten. Similar approaches were used
for counting of Ki-67 positive cells in the SGZ.

Statistical analysis

The procedures based on West [53] were employed for
estimating the observed coefficient of variation and
observed coefficient of error in the estimations. Two-way
ANONA analysis of variance (SigmaPlot software) was
employed to evaluate differences among different age,
genotype, and the interaction between age and genotype.
Data are presented as mean +/- standard deviation (SD).
A p-value less than 0.05 were considered statistically sig-
nificant.

Abbreviations

Bcl-2, B-cell lymphoma protein-2; CR, calretinin; DCX,
doublecortin; GAD-67, glutamate decarboxylase-67; LTP,
long-term potentiation; NSE, neuron-specific enolase; SD,
standard deviation; SGZ, subgranular zone;

Authors' contributions

MH, FS, and DL carried out the experiments, and contrib-
uted to the design and analysis of the data. EYD and AB
carried out the experiments. JB contributed to the concep-
tion, design, and analysis and interpretation of the data,
and was responsible for manuscript preparation. All
authors read and approved the final manuscript.

Acknowledgements

This work was supported by grants from National Institutes of Health to |B
(AG024250 and AGO1016). We thank Kevin Ohlemiller for his help on sta-
tistics.

References

2.

3.

Gallagher M, Rapp PR: The use of animal models to study the
effects of aging on cognition. Annul Rev Psychol 2003, 48:339-370.
Finch CE: Neurons, glia, and plasticity in normal brain aging.
Neurobiol Aging Suppl 2003, 1:S123-127.

Rosenzweig ES, Barnes CA: Impact of aging on hippocampal
function: Plasticity, network dynamics, and cognition. Prog
Neurobiol 2003, 69:143-179.

Hof PR, Morrison JH: The aging brain: morphomolecular senes-
cence of cortical circuits. Trends Neurosci 2004, 27:607-613.
Lynch MA: Analysis of the mechanisms underlying the age-
related impairment in long-term potentiation in the rat. Rev
Neurosci 1998, 9:169-201.

Barnes CA: Long-term potentiation and the ageing brain. Phi-
los Trans R Soc Lond B Biol Sci 2003, 358:765-772.

Pang PT, Lu B: Regulation of late-phase LTP and long-term
memory in normal and aging hippocampus: role of secreted
proteins tPA and BDNF. Ageing Res Rev 2004, 3:407-30.

Jack CR Jr, Petersen RC, Xu YC, Waring SC, O'Brien PC, Tangalos
EG, Smith GE, Ivnik R], Kokmen E: Medial temporal atrophy on
MRI in normal aging and very mild Alzheimer's disease. Neu-
rology 1998, 49:786-794.

Pruessner JC, Collins DL, Pruessner M, Evans AC: Age and gender
predict volume decline in the anterior and posterior hippoc-
ampus in early adulthood. | Neurosci 2001, 21:194-200.

Driscoll I, Hamilton DA, Petropoulos H, Yeo RA, Brooks WM, Baum-
gartner RN, Sutherland RJ: The aging hippocampus: coghnitive,
biochemical and structural findings. Cereb Cortex 2003,
13:1344-1351.

Coleman PD, Flood DG: Neuron numbers and dendritic extent
in normal aging and Alzheimer's disease. Neurobiol Aging 1987,
8:521-545.

Rapp PR, Gallagher M: Preserved neuron number in the hippoc-
ampus of aged rats with spatial learning deficits. Proc Natl Acad
Sci USA 1996, 93:9926-99230.

Rasmussen T, Schliemann T, Sorensen JC, Zimmer |, West MJ: Mem-
ory impaired aged rats: no loss of principal hippocampal and
subicular neurons. Neurobiol Aging 1996, 17:143-147.

Calhoun ME, Kurth D, Phinney AL, Long JM, Hengemihle J, Mouton
PR, Ingram DK, Jucker M: Hippocampal neuron and synapto-
physin-positive bouton number in aging C57BL/6 mice. Neu-
robiol Aging 1998, 19:599-606.

West M), Gundersen HJ: Unbiased stereological estimation of
the number of neurons in the human hippocampus. | Comp
Neurol 1990, 296:1-22.

West MJ: Regionally specific loss of neurons in the aging
human hippocampus. Neurobiol Aging 1993, 14:287-293.
Gallagher M, Landfield PW, McEwen B, Meaney MJ, Rapp PR, Sapolsky
R, West MJ: Hippocampal neurodegeneration in aging. Science
1996, 274:484-485.

von Bohlen und Halbach O, Unsicker K: Morphological altera-
tions in the amygdala and hippocampus of mice during age-
ing. Eur | Neurosci 2002, 16:2434-2440.

Villa A, Podini P, Panzeri MC, Racchetti G, Meldolesi |: Cytosolic
Ca2+ binding proteins during rat brain ageing: loss of calbin-
din and calretinin in the hippocampus, with no change in the
cerebellum. Eur | Neurosci 1994, 6:1491-1499.

Page 8 of 9

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12758108
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12758108
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9833650
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9833650
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12740124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15541709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15541709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15541709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11150336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11150336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11150336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14615299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14615299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3323927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3323927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8790433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8790433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8786797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8786797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8786797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10192220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10192220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2358525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2358525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8367010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8367010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8927995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12492438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12492438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12492438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8000572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8000572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8000572

Molecular Neurodegeneration 2006, 1:9

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31

32

33.

34.

35.

36.

37.

38.

39.

Shetty AK, Turner DA: Hippocampal interneurons expressing
glutamic acid decarboxylase and calcium-binding proteins
decrease with aging in Fischer 344 rats. | Comp Neurol 1998,
394:252-269.

Bu J, Sathyendra V, Nagykery N, Geula C: Age-related changes in
calbindin-D28k, calretinin, and parvalbumin-immunoreac-
tive neurons in the human cerebral cortex. Exp Neurol 2003,
182:220-231.

Cadacio CL, Milner TA, Gallagher M, Pierce JP: Hilar neuropeptide
Y interneuron loss in the aged rat hippocampal formation.
Exp Neurol 2003, 183:147-158.

Stanley DP, Shetty AK: Aging in the rat hippocampus is associ-
ated with widespread reductions in the number of glutamate
decarboxylase-67 positive interneurons but not interneuron
degeneration. | Neurochem 2004, 89:204-216.

Yuan }, Lipinski M, Degterev A: Diversity in the mechanisms of
neuronal cell death. Neuron 2003, 40:401-413.

Bakhshi A, Jensen JP, Goldman P, Wright |}, McBride OW, Epstein AL,
Korsmeyer §J: Cloning the chromosomal breakpoint of
t(14;18) human lymphomas: clustering around JH on chro-
mosome |4 and near a transcriptional unit on 18. Cell 1985,
41:899-906.

Cleary ML, Sklar J: Nucleotide sequence of a t(14;18) chromo-
somal breakpoint in follicular lymphoma and demonstration
of a breakpoint-cluster region near a transcriptionally active
locus on chromosome 18. Proc Natl Acad Sci USA 1985,
82:7439-7443.

Tsujimoto Y, Gorham J, Cossman }, Jaffe E, Croce CM: The t(14;18)
chromosome translocations involved in B-cell neoplasms
result from mistakes in VD] joining. Science 1985,
229:1390-1393.

Merry DE, Veis D), Hickey WF, Korsmeyer SJ: bcl-2 protein
expression is widespread in the developing nervous system
and retained in the adult PNS. Development 1994, 120:301-311.
Farlie PG, Dringen R, Rees SM, Kannourakis G, Bernard O: bcl-2
transgene expression can protect neurons against develop-
mental and induced cell death. Proc Natl Acad Sci USA 1995,
92:4397-4401.

Chen J, Flannery ]G, LaVail MM, Steinberg RH, Xu J, Simon MI: bcl-2
overexpression reduces apoptotic photoreceptor cell death
in three different retinal degenerations. Proc Natl Acad Sci USA
1996, 93:7042-7047.

Putcha GV, Johnson EM Jr: Men are but worms: neuronal cell
death in C elegans and vertebrates. Cell Death Differ 2004,
11:38-48.

Houseweart MK, Cleveland DW: Bcl-2 overexpression does not
protect neurons from mutant neurofilament-mediated
motor neuron degeneration. | Neurosci 1999, 19:6446-6456.
Zanjani H, Lemaigre-Dubreuil Y, Tillakaratne NJ, Blokhin A, McMahon
RP, Tobin AJ, Vogel MW, Mariani |: Cerebellar Purkinje cell loss
in aging Hu-Bcl-2 transgenic mice. | Comp Neurol 2004,
475:481-492.

Kaufmann JA, Bickford PC, Taglialatela G: Oxidative-stress-
dependent up-regulation of Bcl-2 expression in the central
nervous system of aged Fisher-344 rats. | Neurochem 2001,
76:1099-1108.

Fujise N, Kosaka T: Mossy cells in the mouse dentate gyrus:
identification in the dorsal hilus and their distribution along
the dorsoventral axis. Brain Res 1999, 816:500-51 1.

Jinno S, Kosaka T: Patterns of expression of calcium binding
proteins and neuronal nitric oxide synthase in different pop-
ulations of hippocampal GABAergic neurons in mice. | Comp
Neurol 2002, 449:1-25.

Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-
Sander A, von der Behrens W, Kempermann G: Transient cal-
retinin expression defines early postmitotic step of neuronal
differentiation in adult hippocampal neurogenesis of mice.
Mol Cell Neurosci 2003, 24:603-613.

Matyas F, Freund TF, Gulyas Al: Immunocytochemically defined
interneuron populations in the hippocampus of mouse
strains used in transgenic technology. Hippocampus 2004,
14:460-481.

Liu Y, Fujise N, Kosaka T: Distribution of calretinin immunore-
activity in the mouse dentate gyrus. I. General description.
Exp Brain Res 1996, 108:389-403.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51,

52.

53.

http://www.molecularneurodegeneration.com/content/1/1/9

Blasco-Ibanez JM, Freund TF: Distribution, ultrastructure, and
connectivity of calretinin-immunoreactive mossy cells of the
mouse dentate gyrus. Hippocampus 1997, 7:307-20.

Fujise N, Liu Y, Hori N, Kosaka T: Distribution of calretinin
immunoreactivity in the mouse dentate gyrus: Il. Mossy
cells, with special reference to their dorsoventral difference
in calretinin immunoreactivity. Neuroscience 1998, 82:181-200.
Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski
H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C, Huarte J:
Overexpression of BCL-2 in transgenic mice protects neu-
rons from naturally occurring cell death and experimental
ischemia. Neuron 1994, 13:1017-1030.

Rondi-Reig L, Mariani J: To die or not to die, does it change the
function? Behavior of transgenic mice reveals a role for
developmental cell death. Brain Res Bull 2002, 57:85-91.

Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner
L, Kuhn HG: Transient expression of doublecortin during
adult neurogenesis. | Comp Neurol 2003, 467:1-10.

Kempermann G, Jessberger S, Steiner B, Kronenberg G: Milestones
of neuronal development in the adult hippocampus. Trends
Neurosci 2004, 27:447-452.

Kuhn HG, Dickinson-Anson H, Gage FH: Neurogenesis in the
dentate gyrus of the adult rat: age-related decrease of neu-
ronal progenitor proliferation. | Neurosci 1996, 16:2027-2033.
Kuhn HG, Biebl M, Wilhelm D, Li M, Friedlander RM, Winkler |:
Increased generation of granule cells in adult Bcl-2-overex-
pressing mice: a role for cell death during continued hippoc-
ampal neurogenesis. Eur | Neurosci 2005, 22:1907-1915.
Buckmaster PS, Schwartzkroin PA: Hippocampal mossy cell func-
tion: a speculative view. Hippocampus 1994, 4:393-402.

Nicoll RA, Schmitz D: Synaptic plasticity at hippocampal mossy
fibre synapses. Nat Rev Neurosci 2005, 6:863-876.

Rondi-Reig L, Lemaigre-Dubreuil Y, Montecot C, Muller D, Martinou
JC, Caston J, Mariani J: Transgenic mice with neuronal overex-
pression of bcl-2 gene present navigation disabilities in a
water task. Neuroscience 2001, 104:207-215.

Schurmans S, Schiffmann SN, Gurden H, Lemaire M, Lipp HP, Schwam
V, Pochet R, Imperato A, Bohme GA, Parmentier M: Impaired long-
term potentiation induction in dentate gyrus of calretinin-
deficient mice. Proc Natl Acad Sci USA 1997, 94:10415-10420.
Gurden H, Schiffmann SN, Lemaire M, Bohme GA, Parmentier M,
Schurmans S: Calretinin expression as a critical component in
the control of dentate gyrus long-term potentiation induc-
tion in mice. Eur | Neurosci 1998, 10:3029-3033.

West M): Design-based stereological methods for counting
neurons. Prog Brain Res 2002, 135:43-51.

disseminating the results of biomedical research in our lifetime.

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 9 of 9

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9552130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9552130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9552130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12821392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12821392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12821392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12957498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12957498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15030405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15030405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15030405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14556717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14556717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3924412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3924412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3924412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2865728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2865728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2865728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3929382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3929382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3929382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8149910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8149910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8149910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7753817
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7753817
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7753817
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8692941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8692941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8692941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14647239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14647239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10414973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10414973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10414973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15236231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15236231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9878875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9878875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9878875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12115690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12115690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12115690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14664811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14664811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15224983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15224983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15224983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8801119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8801119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9228528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9228528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9228528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9483514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9483514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9483514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7946326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7946326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7946326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11827740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11827740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11827740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14574675
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14574675
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15271491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15271491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8604047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8604047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8604047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16262630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16262630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16262630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7874231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7874231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16261180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16261180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11311543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11311543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11311543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9294225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9294225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9294225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9758174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9758174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9758174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12143362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12143362
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Result
	Conclusion

	Background
	Results
	Expression of human Bcl-2 in mouse hippocampus
	Age-related decrease of CR positive neurons in the dentate gyrus
	Proliferation rate of adult neurogenesis in the dentate gyrus during aging
	Molecular characterization of CR positive neurons in the dentate gyrus over-expressing Bcl-2
	Distribution of CR positive neurons in dentate gyrus during aging
	Changes of CR positive neurons at the SGZ during aging

	Discussion
	Materials and methods
	Animals
	Tissue preparation and immunohistochemistry
	Stereology
	Statistical analysis

	Abbreviations
	Authors' contributions
	Acknowledgements
	References

